TY - JOUR A1 - Reimann, C. A1 - Brangsch, J. A1 - Kaufmann, Jan Ole A1 - Adams, L. C. A1 - Onthank, D. C. A1 - Thöne-Reineke, C. A1 - Robinson, S. P. A1 - Hamm, B. A1 - Botnar, R. M. A1 - Makowski, M. R. T1 - Dual-probe molecular MRI for the in vivo characterization of atherosclerosis in a mouse model: Simultaneous assessment of plaque inflammation and extracellular matrix remodeling N2 - Molecular MRI is a promising in-vivo modality to detect and quantify morphological and molecular vessel-wall changes in atherosclerosis. The combination of different molecular biomarkers may improve the risk stratification of patients. This study aimed to investigate the feasibility of simultaneous visualization and quantification of plaque-burden and inflammatory activity by dual-probe molecular MRI in a mouse-model of progressive atherosclerosis and in response-to-therapy. Homozygous apolipoprotein E knockout mice (ApoE−/−) were fed a high-fat-diet (HFD) for up to four-months prior to MRI of the brachiocephalic-artery. To assess response-to-therapy, a statin was administered for the same duration. MR imaging was performed before and after administration of an elastin-specific gadolinium-based and a macrophage-specific iron-oxide-based probe. Following in-vivo MRI, samples were analyzed using histology, immunohistochemistry, inductively-coupled-mass-spectrometry and laser-inductively-coupled-mass-spectrometry. In atherosclerotic-plaques, intraplaque expression of elastic-fibers and inflammatory activity were not directly linked. While the elastin-specific probe demonstrated the highest accumulation in advanced atherosclerotic-plaques after four-months of HFD, the iron-oxide-based probe showed highest accumulation in early atherosclerotic-plaques after two months of HFD. In-vivo measurements for the elastin and iron-oxide-probe were in good agreement with ex-vivo histopathology (Elastica-van-Giesson stain: y = 298.2 + 5.8, R2 = 0.83, p < 0.05; Perls‘ Prussian-blue-stain: y = 834.1 + 0.67, R2 = 0.88, p < 0.05). Contrast-to-noise-ratio (CNR) measurements of the elastin probe were in good agreement with ICP-MS (y = 0.11x-11.3, R² = 0.73, p < 0.05). Late stage atherosclerotic-plaques displayed the strongest increase in both CNR and gadolinium concentration (p < 0.05). The gadolinium probe did not affect the visualization of the iron-oxide-probe and vice versa. This study demonstrates the feasibility of simultaneous assessment of plaque-burden. KW - Gadolinium KW - Elastin KW - Probe KW - Iron oxide KW - Ferumoxytol PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-497066 DO - https://doi.org/10.1038/s41598-019-50100-8 VL - 9 SP - 13827 PB - Springer Nature AN - OPUS4-49706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brangsch, J. A1 - Reimann, C. A1 - Kaufmann, Jan Ole A1 - Adams, L. C. A1 - Onthank, D. C. A1 - Thöne-Reinecke, C. A1 - Robinson, S. P. A1 - Buchholz, R. A1 - Karst, U. A1 - Botnar, R. M. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Concurrent Molecular Magnetic Resonance Imaging of Inflammatory Activity and Extracellular Matrix Degradation for the Prediction of Aneurysm Rupture N2 - This study demonstrates the potential of the concurrent assessment of inflammatory activity and ECM degradation by dual-probe molecular MRI in an experimental mouse model of AAA. Based on the combined information from both molecular probes the rupture of AAAs could reliably be predicted, with higher accuracy compared with each probe alone. The combined in vivo quantification of these biomarkers in 1 imaging session may be useful to improve the in vivo characterization of AAAs. KW - Aneurism KW - Extracellular matrix KW - Inflammation KW - Macrophage KW - Magnetic resonance imaging PY - 2019 DO - https://doi.org/10.1161/CIRCIMAGING.118.008707 VL - 12 IS - 3 SP - e008707 PB - American Heart Association, Inc. CY - Waltham, MA, USA AN - OPUS4-49705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Madkour, Sherif A1 - Schönhals, Andreas T1 - Molecular dynamics of the asymmetric blend PVME/PS revisited by broadband dielectric and specific heat spectroscopy: Evidence of multiple glassy dynamics N2 - The molecular mobility of the highly asymmetric miscible blend poly(vinyl methyl ether)/polystyrene was investigated by broadband dielectric (frequency range 10^-1 Hz – 10^9 Hz) and specific heat spectroscopy (frequency range 10^1 Hz – 10^4 Hz). The dielectric spectra revealed a complex molecular dynamic behavior, where three different relaxation processes were observed. At temperatures below the glass transition temperature an α´-relaxation was found, with an Arrhenius-like temperature dependence of its relaxation rates. It is assigned to localized fluctuations of the confined PVME segments within a frozen glassy matrix dominated by PS. Above the thermal glass transition temperature two processes with a VFT behavior of their relaxation rates were detected called α1- and α2-relaxation, both originating from PVME dipoles fluctuating in PS-rich environments, however with diverse PS concentrations. The relevant length scales for the processes are assumed to be different, corresponding to the Kuhn segment length for the former relaxation and to the CRR for the latter one. The observed multiple glassy dynamics result from spatial local compositional heterogeneities on a microscopic level. Additionally, SHS investigations were performed for the first time for this system, proving an existence of a fourth relaxation process (α3-relaxation) due to the cooperative fluctuations of both PS and PVME segments. The separation between the thermal α3- and dielectric α2-relaxation increases dramatically with increasing polystyrene concentration, proving that the thermal response is dominated by PS. KW - Polymer blends KW - Dynamic heterogeneity KW - Broadband dielectric spectroscopy KW - Specific heat spectroscopy PY - 2019 DO - https://doi.org/10.1021/acs.macromol.8b02697 SN - 0024-9297 VL - 52 IS - 4 SP - 1620 EP - 1631 PB - ACS Publications AN - OPUS4-47516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Elert, Anna Maria T1 - Combination of advanced atomic force microscopy methods to investigate mechanical and chemical interphases in epoxy-boehmite nanocomposites N2 - Formation of interphases between inorganic nanofillers and thermoplastic matrices are usually correlated to short-range interactions which does not exceed more than tens of nanometers away from the surface of the filler. Nevertheless, in nanocomposites with thermosetting matrices, the effect of nanofillers on the properties of the matrix is not limited to the immediate vicinities, but a long-range property alteration of the bulk polymer may be observed. The interaction between nanofillers and the polymer can disturb the curing reaction and alters the chemical, physical and mechanical properties of the polymer network in the matrix phase. In our studies, we aim to investigate short and long-range interphases of a nanocomposite system consisting of a thermosetting matrix (DGEBA) filled with an inorganic nanoparticle (boehmite). For this purpose, a combination of atomic force microscopy (AFM)-based approaches is implemented. Scanning kelvin probe microscopy (SKPM) was used to map the compositional contrast and the interphase with different electrical properties than the bulk. The mechanical properties of the interphase were probed by high resolution intermodulation AFM. (ImAFM). Furthermore, infrared spectroscopy AFM (AFM-IR) is used to investigate the chemical structure of the matrix at different distances from the nanoparticle. SKPM and (AFM-IR) measurements both show a long-range (to 10 µm) effect of boehmite on the chemical structure and surface potential of the bulk epoxy, respectively, whereas ImAFM force measurements reveals a short-range mechanical interphase between the filler and the matrix. The AFM-IR demonstrated the existence of unreacted anhydride hardener at the interphase. This indicates the preferential absorption of anhydride on the surface of boehmite. The consequence of such a selective interaction between the inorganic filler and the epoxy components is disturbance of the epoxy-hardener stoichiometric ratio, the curing mechanism. and the alteration of bulk properties of the matrix. T2 - EUROMAT CY - Stockholm, Sweden DA - 01.09.2019 KW - AFM KW - SKPM KW - AFM-IR KW - ImAFM KW - Boehmite PY - 2019 AN - OPUS4-50693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Platz, D. A1 - Sturm, Heinz T1 - Insights into Nano-Scale Physical and Mechanical Properties of Epoxy/Boehmite Nanocomposite Using Different AFM Modes N2 - Understanding the interaction between nanoparticles and the matrix and the properties of interphase is crucial to predict the macroscopic properties of a nanocomposite system. Here, we investigate the interaction between boehmite nanoparticles (BNPs) and epoxy using different atomic force microscopy (AFM) approaches. We demonstrate benefits of using multifrequency intermodulation AFM (ImAFM) to obtain information about conservative, dissipative and van der Waals tip-surface forces and probing local properties of nanoparticles, matrix and the interphase. We utilize scanning kelvin probe microscopy (SKPM) to probe surface potential as a tool to visualize material contrast with a physical parameter, which is independent from the mechanics of the surface. Combining the information from ImAFM stiffness and SKPM surface potential results in a precise characterization of interfacial region, demonstrating that the interphase is softer than epoxy and boehmite nanoparticles. Further, we investigated the effect of boehmite nanoparticles on the bulk properties of epoxy matrix. ImAFM stiffness maps revealed the significant stiffening effect of boehmite nanoparticles on anhydride-cured epoxy matrix. The energy Dissipation of epoxy Matrix locally measured by ImAFM shows a considerable increase compared to that of neat epoxy. These measurements suggest a substantial alteration of epoxy structure induced by the presence of boehmite. KW - Nanomechanics KW - Intermodulation-AFM KW - Interphase KW - Boehmite KW - Epoxy PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-476040 DO - https://doi.org/10.3390/polym11020235 SN - 2073-4360 VL - 11 IS - 2 SP - 235, 1 EP - 19 PB - MDPI AN - OPUS4-47604 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Szymoniak, Paulina A1 - Hodoroaba, Vasile-Dan A1 - Sturm, Heinz T1 - The effect of boehmite nanoparticles (gamma‐AlOOH) on nanomechanical and thermomechanical properties correlated to crosslinking density of epoxy N2 - We show that complex physical and chemical interactions between boehmite nanoparticles and epoxy drastically affect matrix properties, which in the future will provide tuning of material properties for further optimization in applications from automotive to aerospace. We utilize intermodulation atomic force microscopy (ImAFM) for probing local stiffness of both particles and polymer matrix. Stiff particles are expected to increase total stiffness of nanocomposites and the stiffness of polymer should remain unchanged. However, ImAFM revealed that stiffness of matrix in epoxy/boehmite nanocomposite is significantly higher than unfilled epoxy. The stiffening effect of the boehmite on epoxy also depends on the particle concentration. To understand the mechanism behind property alteration induced by boehmite nanoparticles, network architecture is investigated using dynamic mechanical thermal analysis (DMTA). It was revealed that although with 15 wt% boehmite nanoparticles the modulus at glassy state increases, crosslinking density of epoxy for this composition is drastically low. KW - Crosslinking density KW - Epoxy KW - Intermodulation KW - Atomic force microscopy KW - Nanomechanical properties KW - Boehmite nanoparticles PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-476050 DO - https://doi.org/10.1016/j.polymer.2018.12.054 SN - 0032-3861 SN - 1873-2291 VL - 164 SP - 174 EP - 182 PB - Elsevier AN - OPUS4-47605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Schönhals, Andreas A1 - Madkour, Sherif T1 - Broadband dielectric spectroscopy on miscible polymer blends in the bulk and in nanometer thick films - Comparison of the different confinement situations N2 - Broadband dielectric spectroscopy in the frequency range from 10-1 to 109 Hz is employed to revisit the segmental dynamics of the miscible blend system poly(vinyl methyl ether)/polystyrene (PVME/PS) in dependence on the composition firstly in the bulk state. Here especially the case of high polystyrene concentrations is considered. It is important to note that only the molecular dynamics of PVME segments as affected by PS is observed because the dipole moment of polystyrene is negligible. Three relaxation processes are found which are due to fluctuations of differently constrained or confined PVME segments. The degree of the confinement of PVME segments due to PS is discussed in dependence on the composition. Further a spatial confinement is considered by investigating thin films of the PVME/PS blend where the film thickness was varied from 100 nm down to 5 nm. Two concentrations of PVME/PS (50/50 wt% and 25/75 wt%) are investigated. To measure nanometer thick films a novel electrode system based on nanostructured electrodes was employed. Nanostructured electrodes can be considered as a cut-edge technology in dielectric spectroscopy. The relaxation spectra of the films showed multiple processes which are discussed in dependence on the film thickness. T2 - Spring Meeting of the American Physical Scociety CY - Boston, Ma, USA DA - 03.03.2019 KW - Polymer blends PY - 2019 AN - OPUS4-47518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Leng, Jing A1 - Szymoniak, Paulina A1 - Kang, N.-J. A1 - Wang, D-Y A1 - Wurm, A. A1 - Schick, C. A1 - Schönhals, Andreas T1 - Influence of interfaces on the crystallization behavior and the rigid amorphous phase of poly(l-lactide)-based nanocomposites with different layered doubled hydroxides as nanofiller N2 - Based on the three-phase model of semi-crystalline polymers, we determined all phase fractions of the NiAl-LDH/PLLA nanocomposites in dependence on the concentration of the nanofiller. Moreover, the rigid amorphous fraction (RAF) was separated into the RAFcrystal and the RAFfiller unbiasedly. A detailed comparison to the related nanocomposite system MgAl-LDH/PLLA was made considering that Mg and Ni have different atomic weights. As a first result is was found that NiAl-LDH/PLLA displays a higher crystallization rate compared to MgAl-LDH/PLLA, which is related to the different morphologies of the two nanocomposite systems. For both systems RAFcrystal increases with increasing concentration of the nanofiller. This means in the case of the nanocomposite not each crystal produces the same amount of RAF, as often assumed. Also, RAFfiller increases with the concentration for both systems but in a different way. This is discussed considering again the different morphologies of both nanocomposites. KW - Polymer-based nanocomposites KW - Temperature modulated differential scanning calorimetry PY - 2019 DO - https://doi.org/10.1016/j.polymer.2019.121929 VL - 184 SP - 121929 PB - Elesevier Ltd. AN - OPUS4-49557 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Hodoroaba, Vasile-Dan A1 - Braun, Ulrike A1 - Pfeifer, Dietmar A1 - Sturm, Heinz T1 - Reinforced UV curable cycloaliphatic epoxy oligosiloxane resin nanocomposite for coating applications N2 - Coating materials are nowadays often required to deliver not only sufficient barrier performance and suited optical appearance but a broad range of other functional properties. The incorporation of inorganic nanoparticles (NPs) is known to improve many key characteristics and provide new functionalities in polymer materials. Presented work aims to prepare and characterize an organic-inorganic coating material designed to bring together advantageous properties of hybrid materials and reinforcement effect delivered from the inorganic NPs embedment. Siloxane-based hybrid resins hold great advantages as coating materials as their properties can be tuned between those of polymers and those of glasses, thus, the compositions with superior thermal and mechanical properties can be achieved. We used Cycloaliphatic Epoxy Oligosiloxane (CEOS) resin as a polymeric matrix where the network formation was achieved by UV induced cationic polymerisation. Boehmite Alumina (BA) nanoparticles were added to CEOS resin as a reinforcing agent and resultant material was processed into films either by bar-coating or by spin-coating depending on further characterization procedure. Two different types of BA NPs, hydrophilic and organophilic, were used in order to assess the impact of particles surface on the resin characteristics. CEOS synthesis by condensation reaction was confirmed using 13C and 29Si NMR. Changes in CEOS photocuring process, resulting from particles incorporation, were monitored by real-time IR spectroscopy. At the same time, the thermal behaviour was evaluated by DSC and TGA methods. Morphology of the coatings was investigated by means of SEM operated in transmission mode. It was observed that BA presence increased the epoxy conversion degree and glass transition temperature. Material formulations providing best film characteristics were determined with regard to the particle type and loading. Compared to the hydrophilic nanoparticles, organophilic BA NPs yield superior overall performance of the foils. T2 - HYMA Conference CY - Sitges, Spain DA - 11.03.2019 KW - Cycloalyphatic epoxy oligosiloxane KW - Nanocomposite KW - Boehmite KW - Photocuring PY - 2019 AN - OPUS4-47641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Florian, Camilo A1 - Kirner, Sabrina V. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Quo vadis LIPSS? – Applications of laser-induced periodic surface structures N2 - Laser-induced periodic surface structures (LIPSS, ripples) are a universal phenomenon that can be observed on almost any material after the irradiation by linearly polarized laser beams, particularly when using ultrashort laser pulses with durations in the femtosecond to picosecond range. During the past years significantly increasing industrial and research activities have been reported in the field of LIPSS, since their generation in a single-step process provides a simple way of nanostructuring and surface functionalization towards the control of optical, mechanical or chemical surface properties. In this contribution the mechanisms of formation and current trends and applications of LIPSS are reviewed, including the colorization of technical surfaces, the control of surface wetting properties, the mimicry of the natural texture of animals, the tailoring of surface colonization by bacterial biofilms, the advancement of leadless medical pacemakers, and the improvement of the tribological performance of nanostructured metal surfaces. T2 - 11. Mittweidaer Lasertagung CY - Mittweida, Germany DA - 13.11.2019 KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Surface functionalization KW - Applications PY - 2019 VL - 3/1 SP - 41 EP - 43 PB - Hochschule Mittweida CY - Mittweida AN - OPUS4-49673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Schroeder, Barbara A1 - Le Xuan, Hoa A1 - Völzke, Jule L. A1 - Weller, Michael G. T1 - Preactivation crosslinking – An efficient method for the oriented immobilization of antibodies N2 - Crosslinking of proteins for their irreversible immobilization on surfaces is a proven and popular method. However, many protocols lead to random orientation and the formation of undefined or even inactive by-products. Most concepts to obtain a more targeted conjugation or immobilization requires the recombinant modification of at least one binding partner, which is often impractical or prohibitively expensive. Here a novel method is presented, which is based on the chemical preactivation of Protein A or G with selected conventional crosslinkers. In a second step, the antibody is added, which is subsequently crosslinked in the Fc part. This leads to an oriented and covalent immobilization of the immunoglobulin with a very high yield. Protocols for Protein A and Protein G with murine and human IgG are presented. This method may be useful for the preparation of columns for affinity chromatography, immunoprecipitation, antibodies conjugated to magnetic particles, permanent and oriented immobilization of antibodies in biosensor systems, microarrays, microtitration plates or any other system, where the loss of antibodies needs to be avoided, and maximum binding capacity is desired. This method is directly applicable even to antibodies in crude cell culture supernatants, raw sera or protein-stabilized antibody preparations without any purification nor enrichment of the IgG. This new method delivered much higher signals as a traditional method and, hence, seems to be preferable in many applications. KW - Antibody coating KW - Proximity-enhanced reaction KW - Immunoglobulins KW - IgG KW - Protein G KW - Protein A KW - Immunoprecipitation KW - Immunocapture KW - Stabilization KW - Biosensor KW - Biochip KW - Microarray KW - ELISA KW - Immunoassay KW - Immunosensor KW - Crosslinker KW - Nanoparticles KW - Click chemistry KW - Herceptin KW - Trastuzumab PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-478797 DO - https://doi.org/10.20944/preprints201904.0205.v1 SN - 2310-287X SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-47879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoevelmann, J. A1 - Stawski, T. M. A1 - Besselink, R. A1 - Freeman, H. M. A1 - Dietmann, K. M. A1 - Mayanna, S. A1 - Pauw, Brian Richard A1 - Benning, L. G. T1 - A template-free and low temperature method for the synthesis of mesoporous magnesium phosphate with uniform pore structure and high surface area N2 - Mesoporous phosphates are a group of nanostructured materials with promising applications, particularly in biomedicine and catalysis. However, their controlled synthesis via conventional template-based routes presents a number of challenges and limitations. Here, we show how to synthesize a mesoporous Magnesium phosphate with a high surface area and a well-defined pore structure through thermal decomposition of a crystalline struvite (MgNH4PO4·6H2O) precursor. In a first step, struvite crystals with various morphologies and sizes, ranging from a few micrometers to several millimeters, had been synthesized from supersaturated aqueous solutions (saturation index (SI) between 0.5 and 4) at ambient pressure and temperature conditions. Afterwards, the crystals were thermally treated at 70–250 °C leading to the release of structurally bound water (H2O) and ammonia (NH3). By combining thermogravimetric analyses (TGA), scanning and transmission electron microscopy (SEM, TEM), N2 sorption analyses and small- and wide-angle X-ray scattering (SAXS/WAXS) we show that this decomposition process results in a pseudomorphic transformation of the original struvite into an amorphous Mg-phosphate. Of particular importance is the fact that the final material is characterized by a very uniform mesoporous structure with 2–5 nm wide pore channels, a large specific surface area of up to 300 m2 g−1 and a total pore volume of up to 0.28 cm3 g−1. Our struvite decomposition method is well controllable and reproducible and can be easily extended to the synthesis of other mesoporous phosphates. In addition, the so produced mesoporous material is a prime candidate for use in biomedical applications considering that Magnesium phosphate is a widely used, non-toxic substance that has already shown excellent biocompatibility and biodegradability. KW - Struvite KW - SAXS KW - Scattering KW - Nanoporous KW - Geology PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-477130 DO - https://doi.org/10.1039/c8nr09205b VL - 11 IS - 14 SP - 6939 EP - 6951 PB - Royal Society of Chemistry AN - OPUS4-47713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yildirim, Arda A1 - Sentker, K. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Huber, P. A1 - Schönhals, Andreas T1 - Collective orientational order and phase behavior of a discotic liquid crystal under nanoscale confinement N2 - The phase behavior and molecular ordering of hexakishexyloxy triphenylene (HAT6) DLC under cylindrical nanoconfinement is studied utilizing differential scanning calorimetry (DSC) and dielectric spectroscopy (DS), where cylindrical nanoconfinement is established through embedding HAT6 into the nanopores of anodic aluminum oxide membranes (AAO), and a silica membrane with pore diameters ranging from 161 nm down to 12 nm. Both unmodified and modified pore walls were considered, and in the latter case the pore walls of AAO membranes were chemical treated with n octadecylphosphonic acid (ODPA) resulting in the formation of a 2.2 nm thick layer of grafted alkyl chains. Phase transition enthalpies decrease with decreasing pore size, indicating that a large proportion of the HAT6 molecules within the pores has a disordered structure, which increases with decreasing pore size for both pore walls. In the case of the ODPA modification the amount of ordered HAT6 is increased compared to the unmodified case. The pore size dependencies of the phase transition temperatures were approximated using the Gibbs Thomson equation, where the estimated surface tension is dependent on the molecular ordering of HAT6 molecules within the pores and upon their surface. DS was employed to investigate the molecular ordering of HAT6 within the nanopores. These investigations revealed that with a pore size of around 38 nm, for the samples with the unmodified pore walls, the molecular ordering changes from planar axial to homeotropic radial. However, the planar axial configuration, which is suitable for electronic applications, can be successfully preserved through ODPA modification for most of the pore sizes. KW - Discotic Liquid Crystals KW - Nanoconfinement PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-475222 DO - https://doi.org/10.1039/c8na00308d SN - 2516-0230 VL - 1 IS - 3 SP - 1104 EP - 1116 PB - RSC AN - OPUS4-47522 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Chapala, P. A1 - Bermeshev, M. A1 - Pauw, Brian Richard A1 - Schönhals, Andreas A1 - Böhning, Martin T1 - Influence of Trimethylsilyl Side Groups on the Molecular Mobility and Charge Transport in Highly Permeable Glassy Polynorbornenes N2 - Superglassy polymers with a large fractional free volume have emerged as novel materials with a broad range of applications, especially in the field of membrane separations. Highly permeable addition-type substituted polynorbornenes with high thermal resistance and chemical stability are among the most promising materials. The major obstacle for extending the practical membrane application is their strong tendency to physical aging, leading to a partial decline in their superior transport performance over time. In the present study, broadband dielectric spectroscopy with complementary X-ray scattering techniques were employed to reveal changes in microporous structure, molecular mobility, and conductivity by systematic comparison of two polynorbornenes with different numbers of trimethylsilyl side groups. Their response upon heating (aging) was compared in terms of structure, dynamics, and charge transport behavior. Furthermore, a detailed analysis of the observed Maxwell−Wagner−Sillars polarization at internal interfaces provides unique information about the microporous structure in the solid films. The knowledge obtained from the experiments will guide and unlock potential in synthesizing addition-type polynorbornenes with versatile properties. KW - Dielectric spectroscopy KW - Molecular mobility KW - Electrical conductivity KW - Gas separation membranes PY - 2019 DO - https://doi.org/10.1021/acsapm.9b00092 SN - 2637-6105 VL - 1 IS - 4 SP - 844 EP - 855 PB - ACS CY - Washington DC AN - OPUS4-47838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dudziak, Mateusz A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Thermal properties of polymer nanocomposites based on polycarbonate (PC) and boehmite N2 - Nanocomposites are extremely versatile due to their physicochemical properties, which differ significantly from bulk homopolymers. One of the inorganic nanomaterials which are increasingly used as a filler in polymer matrices is boehmite, typically used as an inexpensive flame retardant. Here, it is used as a nanofiller in polycarbonate and polyamide, expecting to improve their mechanical properties. For industrial use boehmite is obtained by the solvothermal method, resulting in a layered nanomaterial, whereas naturally it occurs as single crystals with the size of <100µm. In this work we are obtaining and isolating boehmite crystals by a bottom-up method, in which a reaction between aluminum nitride and sodium hydroxide. Obtaining boehmite as microcrystals is necessary for its analysis and characterization, as well as to investigate its interaction with polymer matrices at the polymer/particle interface. Here, the obtained particles in polymer matrices are characterized with differential scanning calorimetry and thermogravimetry analysis. T2 - DPG-Frühjahrstagung 2019 CY - Regensburg, Germany DA - 31.03.2019 KW - Boehmite KW - Polycarbonate PY - 2019 AN - OPUS4-47768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Florian, Camilo A1 - Kirner, Sabrina V. A1 - Krüger, Jörg T1 - Quo vadis LIPSS? – Applications of Laser-Induced Periodic Surface Structures N2 - Laser-induced periodic surface structures (LIPSS, ripples) are a universal phenomenon that can be observed on almost any material after the irradiation by linearly polarized laser beams, particularly when using ultrashort laser pulses with durations in the femtosecond to picosecond range. During the past years significantly increasing industrial and research activities have been reported in the field of LIPSS, since their generation in a single-step process provides a simple way of nanostructuring and surface functionalization towards the control of optical, mechanical, biological, or chemical surface properties. In this contribution the mechanisms of formation and current trends and applications of LIPSS are reviewed, including the colorization of technical surfaces, the control of surface wetting properties, the mimicry of the natural texture of animals, the tailoring of surface colonization by bacterial biofilms, the advancement of leadless medical pacemakers, and the improvement of the tribological performance of nanostructured metal surfaces. T2 - 11. Mittweidaer Lasertagung CY - Mittweida, Germany DA - 13.11.2019 KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - Applications PY - 2019 AN - OPUS4-49655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Laser-induced periodic surface structures N2 - This presentation reviews the current state in the field of Laser-induced Periodic Surface Structures (LIPSS). These surface nanostructures are a universal phenomenon and can be generated on almost any material by irradiation with intense linearly polarized laser radiation. LIPSS are formed in a “self-ordered” way and are often accompanying material processing applications. They can be produced following a single-step process and enable surface functionalization through the adaption of optical, mechanical and chemical surface properties. Their structural sizes typically range from several micrometers down to less than 100 nanometers exhibiting a clear correlation with the polarization direction of the laser radiation. Various types of surface structures are classified, relevant control parameters are identified, and their material specific formation mechanisms are analyzed for different types of inorganic solids, i.e., metals, semiconductors, and dielectrics, through time-resolved optical experiments and theoretical simulations. Finally, technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed. T2 - Seminar CY - Laser-Laboratorium Göttingen e.V., Germany DA - 18.11.2019 KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - Electromagnetic radiation KW - Applications KW - Femtosecond laser ablation PY - 2019 AN - OPUS4-49689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gräf, S. A1 - Kunz, C. A1 - Büttner, T.N. A1 - Naumann, B. A1 - Boehm, A.V. A1 - Gnecco, E. A1 - Bonse, Jörn A1 - Neumann, C. A1 - Turchanin, A. A1 - Müller, F.A. T1 - Large-area fabrication of low- and high-spatial-frequency laser-induced periodic surface structures on carbon fibers N2 - The properties of fiber-reinforced polymers (CFRP) or concretes (ECC) strongly depend on the interface between the fiber and the surrounding matrix. Different methods such as plasma oxidation, chemical or electrolytic etching and chemical vapor deposition have been investigated to increase, for example, the bonding strength. The present study deals with the functionalization of the fiber surface based on laser-induced periodic surface structures (LIPSS). They can be characterized as a modulation of the surface topography on the nano- and microscale that results from the irradiation of the surface with linearly polarized laser radiation close to the ablation threshold. According to their spatial period, LIPSS are classified into low-spatial frequency LIPSS (LSFL) and high-spatial frequency LIPSS (HSFL). The great potential of both types of LIPSS structures regarding functional surface properties was demonstrated in numerous investigations. The objective of the present study was the homogenous manufacturing of both types of LIPSS on large areas of carbon fiber arrangements without damage. The results are discussed based on a detailed analysis of the topographic and chemical surface properties. T2 - 15th International Conference on Laser Ablation (COLA 2019) CY - Hawaii, USA DA - 08.09.2019 KW - Laser-induced periodic surface structures (LIPSS) KW - Carbon fibers KW - Femtosecond laser ablation KW - Surface functionalization PY - 2019 AN - OPUS4-49676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Heinz A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee T1 - Grenzflächen als Material: Konzepte und Beispiele zu nanoverstärkten Duroplasten N2 - Nachdem Jahrzehnte die Grenzfläche zwischen Kohlefaser und Duroplastmatrix optimiert wurde liegt das Augenmerk heute auf der Polymermatrix selbst. Diese lässt sich hinsichtlich ihres Elastizitätsmoduls und ihrer Bruchfestigkeit verbessern, indem Nanopartikel aus Böhmit (AlOOH) eindispergiert werden. Der Vortrag geht auf integrale und hochauflösend-bildgebende Methoden ein die ein Verständnis der komplexen Zusammenhänge ermöglichen. Nach einer chemischen in-situ Analyse des Aushärtvorgangs, aus welchem sich die Bedeutung der externer Parameter ablesen lässt, werden diverse hochauflösende, neue Methoden der Rasterkraftmikroskopie (AFM) eingeführt. Der lokalen Bestimmung des E-Moduls der Nanopartikel folgen Ausführungen zum temperaturabhängigen Chemismus des Böhmits, der während der Aushärtung Wasser freisetzt. Die hochauflösende Bestimmung der Oberflächenpotentiale, der Steifigkeit, der attraktiven Kräfte zwischen Spitze und Probe sowie der Energiedissipation im Kontakt stellen auf der Nanoskala eine komplexe Datenquelle dar, die auf der Makroskala einer Ergänzung bedarf: Durch Kombination von dynamisch-mechanisch-thermischer Analyse einerseits und Kartierung physikalischer Eigenschaften auf der Nanoskala andererseits kann der Zusammenhang zwischen chemischer Steuerung der Netzwerkbildung und den mechanischen Eigenschaften des Nanokomposits geklärt werden. Überraschend ist, dass bei geeigneter Steuerung der lokale E-Modul der Polymermatrix den des Füllstoffs übersteigt. Die Rissfortschrittsenergie wird in Böhmit-modifiziertem Epoxy verbessert absorbiert, die These dazu ist, dass die (010)-Gleitebenen, die nur durch Wasserstoffbrücken zusammen gehalten werden, einigermaßen schadlos geschert werden können. Daraus folgt, dass das System auf der Nanoskala über einen, wenn auch begrenzten, Selbstheilmechanismus verfügt. Zudem wird durch die hohe Heterogenität der Steifigkeit und Energiedissipation des Nanokomposits eine Risstrajektorie vielfach umgelenkt und somit früher gestoppt. Ergebnisse dieses Vortrags stammen aus einer Zusammenarbeit innerhalb des DFG-Forscherverbundes FOR2021 „Wirkprinzipien nanoskaliger Matrixadditive für den Faserverbundleichtbau“. T2 - Niedersächsisches Symposium Materialtechnik - NSM 2019 CY - Clausthal, Germany DA - 14.02.1019 KW - Nanokomposit KW - Böhmit KW - Risstrajektorie KW - Oberflächenpotential KW - Energiedissipation im Kontakt KW - Oberflächensteifigkeit KW - attraktive Wechelwirkung KW - Epoxy-Anhydrid Duroplast KW - Leichtbau PY - 2019 AN - OPUS4-47636 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Ghasem Zadeh Khorasani, Media A1 - Hodoroaba, Vasile-Dan A1 - Braun, Ulrike A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Versatile role of boehmite particles in epoxy-based nanocomposites N2 - Thermosetting materials are gaining increasing attention in many structural composite applications. However, the incorporation of inorganic nanoparticles (NPs) into polymer matrix is a promising approach to enhance their functional characteristics, and thus, to enable the development of thermosets advanced application. It has been shown that Boehmite Alumina (BA) used as nanofillers can improve different parameters of polymers. This NPs can be easily tailored enabling desirable interactions with a big range of polymers. However, the overall effect of nanofiller depends on many factors, therefore, making it hard to predict the resulted performance of nanocomposites. In the current contribution we would like to discuss the impact of Boehmite NPs on two different epoxy resin nanocomposite systems with the focus on the possible influence mechanisms of this nanofiller. As the first system, UV curable Cycloaliphatic-Epoxy Oligosiloxane (CEOS) resin/Boehmite nanocomposites were investigated by FTIR, TGA, DSC and T-SEM. It was observed that incorporation of BA leads to the reinforcement of glass transition (Tg) and overall thermal stability indicating the attractive interactions between BA and CEOS network. In addition, an increase in epoxy conversion of CEOS was concluded for nanocomposites assuming that particles are involved in UV polymerisation processes. The second epoxy/Boehmite nanocomposite is based on the bisphenol-A-diglycidyl ether (DGEBA) cured with methyl tetrahydrophtalic acid anhydride (MTHPA). Thermomechanical as well as nanomechanical properties of this material were investigated by DMTA and IR spectroscopy and the advanced Intermodulation AFM, respectively. In contrast to the first system, it was found that BA leads to a decrease of Tg and crosslink density of the polymer while the young’s modulus of the composite and local stiffness of polymer matrix increase significantly. As a result, the versatile role of Boehmite was detected depending on the investigated systems. Based on the obtained results, the parameters indicating property-efficient epoxy/Boehmite system are suggested. T2 - HYMA Conference CY - Sitges, Spain DA - 11.03.2019 KW - Epoxy KW - Boehmite KW - Curing KW - Nanocomposite PY - 2019 AN - OPUS4-47640 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Mechanical and chemical alteration of polymer matrix induced by nanoparticles in epoxy-boehmite nanocomposites N2 - Inorganic nanoparticles are used to improve the performance of epoxy as the matrix phase in fiber-reinforced composites used for aerospace applications. The effectiveness of nanofillers on property enhancement of thermosetting polymers depends on many factors including the interaction between the functional groups of nanofillers and the polymer reactants. In the current work, we study the effect of boehmite nanoparticles (BNPs) on properties of anhydride-cured bisphenol-A-diglycidyl ether (DGEBA). Dynamic mechanical thermal analysis (DMTA) and a high-resolution force measurement approach called intermodulation atomic force microscopy (ImAFM) were carried out to investigate the thermomechanical and nanomechanical properties of this material, respectively. It was found that BNPs lead to decrease of glass transition temperature (Tg) and crosslink density of the polymer network meanwhile significantly enhancing the Young’s modulus. Besides formation of a soft interphase near the particles, significant changes in local stiffness of polymer matrix far from the interphase was observed with ImAFM. Thus, boehmite induces long-range chemical alteration on the matrix. This effect has a higher impact on overall composite properties compared to the formation of interphase which is only a short-range effect. The local chemical evaluations on the soft interphase using an infrared-AFM method (NanoIR) revealed the accumulation of anhydride hardener near the boehmite interface. Based on these observations the effect of boehmite on the curing of epoxy is hypothesized to be governed by the strong interaction between boehmite and the anhydride. This interaction causes changes the ratio of reactants in the epoxy mixture and hence alteration of curing pathway and the network architecture. In future studies we examine this hypothesis by measuring the thermomechanical properties of cured epoxies in which the epoxy-hardener ratio is systematically altered and further comparing to those properties of nanocomposites shown in the current study. T2 - HYMA 6th International Conference on Multifunctional, Hybrid and Nanomaterials CY - Sitges, Spain DA - 11.03.2019 KW - Nanomechanics KW - Polymer nanocomposites KW - Boehmite KW - AFM KW - Epoxy PY - 2019 AN - OPUS4-50692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Heinz A1 - Braun, Ulrike T1 - Kunststoffe und deren Recycling – Materialwissenschaftliche Erkenntnisse, um mehr Recyclat einzusetzen N2 - Nach einer Übersicht zu den immer schneller aktualisierenden Rahmenbedingungen von Politik und Gesellschaft folgt eine Übersicht zu materialwissenschaftlichen Problemen des Recyclings von Kunststoffen. Lösungsansätze aus der Forschung reichen von einfacher Optimierung bis hin zur radikalen Neukonstruktion der polymeren Werkstoffe. Aus dem bereits möglichen Ansatz "performance-by-design" wird ein neuer Weg des "recycling-by-design" adressiert. Dies inkludiert methodisch eine skalenübergreifende Modellierung und die Depolarisation bis zum Monomer. T2 - Gefahrgut-Technik-Tage CY - Berlin, Germany DA - 07.11.2019 KW - Recycling KW - Kunststoff KW - Additiv KW - Polymer KW - Normung KW - Plastikstrategie KW - Grenzfläche als Material KW - Recycling-by-design PY - 2019 AN - OPUS4-49561 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waniek, Tassilo A1 - Ghasem Zadeh Khorasani, Media A1 - Braun, Ulrike A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - New Focus On Boehmite-Reinforced Nanocomposites Molecular Approach With Advanced FTIR-Techniques N2 - By FTIR-study it was possible to proof a chemical reaction between boehmite and the hardener of anhydride cured epoxy resins. Future studies can assume that the chemical environment of the resin system is changed in the surrounding of boehmite nanoparticles. This highly affects especially localized properties. T2 - 6th International Conference on Multifunctional, Hybrid and Nanomaterials CY - Sitges, Spain DA - 11.03.2019 KW - Nanocomposite KW - Boehmite KW - FTIR KW - DRIFTS KW - Epoxy PY - 2019 AN - OPUS4-47785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dudziak, Mateusz A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Thermal properties of polymer nanocomposites based on polycarbonate (PC) and boehmite N2 - Nanocomposites are extremely versatile due to their physicochemical properties, which differ significantly from bulk homopolymers. One of the inorganic nanomaterials which are increasingly used as a filler in polymer matrices is boehmite, typically used as an inexpensive flame retardant. Here, it is used as a nanofiller in polycarbonate and polyamide, expecting to improve their mechanical properties. For industrial use boehmite is obtained by the solvothermal method, resulting in a layered nanomaterial, whereas naturally it occurs as single crystals with the size of <100µm. In this work we are obtaining and isolating boehmite crystals by a bottom-up method, in which a reaction between aluminum nitride and sodium hydroxide. Obtaining boehmite as microcrystals is necessary for its analysis and characterization, as well as to investigate its interaction with polymer matrices at the polymer/particle interface. Here, the obtained particles in polymer matrices are characterized with differential scanning calorimetry and thermogravimetry analysis. T2 - 6th International Conference on Multifunctional, Hybrid and Nanomaterials CY - Sitges, Spain DA - 11.03.2019 KW - Boehmite KW - Polycarbonate PY - 2019 AN - OPUS4-47769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geißler, Daniel A1 - Nirmalananthan-Budau, Nithiya A1 - Resch-Genger, Ute T1 - Preparation and characterization of reference particles for the calibration of flow cytometry for the detection of extracellular vesicles within the EMPIR project MetVes II N2 - Extracellular vesicles (EV) are cell-derived particles in body fluids, which have excellent potential as next-generation biomarkers. The exploitation of EV requires reliable measurements, which is currently very difficult, as most EV are smaller than 200 nm. At present, flow cytometry (FCM) is the most appropriate technique for EV analysis in biological samples, as FCM is readily available in many clinical laboratories and allows to identify cell-specific EV at high throughput. However, due to technical variations between different FCM instruments, EV concentration measurements are currently not well comparable between most laboratories. Therefore, EV reference materials and standardized reference methods are urgently needed to calibrate flow rate, light scattering intensity, and fluorescence intensity of FCM in the sub-micrometer size range. This requires a better matching of the optical properties of calibration beads and EV as can be realized with current polystyrene calibration beads. The EMPIR project 18HLT01 “MetVes II” aims to develop synthetic reference materials and traceable measurement methods to standardize EV measurements. The reference materials should resemble EV properties, so that calibrations are reliable and do not require a change of acquisition settings. Hence, the reference materials should contain particles with a traceable number concentration in the range of 109–1012 particles/mL to calibrate flow rate, a traceable size with discrete diameters between 50–1000 nm and a refractive index (RI) in the range of 1.37–1.42 to calibrate scattering intensity, and a traceable fluorescence intensity between 100–100,000 molecules of equivalent soluble fluorochromes (MESF). At BAM, various approaches to prepare such low-RI nanometer-sized reference materials will be studied, preliminary results of the primary characterization of these candidate reference particles will be presented, and possible applications besides FCM-based EV detection will be outlined. T2 - 29th Meeting of the German Society for Cytometry (DGfZ) CY - Berlin, Germany DA - 25.09.2019 KW - Extracellular vesicles (EV) KW - Flow cytometry KW - Reference particles KW - EMPIR project KW - 18HLT01 MetVes II PY - 2019 AN - OPUS4-50394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kembuan, C. A1 - Saleh, Maysoon I. A1 - Rühle, Bastian A1 - Resch-Genger, Ute A1 - Graf, C. T1 - Coating of upconversion nanoparticles with silica nanoshells of 5–250 nm thickness N2 - A concept for the growth of silica shells with a thickness of 5–250 nm onto oleate-coated NaYF4:Yb3+/Er3+ upconversion nanoparticles (UCNP) is presented. The concept enables the precise adjustment of shell thicknesses for the preparation of thick-shelled nanoparticles for applications in plasmonics and sensing. First, an initial 5–11 nm thick shell is grown onto the UCNPs in a reverse microemulsion. This is followed by a stepwise growth of these particles without a purification step, where in each step equal volumes of tetraethyl orthosilicate and ammonia water are added, while the volumes of cyclohexane and the surfactant Igepal® CO-520 are increased so that the ammonia water and surfactant concentrations remain constant. Hence, the number of micelles stays constant, and their size is increased to accommodate the growing core–shell particles. Consequently, the formation of core-free silica particles is suppressed. When the negative zeta potential of the particles, which continuously decreased during the stepwise growth, falls below −40 mV, the particles can be dispersed in an ammoniacal ethanol solution and grown further by the continuous addition of tetraethyl orthosilicate to a diameter larger than 500 nm. Due to the high colloidal stability, a coalescence of the particles can be suppressed, and single-core particles are obtained. This strategy can be easily transferred to other nanomaterials for the design of plasmonic nanoconstructs and sensor systems. KW - Reverse microemulsion KW - Silica coating KW - Stepwise growth KW - Thick shells KW - Upconversion nanoparticles PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502769 DO - https://doi.org/10.3762/bjnano.10.231 SN - 2190-4286 VL - 10 SP - 2410 EP - 2421 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, M. AN - OPUS4-50276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Yamamoto, K. A1 - Grulke, E. A. A1 - Maurino, V. ED - Bosse, H. ED - Buhr, E. ED - Dziomba, T. ED - Hodoroaba, Vasile-Dan ED - Klein, T. ED - Krumrey, M. T1 - Shape controlled TiO2 nanoparticles as candidates for nano-CRM’s – an ISO case study N2 - Extraction of true, 3D shape (and size) of non-spherical nanoparticles (NPs) is associated with Errors by conventional 2D electron microscopy using projection images. Significant efforts within the ISO technical committee TC 229 ‘Nanotechnologies’ are aimed at establishing accurate TEM and SEM measurement of NP size and shape as robust, standard procedures. Study groups have been organizing inter-laboratory comparisons on well-selected NP systems according to the market needs, such as aggregated titania nano-powder for which size and shape distribution of primary crystallites of irregular shape must be measured accurately. To be noticed is e. g. the fact that the measurement procedure allows only manual selection of the particles clearly distinguishable for analysis as well as manual definition of the contour of the imaged NPs. An inter-laboratory exercise on titania NPs (pure anatase, grown by hydrothermal synthesis) of well-defined non-spherical shape, i.e. bipyramidal, has been recently started within ISO/TC 229 under similar conditions as for the irregular shaped titania. In the TEM micrograph the particles tracked manually according to the measurement protocol. Overlapped particles were allowed to be considered, as long as they are clearly distinguishable. One decisive NP selection criterion was to analyze only those NPs with a roundness value below 0.7, i.e. the NPs laying on the support foil and, hence, with projection areas clearly deviating from perfect circles (R=1). The overall evaluation (for 15 labs) of the size descriptors (area, Feret, minFeret, perimeter) and shape descriptors (aspect ratio, roundness, compactness, extent) by analysis of variance is just to be finished and included in ISO/WD 21363 Nanotechnologies -- Protocol for particle size distribution by transmission electron microscopy. T2 - NanoWorkshop 2018: Workshop on Reference Nanomaterials CY - Berlin, Germany DA - 14.05.2018 KW - Titanium dioxide KW - Nanoparticles KW - Shape-controlled KW - Electron microscopy PY - 2019 SN - 978-3-95606-440-1 DO - https://doi.org/https://doi.org/10.7795/110.20190412 SN - 0179-0609 VL - F-61 SP - 245 EP - 255 PB - Physikalisch-Technische Bundesanstalt CY - Braunschweig und Berlin AN - OPUS4-49990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mech, A. A1 - Gaillard, C. A1 - Marvin, H. A1 - Wohlleben, W. A1 - Hodoroaba, Vasile-Dan A1 - Babick, F. A1 - Friedrich, C. M. A1 - Brüngel, R. A1 - Rückert, J. A1 - Ghanem, A. A1 - Weigel, S. T1 - The NanoDefine Decision Framework and NanoDefiner e-Tool: a practical guide to the identification of nanomaterials N2 - The European Commission's recommendation on the definition of nanomaterial [2011/696/EU] is broadly applicable across different regulatory sectors and requires the quantitative size Determination of constituent particles in samples down to 1 nm. A material is a nanomaterial if 50 % or more of the particles are in the size range 1-100 nm. The implementation of the definition in a regulatory context challenges measurement methods to reliably identify nanomaterials and ideally also nonnanomaterials as substance or product ingredient as well as in various matrices. The EU FP7 NanoDefine project [www.nanodefine.eu] addressed these challenges by developing a robust, readily implementable and cost-effective measurement strategy to decide for the widest possible range of materials whether it is a nanomaterial or not. It is based on existing and emerging particle measurement techniques evaluated against harmonized, material-dependent performance criteria and by intra- and inter-lab comparisons. Procedures were established to reliably measure the size of particles within 1-100 nm, and beyond, taking into account different shapes, coatings and chemical compositions in industrial materials and consumer products. Case studies prove their applicability for various sectors, including food, pigments and cosmetics. A main outcome is the establishment of an integrated tiered approach including rapid screening (Tier 1) and confirmatory methods (tier 2), a decision support flow scheme and a user manual to guide end-users, such as manufacturers, in selecting appropriate methods. Another main product is the “NanoDefiner” e-Tool which implements the flow scheme in a user-friendly software and guides the user in a semi-automated way through the entire decision procedure. It allows a cost-effective selection of appropriate methods for material classification according to the EC's nanomaterial definition and provides a comprehensive report with extensive explanation of all decision steps to arrive at a transparent identification of nanomaterials as well as non-nanomaterials for regulatory purposes. T2 - NanoWorkshop 2018: Workshop on Reference Nanomaterials CY - Berlin, Germany DA - 14.05.2018 KW - Definition of nanomaterial KW - Regulation PY - 2019 SN - 978-3-95606-440-1 SN - 0179-0609 VL - F-61 SP - 114 EP - 124 PB - Physikalisch-Technische Bundesanstalt CY - Braunschweig und Berlin AN - OPUS4-49992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maurino, V. A1 - Pellutiè, L. A1 - Pellegrino, F. A1 - Ortel, Erik A1 - Hodoroaba, Vasile-Dan A1 - Isopescu, R. T1 - Synthesis of size and shape controlled TiO2 nanoparticles: possible CRM’s candidates for size, shape and functional properties N2 - Titanium dioxide is one of the most studied metal oxides due to its chemical, surface, electronic and (photo)catalytic properties, providing this material of multisectorial applications ranging from healthcare, photocatalysis, smart materials with self cleaning and self sterilizing properties and solar energy harvesting. However it is difficult to correlate the functional properties of TiO2 nanomaterials to the properties at single nanoparticle level due to the high polydispersity in shape, size and surface features of the currently available TiO2 nanoparticles (NPs). Although intensive experimental and theoretical studies have been conducted on the reactivity of different surfaces of metal oxides such as TiO2 much less attention is paid on the dependence of functional properties, like photocatalytic activity, dye adsorption, open circuit potential and fill factor in dye sensitized solar cells, on crystal facets in different orientations. One of the goal of SETNanoMetro project was the development of design rules to tune crystal facets of TiO2 NPs in order to optimize and control functional properties. In the present work we have developed a series of design rules in order to obtain sets of anatase TiO2 NPs with low polydispersity and to tune their shape and size by hydrothermal processing of Ti(IV)- Triethanolamine complex in presence of different shape controllers. Through a careful experimental design, a predictive soft model was developed. The model is able to predict the synthesis outcome allowing to tune the shape factor from 5 (prisms) to 1.5 (bipyramids) to 0.2 (platelets). This allows to control the main crystal facets exposed ranging from (100) to (001). Due to the dependence of functional properties of nanomaterials on shape distribution and not only size, the availability of NPs sets with uniform and well defined and tunable shapes can be of paramount relevance in order to produce reference nanomaterials for shape measurement. T2 - NanoWorkshop 2018: Workshop on Reference Nanomaterials CY - Berlin, Germany DA - 14.05.2018 KW - Anatase KW - shape control KW - Hydrothermal synthesis PY - 2019 SN - 978-3-95606-440-1 SN - 0179-0609 VL - F-61 SP - 146 EP - 162 PB - Physikalisch-Technische Bundesanstalt CY - Braunschweig und Berlin AN - OPUS4-49993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mansfeld, Ulrich A1 - Hörenz, Christoph A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Bartczak, D. A1 - Goenaga-Infante, H. T1 - Challenges in Traceable Size Measurement of Non-Spherical, Non-Monodisperse Nanoparticles - nPSize N2 - Size measurement of nanoparticles (NP) becomes a challenging analytical problem when non-spherical shapes must be traceably measured. However, most industrial NPs have irregular shapes and broad size distribution making it often more complex to follow European regulatory to identify a material as a nanomaterial according to which accurate measurement of the smallest dimension and its size Distribution is necessary. The European research project nPSize - Improved traceability chain of nanoparticle size measurements aims to fill this gap by developing potential non-spherical reference nanoparticles, measurement procedures and physical modelling to improve the traceability chain, comparability and compatibility for NP size measurements between different methods. Therefore, new model NP with well-controlled shape has been synthesized and are supposed to be systematically characterized using the traceable methods scanning/transmission electron microscopy, atomic force microscopy and small angle X-ray scattering. Following NP candidates are under investigation with respect to their homogeneity and stability: (i) titania nanoplatelets (10-15 nm thickness x 50-100 nm lateral), (ii) titania bipyramides (~60 nm length x 40 nm width), (iii) titania acicular particles (100 nm length x 15-20 nm width; aspect ratio 5.5/6), (iv) gold nanorods (~10 nm width x 30 nm length), and (v) gold nanocubes (~55 nm x 55 nm x 55 nm). In addition, sample preparation procedures as well as measurement analysis procedures with evaluation of appropriate measurands and descriptors for each material class and method are being developed to support standardization. To underpin the traceability of the size measurement of nonspherical NP, physical modelling of the signals in e.g. electron microscopy techniques will be used and in combination, the implementation of machine learning is aimed to facilitate measurement Analysis procedures, especially regarding the accurate thresholding/segmentation of the NPs.zeige mehr T2 - Nanoparticle Reference Materials - Production and Cerification Training Course CY - London, UK DA - 10.12.2019 KW - Nanoparticles KW - Traceability KW - Particle size distribution KW - Electron microscopy KW - Reference materials KW - Non-spherical shape PY - 2019 AN - OPUS4-50040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sentker, K. A1 - Yildirim, Arda A1 - Lippmann, M. A1 - Zantop, A. W. A1 - Bertram, F. A1 - Hofmann, T. A1 - Seeck, O. H. A1 - Kityk, A. A1 - Mazza, M. G. A1 - Schönhals, Andreas A1 - Huber, P. T1 - Self-assembly of liquid crystals in nanoporous solids for adaptive photonic metamaterials N2 - Nanoporous media exhibit structures significantly smaller than the wavelengths of visible light and can thus act as photonic metamaterials. Their optical functionality is not determined by the properties of the base materials, but rather by tailored, multiscale structures, in terms of precise pore shape, geometry, and orientation. Embedding liquid crystals in pore space provides additional opportunities to control light–matter interactions at the single-pore, meta-atomic scale. Here, we present temperature-dependent 3D reciprocal space mapping using synchrotron-based X-ray diffraction in combination with high-Resolution birefringence experiments on disk-like mesogens (HAT6) imbibed in self-ordered arrays of parallel cylindrical pores 17 to 160 nm across in monolithic anodic aluminium oxide (AAO). In agreement with Monte Carlo computer simulations we observe a remarkably rich self-assembly behaviour, unknown from the bulk state. It encompasses transitions between the isotropic liquid state and discotic stacking in linear columns as well as circular concentric ring formation perpendicular and parallel to the pore axis. These textural transitions underpin an optical birefringence functionality, tuneable in magnitude and in sign from positive to negative via pore size, pore surface-grafting and temperature. Our study demonstrates that the advent of large-scale, self-organised nanoporosity in monolithic solids along with confinement-controllable phase behaviour of liquid-crystalline matter at the single-pore scale provides a reliable and accessible tool to design materials with adjustable optical anisotropy, and thus offers versatile pathways to finetune polarisation-dependent light propagation speeds in materials. Such a tailorability is at the core of the emerging field of transformative optics, allowing, e.g., adjustable light absorbers and extremely thin metalenses. KW - Discotic Liquid Crystals PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-499601 DO - https://doi.org/10.1039/c9nr07143a SP - 1 EP - 14 PB - RSC Royal Society of Chemistry AN - OPUS4-49960 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meierhofer, F. A1 - Dissinger, F. A1 - Weigert, Florian A1 - Resch-Genger, Ute A1 - Waldvogel, S. R. A1 - Voss, T. T1 - Citric-Acid-Based Carbon Dots with Luminescence Quantum Yields > 50%: spectral tuning of the luminescence by ligand exchange and pH adjustment N2 - We report the synthesis and characterization of carbon nanodots (CDs) with high quantum yield (>50%) and tailored optical absorption as well as emission properties. A well-described protocol with polyethyleneimine (PEI) as amine precursor is used as a reference to a new CD system which is stabilized by aromatic 2,3-diaminopyridine (DAP) molecules instead. The DAP stabilizer is installed in order to red-shift the absorption peak of the n-π* electron transition allowing efficient radiative recombination and light emission. Size, shape, and chemical composition of the samples are determined by (HR)TEM, EDX and FTIR-spectroscopy. Optical parameters are investigated using UV-VIS, PL and QY measurements. Several parameters such as concentration, excitation wavelength and pH are studied. Zeta-potential analysis indicate that pH-induced (de-)protonation processes of functional moieties directly affect the n-π* energy bands. This results in unique pH-dependent absorption and emission characteristics which are discussed on the specific chemical composition of each CD system. T2 - MRS 2019 CY - Boston, MA, USA DA - 03.12.2019 KW - Nanoparticle KW - Carbon dot KW - Surface chemistry KW - Fluorescence KW - PH KW - Ligand KW - FTIR KW - Synthesis KW - Characterization PY - 2019 AN - OPUS4-49968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frielinghaus, H. A1 - Butler, P. D. A1 - Pauw, Brian Richard A1 - Rennie, A. R. T1 - Eleventh canSAS Meeting: International Cooperation and Collaboration in Small-Angle Scattering N2 - The eleventh canSAS workshop was held in Freising, Germany, July 8–10, 2019. These international meetings, promoting collective action for nomadic small-angle scatterers, have been taking place since 1998 and act as forums to catalyze cooperation amongst the SAS community in order to provide better facilities and equipment, combined with reliable data interpretation and analysis. The meeting attracted over 60 participants from major neutron and X-ray laboratories, as well as manufacturers of SAXS equipment, and users from academia and industry. There was also a wide geographical spread with participants from Australia, Asia, and North America joining European colleagues. T2 - canSAS XI CY - Freising, Germany DA - 08.07-2019 KW - Small angle scattering KW - Conference KW - Standardisation PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-498192 DO - https://doi.org/10.1080/08940886.2019.1680215 SN - 0894-0886 SN - 1931-7344 VL - 32 IS - 6 SP - 48 EP - 49 PB - Taylor & Francis CY - Abingdon, UK AN - OPUS4-49819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kockert, M. A1 - Mitdank, R. A1 - Zykov, A. A1 - Kowarik, Stefan A1 - Fischer, F. T1 - Absolute Seebeck coefficient of thin platinum films N2 - The influence of size effects on the thermoelectric properties of thin platinum films is investigated and compared to the bulk. Structural properties, like the film thickness and the grain size, are varied. We correlate the electron mean free path with the temperature dependence of the electrical conductivity and the absolute Seebeck coefficient SPt of platinum. A measurement platform was developed as a standardized method to determine SPt and show that SPt,film is reduced compared to SPt,bulk. Boundary and surface scattering reduce the thermodiffusion and the phonon drag contribution to SPt,film by nearly the same factor. We discuss in detail on behalf of a model, which describes the temperature dependence of the absolute Seebeck coefficient, the influence of size effects of electron-phonon and phonon-phonon interaction on SPt. KW - Thin magnetic films PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-499007 DO - https://doi.org/10.1063/1.5101028 SN - 0021-8979 VL - 126 SP - 105106 PB - AIP AN - OPUS4-49900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Backes, Sebastian A1 - Fahrbach, M. A1 - Cappella, Brunero A1 - Peiner, E. T1 - Scanning characterization of polymer coating layers using contact resonance with piezoresistive microprobes N2 - The motivation and the measurement setup for large fast-scanning piezoresistive cantilevers are presented. The theory behind the measurements of mechanical properties through contact resonance is explained. Results of such measurements on two kinds of polymer are compared to results from force distance curves. Noise, time-dependency and dependency of the results on the vibration mode are identified as challenges of contact resonance. T2 - 19th International Conference and Exhibition (European Society for Precision engineering and Nanotechnology/EUSPEN) CY - Bilbao, Spain DA - 03.06.2019 KW - Force distance curves KW - Contact resonance KW - Lubricants KW - Photoresist PY - 2019 AN - OPUS4-49903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Backes, Sebastian A1 - Cappella, Brunero T1 - Force distance curves (FDC) & contact resionance (CR) measurement modes for mechanical property measurements N2 - At the Stakeholder meeting of the EMPIR project “Multifunctional ultrafast microprobes for on-the-machine measurements”, details about two measurement modes were presented. Force distance curves and contact resonance measurements are compared. The basic principles are explained and exemplary measurements concerning mechanical properties of polymers are shown. T2 - 19th International Conference and Exhibition (European Society for Precision Engineering and Nanotechnology/EUSPEN) CY - Bilbao, Spain DA - 03.06.2019 KW - Force distance curve KW - Contact resonance KW - Lubricants KW - Photoresist PY - 2019 AN - OPUS4-49905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Friedrich, Sebastian A1 - Cappella, Brunero T1 - Characterization of lubricants using AFM force-distance curves N2 - Auf dünnen Filmen von Schmiermitteln wurden Kraft-Abstand-Kurven aufgenommen. Die Schmiermittel benetzen die AFM-Spitze, sodass eine Kapillarkraft auftritt. Diese hängt von der Form der Spitze sowie von physikalischen Eigenschaften wie Viskosität und Oberflächenspannung ab, die zusätzlich mit anderen Verfahren bestimmt wurden. So konnte ihr Einfluss auf die Kurvenform untersucht werden. N2 - Force-distance curves have been recorded on thin films of lubricants. The lubricants wet the AFM tip, which causes a capillary force. This force depends on the shape of the tip, as well as on physical properties like viscosity and surface tension, which have been determined additionally with other methods. This way, their influence on the shape of the curves could be analyzed. T2 - 60. Tribologie-Fachtagung der Gesellschaft für Tribologie/GfT CY - Göttingen, Germany DA - 23.09.2019 KW - AFM-Kraft-Abstand-Kurven KW - Schmiermittel KW - Viskosität PY - 2019 AN - OPUS4-49906 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nirmalananthan-Budau, Nithiya A1 - Rühle, Bastian A1 - Geißler, Daniel A1 - Moser, Marko A1 - Kläber, Christopher A1 - Schäfer, A. A1 - Resch-Genger, Ute T1 - Multimodal cleavable reporters for quantifying carboxy and amino groups on organic and inorganic nanoparticles N2 - Organic and inorganic nanoparticles (NPs) are increasingly used as drug carriers, fluorescent sensors, and multimodal labels in the life and material sciences. These applications require knowledge of the chemical nature, total number of surface groups, and the number of groups accessible for subsequent coupling of e.g., antifouling ligands, targeting bioligands, or sensor molecules. To establish the concept of catch-and-release assays, cleavable probes were rationally designed from a quantitatively cleavable disulfide moiety and the optically detectable reporter 2-thiopyridone (2-TP). For quantifying surface groups on nanomaterials, first, a set of monodisperse carboxy-and amino-functionalized, 100 nm-sized polymer and silica NPs with different surface group densities was synthesized. Subsequently, the accessible functional groups (FGs) were quantified via optical spectroscopy of the cleaved off reporter after its release in solution. Method validation was done with inductively coupled plasma optical emission spectroscopy (ICP-OES) utilizing the sulfur atom of the cleavable probe. This comparison underlined the reliability and versatility of our probes, which can be used for surface group quantification on all types of transparent, scattering, absorbing and/or fluorescent particles. The correlation between the total and accessible number of FGs quantified by conductometric titration, qNMR, and with our cleavable probes, together with the comparison to results of conjugation studies with differently sized biomolecules reveal the potential of catch-and-release reporters for surface analysis. Our findings also underline the importance of quantifying particularly the accessible amount of FGs for many applications of NPs in the life sciences. KW - Advanced Materials KW - Surface Chemistry KW - Organic–inorganic nanostructures KW - Funtional Groups KW - Quantitative Analysis PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-499081 DO - https://doi.org/10.1038/s41598-019-53773-3 VL - 9 SP - 17577-1 EP - 17577-11 PB - Springer Nature CY - London AN - OPUS4-49908 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Le Xuan, Hoa T1 - Gezieltes Crosslinking von Immunglobulinen mit ortspezifischen Bindern N2 - Die neue Crosslinking-Methode ist hilfreich, um Immunglobuline des Isotyps G ortspezifisch an ihrer Bindungsstelle mit Protein A oder G zu konjugieren. Die Kopplungen von Protein A und G konnten erfolgreich an Maus- und Human-IgG durchgeführt, sowie die Bedingungen untersucht und optimiert werden. Die Aktivierung von Protein G mit Glutaraldehyd erfolgt am besten bei pH 8 und die anschließende Kopplung mit Maus-IgG1 bei einem pH-Wert von 6. Jedoch wurden mit SIAB und Sulfo-SIAB als Crosslinker im Vergleich zu Glutaraldehyd noch höhere Signale erhalten. Für die Kopplung von SIAB sind 40% DMSO im Reaktionspuffer günstig, währenddessen Sulfo-SIAB gut wasserlöslich ist daher keine Lösungsvermittler benötigt. Es ergab sich ein optimaler pH-Wert von 7,4 um Protein A mit SIAB zu aktivieren und den gleichen pH-Wert um die Kopplung mit Maus-IgG1 durchzuführen. Für die Kopplung von Protein G mit Maus-IgG1 hingegen zeigten die Experimente, dass ein leicht saurer pH-Wert bei pH 6 für den IgG-Kopplungsschritt am günstigsten ist. Während die Inkubationszeit von Maus-IgG1 mit Protein G bei 16 h liegt, muss mit Protein A bis zu 40 h inkubiert werden, um das Kopplungsmaximum zu erreichen. Des Weiteren wurde das Crosslinking von Human-IgG (Herceptin) mit SIAB untersucht. Dabei zeigte sich, wie in der Abbildung 47 zu sehen ist, dass Protein A und G vergleichbar gut an Human-IgG zu koppeln sind. Für das Crosslinking von Protein G mit Maus-IgG1 ist dagegen ein deutlich besserer Umsatz im Vergleich zu Protein A zu erkennen (Abbildung 48). Heterobifunktionale Linker können mit der reaktiveren Gruppe die erste Bindung eingehen, um erst nach Zugabe eines weiteren Reagenzes die zweite Bindung auszubilden und zudem intramolekulare Reaktionen möglichst zu vermeiden. KW - Antikörper KW - Antibodies KW - Vernetzung KW - Immobilisierung KW - Immobilization KW - Herceptin KW - Human antibodies KW - Therapeutic antibodies KW - Diagnostic antibodies KW - Oriented immobilization PY - 2019 SP - 1 EP - 100 PB - Humboldt-Universität zu Berlin CY - Berlin AN - OPUS4-54658 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mezera, M. A1 - Bonse, Jörn A1 - Römer, G.R.B.E. T1 - Influence of Bulk Temperature on Laser-Induced Periodic Surface Structures on Polycarbonate N2 - In this paper, the influence of the bulk temperature (BT) of Polycarbonate (PC) on the occurrence and growth of Laser-induced Periodic Surface Structures (LIPSS) is studied. Ultrashort UV laser pulses with various laser peak fluence levels F_0 and various numbers of overscans (N_OS) were applied on the surface of pre-heated Polycarbonate at different bulk temperatures. Increased BT leads to a stronger absorption of laser energy by the Polycarbonate. For N_OS < 1000 High Spatial Frequency LIPSS (HSFL), Low Spatial Frequency LIPSS perpendicular (LSFL-I) and parallel (LSFL-II) to the laser polarization were only observed on the rim of the ablated tracks on the surface but not in the center of the tracks. For N_OS ≥ 1000 , it was found that when pre-heating the polymer to a BT close its glass transition temperature (T_g), the laser fluence to achieve similar LIPSS as when processed at room temperature decreases by a factor of two. LSFL types I and II were obtained on PC at a BT close to T_g and their periods and amplitudes were similar to typical values found in the literature. To the best of the author’s knowledge, it is the first time both LSFL types developed simultaneously and consistently on the same sample under equal laser processing parameters. The evolution of LIPSS from HSFL, over LSFL-II to LSFL I, is described, depending on laser peak fluence levels, number of pulses processing the spot and bulk temperature. KW - Laser-induced periodic surface structures (LIPSS) KW - Polycarbonate KW - Bulk temperature KW - Ultrashort laser pulses PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-498242 UR - https://www.mdpi.com/2073-4360/11/12/1947 DO - https://doi.org/https://doi.org/10.3390/polym11121947 SN - 2073-4360 VL - 11 IS - 12 SP - 1947 PB - MDPI CY - Basel, Switzerland AN - OPUS4-49824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gharaati, S. A1 - Wang, Cui A1 - Förster, C. A1 - Weigert, Florian A1 - Resch-Genger, Ute A1 - Heinze, K. T1 - Triplet–Triplet Annihilation Upconversion in a MOF with AcceptorFilled Channels N2 - In summary, we report a highly modular solid TTA-UC system comprising of a crystalline, thermally stable PCN222(Pd) MOF with CA-coated MOF channels and with a DPA annihilator embedded in a solution-like environment in the MOF channels. This solid material displays blue upconverted delayed emission with a luminescence lifetime of 373 us, a threshold value of 329 mW*cm-2 and a triplet–triplet energy transfer efficiency of 82%. This optical application adds another facet to the versatile chemistry of PCN-222 MOFs. The design concept is also applicable to other TTA-UC pairs and enables tuning of the UCL color, for example, by replacing DPA with other dyes as exemplarily shown for 2,5,8,11-tetra-tert-butyl-perylene, that yields UCL at 450 nm. Current work aims to reduce the oxygen sensitivity and to increase the retention of the trapped annihilators in organic environments, for example, by tuning the chain length of the carboxylic acid and by coating the MOF surface. In addition, the TTA-UC efficiency will be further enhanced by reducing the reabsorption of the UC emission caused by Pd(TCPP) and by optimizing the sensitizer/annihilator interface. KW - Porphyrin KW - Method KW - MOF KW - Fluorescence KW - Dye KW - Sensor KW - Oxygen sensitive KW - Single molecule KW - DPA KW - Lifetime KW - Upconverstion KW - Quantum yield KW - Triplet-triplet annihilation KW - Sensitization KW - Energy transfer KW - NMR PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-500580 DO - https://doi.org/10.1002/chem.201904945 VL - 26 IS - 5 SP - 1003 EP - 1007 PB - Wiley-VCH Verlag CY - Weinheim AN - OPUS4-50058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina T1 - Flash DSC investigations on nanocomposites and electrospun fibers containing nanoparticles N2 - It was found for inorganic/polymer nanocomposites that a so-called Rigid Amorphous Phase (RAF) is formed in the interfacial region by adsorption of polymer segments onto the nanoparticles. The segmental dynamics of RAF is expected to be altered, as compared to the pure matrix, which might percolate into the entire system, affecting the overall nanocomposite properties. Here, the structure and molecular mobility of epoxy-based PNCs with different nanofillers (layered double hydroxide and boehmite) was studied by a combination of calorimetric and X-Ray scattering techniques. Temperature modulated DSC (TMDSC) showed that depending on the nanofiller, RAF can reach up to 40 wt % of the system or, on the contrary, the overall mobility of the matrix might increase due to the presence of particles. Such contrasting results, including the high amount of RAF, which was never shown before for epoxy-based PNCs, emphasize the importance of interfaces. Additionally, glass transition and glassy dynamics were investigated by a novel technique, Flash DSC (heating rates up to 10 kK/s) employed for the first time to a thermosetting system and electrospun fibers, which did not result in their degradation. It was used to study both the vitrification kinetics and glassy dynamics of the PNCs, for instance further confirming the presence of RAF and its impact on the overall material properties. T2 - 4th Mettler Toledo Flash DSC conference CY - Zurich, Switzerland DA - 25.11.2019 KW - Flash DSC KW - Nanocomposites KW - Rigid amorphous fraction KW - TMDSC KW - BDS KW - Boehmite KW - Electrospun fibers PY - 2019 AN - OPUS4-50067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martynenko, Irina V. A1 - Kusic, Dragana A1 - Weigert, Florian A1 - Stafford, S. A1 - Donnelly, F. C. A1 - Evstigneev, R. A1 - Gromova, Y. A1 - Baranov, A. V. A1 - Rühl, Bastian A1 - Kunte, Hans-Jörg A1 - Gun'ko, Y. K. A1 - Resch-Genger, Ute T1 - Magneto-fluorescent microbeads for bacteria detection constructed from superparamagnetic Fe3O4 nanoparticles and AIS/ZnS quantum dots N2 - The efficient and sensitive detection of pathogenic microorganisms in aqueous environments, such as water used in medical applications, drinking water, and cooling water of industrial plants, requires simple and fast methods suitable for multiplexed detection such as flow cytometry (FCM) with optically encoded carrier beads. For this purpose, we combine fluorescent Cd-free Ag−In−S ternary quantum dots (t-QDs) with fluorescence Lifetimes (LTs) of several hundred nanoseconds and superparamagnetic Fe3O4 nanoparticles (SPIONs) with mesoporous CaCO3 microbeads to a magneto-fluorescent bead platform that can be surface-functionalized with bioligands, such as antibodies. This inorganic bead platform enables immuno-magnetic separation, target enrichment, and target quantification with optical readout. The beads can be detected with steady-state and time-resolved fluorescence microscopy and flow cytometry (FCM). Moreover, they are suited for readout by time gated emission. In the following, the preparation of these magneto-fluorescent CaCO3 beads, their spectroscopic and analytic characterization, and their conjugation with bacteria-specific antibodies are presented as well as proof-of-concept measurements with Legionella pneumophila including cell cultivation and plating experiments for bacteria quantification. Additionally, the possibility to discriminate between the long-lived emission of the LT-encoded capture and carrier CaCO3 beads and the short-lived Emission of the dye-stained bacteria with time-resolved fluorescence techniques and single wavelength excitation is demonstrated. KW - Fluorescence KW - method KW - lifetime KW - quantum yield KW - particle KW - magnetic nanoparticle KW - immunoseparation KW - flow cytometry KW - fluorescence microscopy KW - nanoparticle KW - quantum dot KW - AIS QD KW - fluorescence KW - bacteria detection KW - bacteria KW - antibody KW - Legionella KW - screening tes KW - FLIM PY - 2019 DO - https://doi.org/10.1021/acs.analchem.9b01812 SN - 0003-2700 SN - 1520-6882 VL - 91 SP - 12661 EP - 12669 PB - American Chemical Society CY - Washington, DC AN - OPUS4-50117 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Florian, Camilo A1 - Kirner, Sabrina V. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Surface functionalization by laser-induced periodic surface structures N2 - In recent years, the improved understanding of the formation of laser-induced periodic surface structures (LIPSS) has led to an emerging variety of applications that modify the optical, mechanical and chemical properties of many materials. Such structures strongly depend on the laser beam polarization and are formed usually after irradiation with ultrashort linearly polarized laser pulses. The most accepted explanation for the origin of the structures is based on the interference of the incident laser radiation with electromagnetic surface waves that propagate or scatter at the surface of the irradiated materials. This leads to an intensity modulation that is finally responsible for the selective ablation in the form of parallel structures with periods ranging from hundreds of nanometers up to some micrometers. The versatility when forming such structures is based on the high reproducibility with different wavelength, pulse duration and repetition rate laser sources, customized micro- and nanometric spatial resolutions, and the compatibility with industrially relevant processing speeds when combined with fast scanning devices. In this contribution, we review the latest applications in the rapidly emerging field of surface functionalization through LIPSS, including biomimetic functionalities on fluid transport, control of the wetting properties, specific optical responses in technical materials, improvement of tribological performance on metallic surfaces and bacterial and cell growth for medical devices, among many others. T2 - 38th International Congress on Applications of Lasers & Electro-Optics CY - Orlando, FL, USA DA - 07.10.2019 KW - Laser-induced periodic surface structures (LIPSS) KW - Laser processing KW - Surface functionalization KW - Applications PY - 2019 SN - 978-1-940168-1-42 SP - Paper Nano 404 AN - OPUS4-50070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zemke, F. A1 - Schölch, V. A1 - Bekheet, M.F. A1 - Schmidt, Franziska T1 - Surfactant-assisted sol–gel synthesis of mesoporous bioactive glass microspheres N2 - Spherical mesoporous bioactive glasses in the silicon dioxide (SiO2)-phosphorus pentoxide (P2O5)–calcium oxide (CaO) system with a high specific surface area of up to 300m2/g and a medium pore radius of 4 nm were synthesized by using a simple one-pot surfactant-assisted sol–gel synthesis method followed by calcination at 500–700°C. The authors were able to control the particle properties by varying synthesis parameters to achieve microscale powders with spherical morphology and a particle size of around 5–10 mm by employing one structure-directing agent. Due to a high Calcium oxide content of 33·6mol% and a phosphorus pentoxide content of 4·0mol%, the powder showed very good bioactivity up to 7 d of immersion in simulated Body fluid. The resulting microspheres are promising materials for a variety of life science applications, as further processing – for example, granulation – is unnecessary. Microspheres can be applied as materials for powder-based additive manufacturing or in stable suspensions for drug release, in bone cements or fillers. KW - bioactive KW - biomaterials KW - bone PY - 2019 DO - https://doi.org/10.1680/jnaen.18.00020 SN - 2045-9831 SN - 2045-984X VL - 8 IS - 2 SP - 126 EP - 134 PB - ICE Publishing CY - London AN - OPUS4-50148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Essmann, M. A1 - Becker, S. F. A1 - Witt, Julia A1 - Zhan, J. A1 - Chimeh, A. A1 - Korte, A. A1 - Zhong, J. A1 - Vogelgesang, R. A1 - Wittstock, G. A1 - Lienau, C. T1 - Vectorial near-field coupling N2 - The coherent exchange of optical near fields between two neighbouring dipoles plays an essential role in the optical properties, quantum dynamics and thus the function of many naturally occurring and artificial nanosystems. These interactions are challenging to quantify experimentally. They extend over only a few nanometres and depend sensitively on the detuning, dephasing and relative orientation (that is, the vectorial properties) of the coupled dipoles. Here, we introduce plasmonic nanofocusing spectroscopy to record coherent light scattering spectra with 5 nm spatial resolution from the apex of a conical gold nanotaper. The apex is excited solely by evanescent fields and coupled to plasmon resonances in a single gold nanorod. We resolve resonance energy shifts and line broadenings as a function of dipole distance and relative orientation. We demonstrate how These phenomena arise from mode couplings between different vectorial components of the interacting optical near fields, specifically from the coupling of the nanorod to both transverse and longitudinal polarizabilities of the taper apex. KW - Plasmon resonance KW - Coherent exchange KW - Optical near field KW - Plasmonic nanofocusing spectroscopy PY - 2019 DO - https://doi.org/10.1038/s41565-019-0441-y SN - 1748-3387 VL - 14 IS - 7 SP - 698 EP - 704 PB - Nature AN - OPUS4-48028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Simulational tools in nanoparticle research: Micromagnetics and particle scattering N2 - Simulational tools are applied to investigate the physical properties of nanoparticles. For the description of radioactive gold nanoparticles, particles scattering simulations are performed with the Geant4 monte carlo simulation toolkit. The temperature dependent behaviour of the magnetization dynamics of different magnetic nanoparticles are simulated with the object oriented micormagnetic framework (OOMMF). T2 - NanoBioAp CY - LLanes, Spain DA - 23.05.2019 KW - Monte Carlo KW - Monte-Carlo simulation KW - MCS KW - Nanoparticle KW - AuNP KW - Dosimetry KW - Radioactive NP KW - Microdosimetry KW - Geant4 KW - OOMMF KW - Micromagnetism KW - Simulation KW - Magnetic nanoparticle KW - LLG PY - 2019 AN - OPUS4-48110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neamtu, Mariana A1 - Nadejde, C. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Ababei, G. A1 - Panne, Ulrich T1 - Photocatalysis of γ-cyclodextrin-functionalised Fe3O4 nanoparticles for degrading Bisphenol A in polluted waters N2 - The efficiency, relatively low cost and eco-friendly nature of hydrogen peroxide-assisted photocatalysis treatment procedures are significant advantages over conventional techniques for wastewater remediation. Herein, we evaluate the behaviour of g-cyclodextrin (g-CD) immobilised on either bare or chitosan (CS)–functionalised Fe3O4 nanoparticles, for photodegrading Bisphenol A (BPA) in ultrapure water and in real wastewater samples. The BPA removal efficiencies with Fe3O4/g-CD and Fe3O4/CS/g-CD were compared with those of Fe3O4/b-CD, and were monitored under UVA irradiation at near-neutral pH. The addition of H2O2 at low concentrations (15 mmol L-1) significantly increased BPA photodegradation in the presence of each nanocomposite. The highest catalytic activity was shown by both Fe3O4/g-CD and Fe3O4/CS/g-CD nanocomposites (,60 and 27%BPA removal in ultrapure water and real wastewater effluent, respectively). Our findings reveal the superior performance of g-CD-functionalised Fe3O4 relative to that of Fe3O4/b-CD. The use of CD-based nanocomposites as photocatalytic materials could be an attractive option in the pre- or post-treatment stage of wastewaters by advanced oxidation processes before or after biological treatment. KW - Photooxidation KW - Sonochemical synthesis KW - Wastewater PY - 2019 DO - https://doi.org/10.1071/EN18181 SN - 1448-2517 VL - 16 IS - 2 SP - 125 EP - 136 PB - CSIRO Publishing CY - Clayton South AN - OPUS4-48316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Terborg, R. A1 - Boehm, S. A1 - Kim, K. J. T1 - Analysis of elemental composition of Fe1-xNix and Si1-xGex alloy thin films by EPMA and µ-XRF N2 - The present study reports on measurements on thin Fe-Ni films on silicon and first-time results of analysis on Si-Ge thin films deposited on a non-conductive aluminium oxide Substrate by electron probe microanalysis (EPMA). Standard-based and standardless EPMA (with EDS) results were used in combination with the thin film analysis software Stratagem for the quantification. Further, X-ray fluorescence analysis (XRF) can be used for the determination of elemental composition and thickness of such films as well. In this case, XRF with a μ-focus X-ray source (μ-XRF) attached to a SEM was applied. For quantification, a fundamental parameter (FP) approach has been used to calculate standard-based and standardless results. Both thin film systems have been chosen as samples of an international round robin test (RRT) organised in the frame of standardisation technical committee ISO/TC 201 ‘Surface chemical analysis’, under the lead of KRISS. The main objective of the RRT is to compare the results of atomic fractions of Fe1-xNix and Si1-xGex alloy films obtained by different surface Analysis techniques, such as X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and secondary ion mass spectrometry (SIMS) applied in the depth-profiling operation mode. Five samples of different atomic fractions of each thin film system, i.e., Fe1-xNix and Si1-xGex, have been grown by ion beam sputter deposition on silicon and Al2O3 wafers, respectively. Reference FeNi and SiGe films with well-known elemental composition and thickness have been also supplied for standard-based analysis. An excellent agreement has been obtained between the atomic fractions determined by EPMA and µ-XRF with the KRISS certified values. T2 - Microscopy & Microanalysis 2019 CY - Portland, OR, USA DA - 03.08.2019 KW - Thin films KW - EPMA KW - µ-XRF KW - Elemental composition KW - Atomic fraction KW - Fe-Ni KW - Si-Ge PY - 2019 AN - OPUS4-48709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Temperature in micromagnetism: Cell size and scaling effects of the stochastic Landau-Lifshitz equation N2 - The movement of the macroscopic magnetic moment in ferromagnetic systems can be described by the Landau-Lifshitz (LL) or Landau-Lifshitz-Gilbert (LLG) equation. These equations are strictly valid only at absolute zero temperature. To include temperature effects a stochastic version of the LL or LLG equation for a spin density of one per unit cell can be used instead. To apply the stochastic LL to micromagnetic simulations, where the spin density per unit cell is generally higher, a conversion regarding simulation cell size and temperature has to be established. Based on energetic considerations, a conversion for ferromagnetic bulk and thin film systems is proposed. The conversion is tested in micromagnetic simulations which are performed with the Object Oriented Micromagnetic Framework (OOMMF). The Curie temperatures of bulk Nickel, Cobalt and Iron systems as well as Nickel thin-film systems with thicknesses between 6.3 mono layer (ML) and 31ML are determined from micromagnetic simulations. The results show a good agreement with experimentally determined Curie temperatures of bulk and thin film systems when temperature scaling is performed according to the presented model. T2 - EUROMAT 2019 CY - Stockholm, Sweden DA - 01.09.2019 KW - Magnetic nanoparticles KW - Stochastic Landau Lifshitz Gilbert equation KW - Magnetic moment KW - Landau Lifshitz equation KW - Exchange interaction KW - OOMMF KW - Object oriented micromagnetic framework KW - Temeprature scaling KW - LLG KW - Ferromagnetism KW - Micromagnetism PY - 2019 AN - OPUS4-48762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Munasir, A1 - Triwikantoro, A1 - Zainuri, M. A1 - Bäßler, Ralph A1 - Darminto, T1 - Corrosion Polarization Behavior of Al-SiO2 Composites in 1M NaCl and Related Microstructural Analysis N2 - The composites combining aluminum and silica nanoparticles with the addition of tetramethylammonium hydroxide (Al-SiO2(T)) and butanol (Al-SiO2(B)) as mixing media have been successfully fabricated. Corrosion behavior of Al-SiO2 composites before and after exposure in 1M NaCl solution was examined using potentiodynamic polarization (Tafel curve analysis). The study was also equipped with scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) investigations. Before exposure, Al-SiO2(T) exhibited the best corrosion resistance. Performance improvement was indicated by Al-SiO2(B) up to 10 times better than Al-SiO2(T) after exposure. The increased SiO2 content did not significantly enhance the corrosion resistance of the composites. The Al-SiO2 composites with 5% SiO2 content showed very high corrosion resistance (as the optimum composition). Furthermore, pitting corrosion was observed in the Al-SiO2 composites, indicated by the formation of corrosion products at grain boundaries. The product was affected by the presence of SiO2 in the Al matrix and the NaCl environment at 90 °C (approach to synthetic geothermal media: Na+, Cl, H+, OH-). Our study revealed the presence of γ-Al2O3, γ-Al(OH)3, and Al(OH)2Cl as the dominant corrosion products. KW - Al-Composite KW - Corrosion KW - Corrosion rate KW - SiO2 Nanoparticle KW - Tafel Plot PY - 2019 DO - https://doi.org/10.5829/ije.2019.32.07a.11 SN - 1025-2495 SN - 1735-9244 VL - 7 IS - 32 SP - 982 EP - 990 PB - Materials and Energy Research Center AN - OPUS4-48742 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Gawek, Marcel A1 - Madkour, S. A1 - Schönhals, Andreas T1 - Confinement and localization effects revealed for thin films of the miscible blend Poly(vinyl methyl ether) / Polystyrene with a composition of 25/75 wt% N2 - Thin films (200-7nm) of the asymmetric polymer blend poly(vinyl methyl ether) (PVME)/polystyrene (PS) (25/75wt%) were investigated by broadband dielectric spectroscopy (BDS). Thicker samples ([Formula: see text]37 nm) were measured by crossed electrode capacitors (CEC), where the film is capped between Al-electrodes. For thinner films ([Formula: see text]37 nm) nanostructured capacitors (NSC) were employed, allowing one free surface in the film. The dielectric spectra of the thick films showed three relaxation processes ( [Formula: see text] -, [Formula: see text] - and [Formula: see text] -relaxation), like the bulk, related to PVME fluctuations in local spatial regions with different PS concentrations. The thickness dependence of the [Formula: see text] -process for films measured by CECs proved a spatially heterogeneous structure across the film with a PS-adsorption at the Al-electrodes. On the contrary, for the films measured by NSCs a PVME segregation at the free surface was found, resulting in faster dynamics, compared to the CECs. Moreover, for the thinnest films ([Formula: see text]26 nm) an additional relaxation process was detected. It was assigned to restricted fluctuations of PVME segments within the loosely bounded part of the adsorbed layer, proving that for NSCs a PVME enrichment takes place also at the polymer/substrate interface. KW - Thin polymer films KW - Broadband dielectric spectroscopy PY - 2019 DO - https://doi.org/10.1140/epje/i2019-11870-3 SN - 1292-895X VL - 42 IS - 8 SP - 101, 1 EP - 11 PB - Springer AN - OPUS4-48651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Zutta Villate, Julian Mateo T1 - Radioactive gold nanoparticles for cancer treatment: Size and cluster dependent damage studied by Geant4 Monte-Carlo simulations N2 - Dose enhancement by gold nanoparticles (AuNP) was shown to increase the biological effectiveness of radiation damage in biomolecules and tissue. Most of the current studies focus on external beam therapy on combination with AuNP. Here we present a Monte-Carlo study (Geant4) to characterise radioactive AuNP. Radioactive ¹⁹⁸Au emits beta and gamma rays and is considered for applications with solid tumours. To effectively apply ¹⁹⁸AuNP their energy deposit characteristics have to be determined in terms of intrinsic and extrinsic properties e.g. AuNP diameter, AuNP density, and their clustering behaviour. After each decay process, the energy deposit, inelastic scattering events, kinetic energy spectrum of secondary particles within the AuNP themselves and in a spherical target volume of water up to 1 μm radius were determined. Simulations were performed for AuNP radii ranging from 2.5 nm to 20 nm radius, different cluster sizes and densities. The results show an increase of the energy deposit in the vicinity of the AuNP up to 150 nm. This effect nearly vanishes for distances up to one micron. For the case of AuNP clusters and the same activity, the enhancement of the energy deposit increases with the relative gold mass percentage and therefore can be adjusted by changing AuNP radius or clustering behaviour. KW - Gold Nanoparticles KW - AuNP KW - Radioactive decay KW - Beta decay KW - DNA KW - DNA damage KW - Radiation damage KW - MCS KW - Monte-Carlo simulation KW - Geant4 KW - Dosimetry KW - Microdosimetry KW - Cancer treatment KW - Radiationtherapy KW - Brachytherapy KW - OH radicals KW - LEE KW - low energy electrons KW - gamma ray KW - beta particle KW - radiolysis KW - clustered nanoparticles KW - NP KW - Simulation KW - particle scattering KW - Geant4-DNA KW - Energy deposit PY - 2019 DO - https://doi.org/10.1140/epjd/e2019-90707-x SN - 1434-6060 SN - 1434-6079 VL - 73 IS - 5 SP - 95, 1 EP - 7 PB - Springer CY - Berlin Heidelberg AN - OPUS4-47952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Topolniak, Ievgeniia A1 - Schenderlein, Matthias A1 - Sturm, Heinz T1 - Nano polymer (composite) printing N2 - This talk introduces the PolyPoly, a new device at BAM which enables the three-dimensional structuring of polymer nanocomposites with an extremely high resolution of 150x150x600 nm. Initial examples and findings will be shown. T2 - BAM-IFW Workshop CY - Dresden, Germany DA - 28.03.2019 KW - Multiphoton laser structuring KW - Polymer nanocomposites KW - 3d structuring KW - Additive manufacturing PY - 2019 AN - OPUS4-48041 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska A1 - Hodoroaba, Vasile-Dan T1 - Nano Powder - a Challenge for Granulometry N2 - If the particle size decreases, the ratio of surface area to volume increases considerably. This provides benefits for all surface-driven processes that run faster or at lower temperatures than larger particles. However, handling and characterization of the nanopowders are much more difficult. Particularly polydisperse powders with irregular shape, as grinding products, represent a challenge. Granulometry in the submicron and nanoscale often leads to incorrect results without knowledge of particle morphology. This presentation demonstrates potentials of using the volume-specific surface area (SV or VSSA) in the granulometric characterization of nanopowders, for instance, correlations between the volume-specific surface area and the median particle size are discussed considering the particle morphology and the model of the logarithmic normal distribution. Moreover, the presentation deals with the optimal dispersion of nanopowders during sample preparation. Indirect ultrasound device with defined cooling was developed to prevent both contamination by sonotrode abrasion and sample changes by heat. Successful granulometric characterization of nanopowders demands both improved dispersion technology and very often an effective combination of two or more measurement methods. T2 - Jahrestagung der Deutschen Keramischen Gesellschaft CY - Leoben, Austria DA - 06.05.2019 KW - Nano screening KW - VSSA KW - Nano particle KW - Particle size PY - 2019 AN - OPUS4-47976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schroeder, Barbara A1 - Le Xuan, Hoa A1 - Völzke, Jule L. A1 - Weller, Michael G. T1 - Preactivation Crosslinking - An Efficient Method for the Oriented Immobilization of Antibodies N2 - Crosslinking of proteins for their irreversible immobilization on surfaces is a proven and popular method. However, many protocols lead to random orientation and the formation of undefined or even inactive by-products. Most concepts to obtain a more targeted conjugation or immobilization requires the recombinant modification of at least one binding partner, which is often impractical or prohibitively expensive. Here a novel method is presented, which is based on the chemical preactivation of Protein A or G with selected conventional crosslinkers. In a second step, the antibody is added, which is subsequently crosslinked in the Fc part. This leads to an oriented and covalent immobilization of the immunoglobulin with a very high yield. Protocols for Protein A and Protein G with murine and human IgG are presented. This method may be useful for the preparation of columns for affinity chromatography, immunoprecipitation, antibodies conjugated to magnetic particles, permanent and oriented immobilization of antibodies in biosensor systems, microarrays, microtitration plates or any other system, where the loss of antibodies needs to be avoided, and maximum binding capacity is desired. This method is directly applicable even to antibodies in crude cell culture supernatants, raw sera or protein-stabilized antibody preparations without any purification nor enrichment of the IgG. This new method delivered much higher signals as a traditional method and, hence, seems to be preferable in many applications. KW - Antibody coating KW - Proximity-enhanced reaction KW - Immunoglobulins KW - IgG KW - Protein A KW - Protein G KW - Immunoprecipitation KW - Immunocapture KW - Regeneration KW - Biosensor KW - Immunosensor KW - Affinity chromatography KW - Immunoaffinity extraction KW - Oriented immobilization KW - Immunoassay KW - Bioconjugation PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479786 DO - https://doi.org/10.3390/mps2020035 SN - 2409-9279 VL - 2 IS - 2 SP - 1 EP - 14 PB - MDPI CY - Basel, Switzerland AN - OPUS4-47978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Topolniak, Ievgeniia A1 - Hodoroaba, Vasile-Dan A1 - Pfeifer, Dietmar A1 - Braun, Ulrike A1 - Sturm, Heinz T1 - Boehmite Nanofillers in Epoxy Oligosiloxane Resins: Influencing the Curing Process by Complex Physical and Chemical Interactions N2 - In this work, a novel boehmite (BA)-embedded organic/inorganic nanocomposite coating based on cycloaliphatic epoxy oligosiloxane (CEOS) resin was fabricated applying UV-induced cationic polymerization. The main changes of the material behavior caused by the nanofiller were investigated with regard to its photocuring kinetics, thermal stability, and glass transition. The role of the particle surface was of particular interest, thus, unmodified nanoparticles (HP14) and particles modified with p-toluenesulfonic acid (OS1) were incorporated into a CEOS matrix in the concentration range of 1–10 wt.%. Resulting nanocomposites exhibited improved thermal properties, with the glass transition temperature (Tg) being shifted from 30 °C for unfilled CEOS to 54 °C (2 wt.% HP14) and 73 °C (2 wt.% OS1) for filled CEOS. Additionally, TGA analysis showed increased thermal stability of samples filled with nanoparticles. An attractive interaction between boehmite and CEOS matrix influenced the curing. Real-time infrared spectroscopy (RT-IR) experiments demonstrated that the epoxide conversion rate of nanocomposites was slightly increased compared to neat resin. The beneficial role of the BA can be explained by the participation of hydroxyl groups at the particle surface in photopolymerization processes and by the complementary contribution of p-toluenesulfonic acid surface modifier and water molecules introduced into the system with nanoparticles. KW - Real-time infrared spectroscopy KW - Boehmite KW - Nanocomposite KW - Cationic photocuring KW - Cycloaliphatic epoxy oligosiloxane KW - Epoxy conversion degree PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479628 DO - https://doi.org/10.3390/ma12091513 VL - 12 IS - 9 SP - 1513 PB - MDPI AN - OPUS4-47962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zutta Villate, J. M. A1 - Hahn, Marc Benjamin T1 - Radioactive gold nanoparticles for cancer treatment N2 - Dose enhancement by gold nanoparticles (AuNP) was shown to increase the biological effectiveness of radiation damage in biomolecules and tissue. Most of the current studies focus on external beam therapy on combination with AuNP. Here we present a Monte-Carlo study (Geant4) to characterise radioactive AuNP. Radioactive 198 Au emits beta and gamma rays and is considered for applications with solid tumours. To effectively apply 198 AuNP their energy deposit characteristics have to be determined in terms of intrinsic and extrinsic properties e.g. AuNP diameter, AuNP density, and their clustering behaviour. After each decay process, the energy deposit, inelastic scattering events, kinetic energy spectrum of secondary particles within the AuNP themselves and in a spherical target volume of water up to 1 μm radius were determined. Simulations were performed for AuNP radii ranging from 2.5 nm to 20 nm radius, different cluster sizes and densities. The results show an increase of the energy deposit in the vicinity of the AuNP up to 150 nm. This effect nearly vanishes for distances up to one micron. For the case of AuNP clusters and the same activity, the enhancement of the energy deposit increases with the relative gold mass percentage and therefore can be adjusted by changing AuNP radius or clustering behaviour. KW - Gold KW - Nanoparticle KW - Cancer KW - Monte-Carlo KW - Simulation KW - Cluster PY - 2019 DO - https://doi.org/10.1140/epjd/e2019-90707-x SN - 1434-6060 SN - 1434-6079 VL - 73 IS - 95 SP - 1 EP - 7 PB - Springer CY - Berlin AN - OPUS4-47964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Laser-induced periodic surface structures: from nanoscaled light localization to applications N2 - In this contribution the current state in the field of Laser-Induced Periodic Surface Structures (LIPSS) is reviewed. This includes the mechanisms of formation and current applications, particularly the colorization of technical surfaces, the control of surface wetting properties, the tailoring of surface colonization by bacterial biofilms, and the improvement of the tribological performance of nanostructured metal surfaces. T2 - PHOTONICA 2019 - The Seventh International School and Conference on Photonics CY - Belgrade, Serbia DA - 26.08.2019 KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser KW - Surface functionalization PY - 2019 UR - http://www.photonica.ac.rs/docs/PHOTONICA2019-Book_of_abstracts.pdf AN - OPUS4-48836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Juds, Carmen T1 - Biocombinatorially selected peptide-polymer conjugates as polypropylene binders N2 - Peptide-polymer bioconjugates combine oligopeptides with synthetic polymer blocks and can be used for various applications in material sciences. In recent years, bioconjugates were applied as compatibilizers and coatings. Biocombinatorial approaches, such as phage display, have been shown to yield strong binding peptides, which exhibit excellent coating properties as peptide-PEO conjugates. Phage display represents a widely exploited strategy to select peptides or proteins that exhibit highly specific affinity to various substrates. Following a phage display experiment, DNA sequencing of binding phage clones is required in order to get the sequence information of the binding peptides. Traditionally, random clone picking followed by Sanger sequencing was applied. However, this method may not necessarily identify the strongest binding clones. Next-generation sequencing made sequencing of whole phage libraries possible, which highly improved the selection of strong binders. Here, we show that the biocombinatorial method of phage display combined with next generation DNA sequencing of whole phage libraries represents a powerful tool for an application in material chemistry. Phage display is used to find specific target binding peptides for polypropylene surfaces (PP). PP binders are of particular interest because thus far gluing or printing on PP is challenging due to its low surface energy. Scripts for sequence data analysis were developed and promising sequences were synthesized as peptide-PEO conjugates. Fluorescence based adsorption experiments on PP surfaces led to the identification of strong binding sequences and a better understanding of the peptide-surface interactions. T2 - 257th National Meeting of the American-Chemical-Society (ACS) CY - Orlando, FL, USA DA - 31.03.2019 KW - Peptides KW - Surfaces KW - Phage Display KW - Peptide Library KW - Screening KW - Glue KW - Paint KW - Polyethylene Glycol KW - PEG KW - Next Generation Sequencing PY - 2019 AN - OPUS4-48837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mansfeld, Ulrich A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Bartczak, D. T1 - New reference material candidates for traceable size measurement of non-spherical nanoparticles N2 - New model nanoparticles with well-controlled shape were synthesized within the EMPIR project nPSize - Improved traceability chain of nanoparticle size measurements. Their systematic characterization takes place by the traceable methods scanning/transmission electron microscopy, atomic force microscopy and small angle X-ray scattering. Following reference nanoparticle candidates are under investigation with respect to their homogeneity and stability: titania nanoplatelets (10-15 nm x 50-100 nm), titania bipyramides (~60 nm x 40 nm), titania acicular particles (100 nm x 15-20 nm; aspect ratio 5.5/6), gold nanorods (~10 nm x 30 nm), and gold nanocubes (~55 nm x 55 nm x 55 nm). T2 - HyMET Workshop on optical surface analysis methods for nanostructured layers CY - Berlin, Germany DA - 10.10.2019 KW - Nanoparticles KW - Reference materials KW - Traceability KW - Particle size distribution PY - 2019 AN - OPUS4-49285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brüngel, R. A1 - Rückert, J. A1 - Wohlleben, W. A1 - Babick, F. A1 - Ghanem, A. A1 - Gaillard, C. A1 - Mech, A. A1 - Rauscher, H. A1 - Hodoroaba, Vasile-Dan A1 - Weigel, S. A1 - Friedrich, C. M. T1 - NanoDefiner e-Tool: An Implemented Decision Support Framework for Nanomaterial Identification N2 - The European Commission’s recommendation on the definition of nanomaterial (2011/696/EU) established an applicable standard for material categorization. However, manufacturers face regulatory challenges during registration of their products. Reliable categorization is difficult and requires considerable expertise in existing measurement techniques (MTs). Additionally, organizational complexity is increased as different authorities’ registration processes require distinct reporting. The NanoDefine project tackled these obstacles by providing the NanoDefiner e-tool: A decision support expert system for nanomaterial identification in a regulatory context. It providesMT recommendations for categorization of specific materials using a tiered approach (screening/confirmatory), and was constructed with experts from academia and industry to be extensible, interoperable, and adaptable for forthcoming revisions of the nanomaterial definition. An implemented MT-driven material categorization scheme allows detailed description. Its guided workflow is suitable for a variety of user groups. Direct feedback and explanation enable transparent decisions. Expert knowledge is Held in a knowledge base for representation of MT performance criteria and physicochemical particle type properties. Continuous revision ensured data quality and validity. Recommendations were validated by independent case studies on industry-relevant particulate materials. Besides supporting material identification and registration, the free and open-source e-tool may serve as template for other expert systems within the nanoscience domain. KW - EC nanomaterial definition KW - Decision support KW - Expert system KW - Nanomaterial KW - Nanoparticles PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-492449 DO - https://doi.org/10.3390/ma12193247 VL - 12 IS - 19 SP - 3247 PB - MDPI CY - Basel, CH AN - OPUS4-49244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fleck, M. A1 - Tielemann, Christopher A1 - Scheffler, F. A1 - Brauer, D. S. A1 - Müller, Ralf T1 - Surface crystallization of BT0.75S (fresnoite) glass in different atmosphere N2 - Fresnoite glass with excess SiO2 exhibits oriented surface crystallization, in contrast to the stoichiometric glass composition. Recent EBSD studies documented that the crystals in BTS (2BaO-TiO2-xSiO2, x=0-3) can occur in a distinct [101]-orientation perpendicular to the surface and claimed that this orientation is not a result of growth selection. During these previous studies, however, the effect of surface preparation and surrounding atmosphere during the crystallization experiments were not considered. As these parameters may influence crystal orientation, we studied the surface crystallization of a BTS glass (2BaO-TiO2–2.75SiO2) under controlled conditions with the help of light, electron and polarisation microscopy as well as EBSD. Heat treatments for one hour at 840°C of fractured BTS glass surfaces in air resulted in a large number of not-separable surface crystals. This large number of crystals can be caused by dust particles, which act as nucleation agents. As crystal growth velocity could further be influenced by humidity, our experiments are performed in a filtered and dried air atmosphere. The crystal morphology and orientation will be analysed in dependence of the sample preparation and a differing surrounding atmosphere. T2 - 93rd Annual Meeting of the German Society of Glass Technology in Conjunction with the Annual Meeting of French Union for Science and Glass Technology (USTV) CY - Nuremberg, Germany DA - 13.05.2019 KW - BTS KW - Fresnoit KW - Glass ceramic KW - Glass-ceramic KW - Glass PY - 2019 AN - OPUS4-49294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Busch, R. A1 - Tielemann, Christopher A1 - Reinsch, Stefan A1 - Patzig, C. A1 - Höche, T. A1 - Müller, Ralf T1 - Characterization of early crystallization stages in surface-crystallized diopside glass-ceramics N2 - Structure formation in glass-ceramics by means of surface crystallization is a challenging open question and remains elusive to definite answers. In several glass-ceramic systems, oriented crystal layers have been observed at the immediate surface, including diopside and some fresnoite systems. However, it is still open to debate, whether oriented surface crystallization is the result of oriented nucleation or growth selection effects. In the same vein, there is still discussion whether surface nucleation is governed by surface chemistry effects or by defects serving as active nucleation sites. In order to help answer these questions, annealing experiments at 850°C have been performed on a MgO·CaO·2SiO2 glass, leading to the crystallization of diopside at the surface. Different annealing durations and surface treatment protocols (i.a. lapping with diamond slurries between 16 µm and 1 µm grain size) have been applied. Particular focus has been put on earliest crystallization stages, with crystal sizes down to about 200 nm. The resultant microstructure has been analyzed by electron backscatter diffraction (EBSD) and two different kinds of textures have been observed, with the a- or b-axis being perpendicular to the sample surface and the c-axis lying in the sample plane. Even at shortest annealing durations, a clear texture was present in the samples. Additionally, selected samples have been investigated with energy-dispersive x-ray spectroscopy in the scanning transmission electron microscope (STEM-EDX). The diopside crystals have been found to exhibit distinguished submicron structure variations and the glass around the crystals was shown to be depleted of Mg. T2 - 93rd Annual Meeting of the German Society of Glass Technology in Conjunction with the Annual Meeting of French Union for Science and Glass Technology (USTV) CY - Nuremberg, Germany DA - 13.05.2019 KW - Glass KW - Crystallization KW - Diopside KW - EBSD KW - Orientation PY - 2019 AN - OPUS4-49296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Borghetti, P. A1 - Ortel, Erik A1 - Wirth, Thomas A1 - Garcia, S. A1 - Gómez, E. A1 - Blanco, M. A1 - Alberto, G. A1 - Martra, G. T1 - Organic Surface Modification and Analysis of Titania Nanoparticles for Self-Assembly in Multiple Layers N2 - The characteristics of TiO2 coatings can greatly influence their final performance in large-scale applications. In the present study self-assembly of TiO2 nanoparticles (NPs) in multiple layers was selected as a deposition procedure on various substrates. For this, the main prerequisite constitutes the surface modification of both NPs and substrate with e.g. silane coupling agents. A set of functionalized TiO2 NPs has been produced by reaction with either (3- aminopropyl)triethoxysilane (APTES) or (3-aminopropyl)phosphonic acid (APPA) to functionalize the NP surface with free amino-groups. Then, the complementary functionalized NP set can be obtained from an aliquot of the first one, through the conversion of free surface amino-groups to aldehydes by reaction with glutaraldehyde (GA). Several types of TiO2 NPs differing in size, shape and specific surface area have been functionalized. FTIR, TGA, SEM/EDS, XPS, Auger electron spectroscopy (AES) and ToF-SIMS analyses have been carried out to evaluate the degree of functionalization, all the analytical methods employed demonstrating successful functionalization of TiO2 NP surface with APTES or APPA and GA. T2 - European Conference on Applications of Surface and Interface Analysis ECASIA 2019 CY - Dresden, Germany DA - 15.09.2019 KW - TiO2 KW - Layer-by-layer deposition KW - Surface functionalization KW - P25 KW - Surface characterization PY - 2019 AN - OPUS4-49279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fletcher, D. C. A1 - Hunter, R. A1 - Xia, W. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Blackburn, E. A1 - Kulak, A. A1 - Xin, H. A1 - Schnepp, Z. T1 - Scalable synthesis of dispersible iron carbide (Fe3C) nanoparticles by ‘nanocasting’ N2 - Metal carbides have shown great promise in a wide range of applications due to their unique catalytic, electrocatalytic and magnetic properties. However, the scalable production of dispersible metal carbide nanoparticles remains a challenge. Here, we report a simple and scalable route to dispersible iron carbide (Fe3C) nanoparticles. This uses MgO nanoparticles as a removable ‘cast’ to synthesize Fe3C nanoparticles from Prussian blue (KFeIII[FeII(CN)6]). Electron tomography demonstrates how nanoparticles of the MgO cast encase the Fe3C nanoparticles to prevent sintering and agglomeration during the high-temperature synthesis. The MgO cast is readily removed with ethylenediaminetetraacetic acid (EDTA) to generate Fe3C nanoparticles that can be used to produce a colloidal ferrofluid or dispersed on a support material. KW - Small-angle scattering KW - SAXS KW - Metal carbides KW - Nanoparticles KW - Nanocasting PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486295 DO - https://doi.org/10.1039/C9TA06876G SN - 2050-7488 SN - 2050-7496 VL - 7 IS - 33 SP - 19506 EP - 19512 PB - Royal Society of Chemistry (RSC) AN - OPUS4-48629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Advanced characterization of nanomaterials N2 - The rational synthesis and use of nanomaterials require the characterization of many different properties, ranging from particle size and size distribution over surface chemistry to more applicationrelevant features like optical, electrochemical, and magnetic properties. In the following, several methods for the characterization of functional groups on nanomaterials, like polymer and silica nanoparticles, semiconductor quantum dots, and lanthanide-based upconversion nanocrystals are presented. Additionally, procedures for the measurement of the key spectroscopic performance parameters of nanomaterials with linear and nonlinear photoluminescence, such as the photoluminescence quantum yield, are presented for the UV/vis/NIR/SWIR. T2 - Summerschool CY - Bad Honnef, Germany DA - 22.07.2019 KW - Quantum yield KW - Nanoparticle KW - Fluorescence KW - Quantum dot KW - NIR KW - SWIR KW - Quality assurance KW - Calibration PY - 2019 AN - OPUS4-48630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Kotil, L. A1 - Hodoroaba, Vasile-Dan A1 - Bernsmeier, Denis A1 - Kraehnert, R. A1 - Hertwig, Andreas T1 - Spectroscopic ellipsometric analysis of elemental composition and porosity of mesoporous iridium-titanium mixed oxide thin films for electrocatalytic splitting of water N2 - Porous materials play an important role in several fields of technology, especially for energy applications like photovoltaics, electrolysis or batteries. The activity of porous films is affected by properties like porosity, film thickness, chemical composition of the material as well as the crystallinity of the framework. The complex morphology of such porous films constitutes a challenge for modern analytical techniques and requires approaches employing the combination/complementation of data of different analytical methods. In this contribution we characterize thin mesoporous iridium-titanium mixed oxide film properties by spectroscopic ellipsometry (SE). Mesoporous iridium oxide - titanium oxide (IrOx-TiOx) films were prepared via dip-coating of a solution containing a triblock-copolymer as structure-directing agent, an iridium precursor as well as a titanium precursor in ethanol. Deposited films with different amounts of iridium (0 wt%Ir to 100 wt%Ir) were synthesized and calcined in air. The thin films were analyzed with SE using the Bruggeman effective medium approximation (BEMA) for modelling. The results were compared with electron probe microanalysis (EPMA) as part of a combined SEM/EDS/STRATAGem Analysis. T2 - 8th International conference on spectroscopic ellipsometry (ICSE-8) CY - Barcelona, Spain DA - 26.05.2019 KW - Mesoporous iridium-titanium mixed oxides KW - Thin films KW - Spectroscopic ellipsometry KW - Oxygen evolution reaction KW - EPMA KW - Ellipsometric porosimetry PY - 2019 AN - OPUS4-48387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiesholler, L. M. A1 - Frenzel, Florian A1 - Grauel, Bettina A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Hirsch, T. ED - Resch-Genger, Ute ED - Hirsch, Thomas T1 - Yb,Nd,Er-doped upconversion nanoparticles: 980 nm versus 808 nm excitation N2 - Yb,Nd,Er-doped upconversion nanoparticles (UCNPs) have attracted considerable interest as luminescent reporters for bioimaging, sensing, energy conversion/shaping, and anticounterfeiting due to their capability to convert multiple near-infrared (NIR) photons into shorter wavelength ultraviolet, visible or NIR luminescence by successive absorption of two or more NIR photons. This enables optical measurements in complex media with very little background and high penetration depths for bioimaging. The use of Nd3+ as substitute for the commonly employed sensitizer Yb3+ or in combination with Yb3+ shifts the excitation wavelength from about 980 nm, where the absorption of water can weaken upconversion luminescence, to about 800 nm, and laser-induced local overheating effects in cells, tissue, and live animal studies can be minimized. To systematically investigate the potential of Nd3+ doping, we assessed the performance of a set of similarly sized Yb3+,Nd3+,Er3+-doped core- and core–shell UCNPs of different particle architecture in water at broadly varied excitation power densities (P) with steady state and time-resolved fluorometry for excitation at 980 nm and 808 nm. As a measure for UCNPs performance, the P-dependent upconversion quantum yield (Φ) and its saturation behavior were used as well as particle brightness (B). Based upon spectroscopic measurements at both excitation wavelengths in water and in a lipid phantom and B-based calculations of signal size at different penetration depths, conditions under which excitation at 808 nm is advantageous are derived and parameters for the further optimization of triple-doped UCNPs are given. KW - Lanthanide KW - Upconversion KW - Nanoparticle KW - Photoluminescence KW - Quantum yield KW - Lifetime KW - Brightness KW - Nd excitation KW - Excitation power density KW - Modelling KW - NIR PY - 2019 DO - https://doi.org/10.1039/C9NR03127H SN - 2040-3372 SN - 2040-3364 VL - 11 IS - 28 SP - 13440 EP - 13449 PB - Royal Society of Chemistry CY - London AN - OPUS4-48608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Brunet, G. A1 - Marin, R. A1 - Monk, Melissa-Jane A1 - Galico, D. A. A1 - Sigoli, F. A. A1 - Suturina, E. A. A1 - Hemmer, E. A1 - Murugesu, M. T1 - Exploring the dual functionality of an Ytterbium complex for luminescence thermometry and slow magnetic relaxation† N2 - We present a comprehensive investigation of the magnetic and optical properties of an ytterbium complex, which combines two desirable and practical features into a single molecular system. Based upon YbIII Ions that promote near-infrared optical activity and a chemical backbone that is ideal for an in-depth understanding of the magnetic behaviour, we have designed a multifunctional opto-magnetic species that operates as a luminescent thermometer and as a single-molecule magnet (SMM). Our magnetic investigations, in conjunction with ab initio calculations, reveal one of the highest energy barriers reported for an YbIII-based complex. Moreover, we correlate this anisotropic barrier with the Emission spectrum of the compound, wherein we provide a complete assignment of the energetic profile of the complex. Such studies lay the foundation for the design of exciting multi-faceted materials that are able to retain information at the single-molecule level and possess built-in thermal self-monitoring capabilities. KW - Magnetic KW - Fluorescence KW - NIR KW - Temperature KW - Dual sensing KW - Sensor KW - Yb(III) complex KW - Lanthanide KW - Quantum yield KW - Quality assurance PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486659 DO - https://doi.org/10.1039/c9sc00343f VL - 10 IS - 28 SP - 6799 EP - 6808 PB - Royal Society of Chemistry AN - OPUS4-48665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - High-Quality Experimental Data in Electron Microscopy and Microanalysis – What can, and should we jointly do? N2 - There are different ways how to prove the quality of the results obtained by electron microscopy and related microanalysis techniques, e.g. use of validated standard operation procedures, participation in proficiency testing exercises, use of certified reference materials, etc. International standards are able to provide requirements, specifications, guidelines or characteristics of methods, instruments or samples with the final goal that these can be used consistently in accredited laboratories. In the field of electron microscopy and microbeam analysis standardization and metrology are terms which are encountered rather seldom at major conferences and scientific publications. Nevertheless, spectra formats like EMSA/MSA for spectral-data exchange or tagged image file format (TIFF) for SEM, guidelines for performing quality assurance procedures or for the specification of X-ray spectrometers as well as of certified reference materials (CRMs) in EPMA, or measurement of average grain size by electron backscatter diffraction (EBSD), or guidelines for calibrating image magnification in SEM or TEM are ISO standards already published and used successfully by a large part of the electron microscopy and microbeam analysis community. A main and continuous task of ISO/TC 202 and its subcommittees is to identify and evaluate feasible projects/proposals needed to be developed into new international standards, particularly in respect to recent but established technology, such the silicon drift detector (SDD) EDS one. Another international platform in the frame of which pre-standardization work can be organized is VAMAS (Versailles Project on Advanced Materials and Standards). International collaborative projects involving aim at providing the technical basis for harmonized measurements, testing, specifications, and standards to be further developed at ISO level. One key point of VAMAS activities is constituted by inter-laboratory comparisons for high-quality data. In the field of microbeam analysis, the technical working area (TWA) 37 Quantitative Microstructural Analysis deals with corresponding projects. Good ideas, e.g. on analysis of low-Z materials/elements and at low energies are particularly encouraged by directly contacting the author. Support and already available guidance will be supplied. T2 - Microscopy & Microanalysis 2019 CY - Portland, OR, USA DA - 03.08.2019 KW - Pre-standardisation KW - Inter-laboratory comparison KW - VAMAS KW - ISO KW - Electron microscopy KW - Microanalysis PY - 2019 AN - OPUS4-48672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roloff, Alexander A1 - Nirmalananthan-Budau, Nithiya A1 - Rühle, Bastian A1 - Borcherding, H. A1 - Thiele, T. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Quantification of Aldehydes on Polymeric Microbead Surfaces via Catch and Release of Reporter Chromophores N2 - Aldehyde moieties on 2D-supports or microand nanoparticles can function as anchor groups for the attachment of biomolecules or as reversible binding sites for proteins on cell surfaces. The use of aldehyde-based materials in bioanalytical and medical settings calls for reliable methods to detect and quantify this functionality. We report here on a versatile concept to quantify the accessible aldehyde moieties on particle surfaces through the specific binding and subsequent release of small reporter molecules such as fluorescent dyes and nonfluorescent chromophores utilizing acylhydrazone formation as a reversible covalent labeling strategy. This is representatively demonstrated for a set of polymer microparticles with different aldehyde labeling densities. Excess reporter molecules can be easily removed by washing, eliminating inaccuracies caused by unspecific adsorption to hydrophobic surfaces. Cleavage of hydrazones at acidic pH assisted by a carbonyl trap releases the fluorescent reporters rapidly and quasi-quantitatively and allows for their fluorometric detection at low concentration. Importantly, this strategy separates the signal-generating molecules from the bead surface. This circumvents common issues associated with light scattering and signal distortions that are caused by binding-induced changes in reporter fluorescence as well as quenching dye− dye interactions on crowded particle surfaces. In addition, we demonstrate that the release of a nonfluorescent chromophore via disulfide cleavage and subsequent quantification by absorption spectroscopy gives comparable results, verifying that both assays are capable of rapid and sensitive quantification of aldehydes on microbead surfaces. These strategies enable a quantitative comparison of bead batches with different functionalization densities, and a qualitative prediction of their coupling efficiencies in bioconjugations, as demonstrated in reductive amination reactions with Streptavidin. KW - Fluorescent label KW - Surface group quantification KW - Polymer particle KW - Cleavable linker KW - Catch and release assay PY - 2019 DO - https://doi.org/10.1021/acs.analchem.8b05515 SN - 0003-2700 SN - 1520-6882 VL - 91 IS - 14 SP - 8827 EP - 8834 PB - ACS Publications AN - OPUS4-48284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Bestimmung der Partikelgrößenverteilung mittels Zentrifugen-Sedimentationsverfahren nach ISO 13318-2 (Küvette) N2 - Im Vortrag werden das Messprinzip des Zentrifugen-Sedimentationsverfahrens erläutert und die Anforderungen der zugrundeliegenden Normen diskutiert. Es schließen sich umfangreiche Ausführungen zur praktischen Durchführung der Messung, insbesondere auch zu den vorbereitenden Arbeiten, sowie zur Auswertung der Rohdaten an. Nach einem Vergleich der Ergebnisse mit anderen Messverfahren, wird das Verfahren in einer Zusammenfassung bewertet. T2 - Rheologie und Stabilität von dispersen Systemen CY - Potsdam, Germany DA - 03.06.2019 KW - Nanomaterial KW - Partikelgrößenverteilung KW - Analytische Zentrifuge PY - 2019 AN - OPUS4-48286 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Li, Z. A1 - Wang, D.-Y. A1 - Schoenhals, Andreas T1 - Dielectric and flash DSC investigations on an epoxy based nanocomposite system with MgAl layered double hydroxide as nanofiller N2 - Nanocomposites based on MgAL layered double hydroxides (LDH) and an epoxy resin were prepared and investigated by a combination of complementary methods. As epoxy resin Bisphenol A diglycidyl ether (DGEBA) was used with Diethylenetriamine as curing agent. The LDH was modified with taurine, which acts as an additional crosslinking agent due to its amine groups. The epoxy resin was cured in a presence of the nanofiller, which was added to the system in various concentrations. X-ray scattering, by combination of SAXS and WAXS was used to characterize the morphology of the obtained nanocomposites. These investigations show that the filler is distributed in the matrix as small stacks of ca. 10 layers. The molecular dynamics of the system, as probe for structure, was investigated by broadband dielectric spectroscopy. In addition to the - and -relaxation (dynamic glass transition), characteristic for the unfilled materials, a further process was found which was assigned to localized fluctuations of segments physically adsorbed or chemically bonded to the nanoparticles. The dielectric -relaxation is shifted to higher temperatures for the nanocomposites in comparison to the pure material but depends weakly on the content of nanoparticles. Further, for the first time Flash DSC was employed to a thermosetting system to investigate the glass transition behavior of the nanocomposites. The heating rates were converted in to relaxation rates. For low concentrations of the nanofiller the thermal data overlap more or less with that of the pure epoxy. For higher concentrations the thermal data are shifted significantly to higher temperatures. This is discussed in terms the cooperativity approach to the glass transition. KW - Nanocomposites KW - Broadband dielectric spectroscopy KW - Flash DSC PY - 2019 DO - https://doi.org/10.1016/j.tca.2019.01.010 SN - 0040-6031 VL - 677 SP - 151 EP - 161 PB - Elsevier AN - OPUS4-48218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Elert, Anna Maria A1 - Kanerva, M A1 - Puolakka, A A1 - Takala, T.M. A1 - Mylläri, V A1 - Jönkkäri, I A1 - Sarlin, E A1 - Seitsonen, J A1 - Ruokolainen, J A1 - Saris, P A1 - Vuorinen, J T1 - Antibacterial polymer fibres by rosin compounding and melt-spinning N2 - The antibacterial features of natural pine/spruce rosin are well established, yet the functionality in various thermoplastics has not been surveyed. This work focuses on the processing of industrial grade purified rosin mixed with polyethylene (PE), polypropylene (PP), polylactic acid (PLA), polyamide (PA) and corn starch based biopolymer (CS). Homopolymer masterbatches were extrusion-compounded and melt-spun to form fibres for a wide range of products, such as filters, reinforcements, clothing and medical textiles. Due to the versatile chemical structure of rosin, it was observed compatible with all the selected polymers. In general, the rosin-blended systems were shear-thinning in a molten condition. The doped fibres spun of PE and PP indicated adequate melt-spinning capability and proper mechanical properties in terms of ultimate strength and Young's modulus. The antibacterial response was found dependent on the selected polymer. Especially PE with a 10 wt% rosin content showed significant antibacterial effects against Escherichia coli DH5α and Staphylococcus aureus ATCC 12598 when analysed in the Ringer's solution for 24 h. KW - Rosin KW - Antibacterial KW - Thermoplastics PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-481785 DO - https://doi.org/10.1016/j.mtcomm.2019.05.003 SN - 2352-4928 VL - 20 SP - 527 EP - 527 PB - Elsevier AN - OPUS4-48178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Quantitative microstructural analysis - VAMAS/TWA 37 N2 - The 44th Meeting of the Versailles Project on Advanced Materials and Standards (VAMAS) Steering Committee has just taken place at NIST in Boulder (CO, USA). BAM participates with significant contributions in Technical Working Areas on nanoparticle and surface chemistry characterization, but also has positioned itself to new global material challenges and trends in the developement of advanced materials and their characterization, such as thermal properties, self-healing materials, and micro- and nanoplastic. T2 - Annual Meeting of the Versailles Project on Advanced Materials and Standards (VAMAS) Steering Committee CY - Boulder, CO, USA DA - 22.05.2019 KW - VAMAS KW - Nanoparticles KW - Microbeam analysis KW - Advanced materials PY - 2019 AN - OPUS4-48184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Everything SAXS N2 - Introduction keynote for the "Small Angle Scattering Training School 2019", introducing a wide range of aspects around small-angle scattering. T2 - Small Angle Scattering Training School 2019 CY - Diamond Light Source, Didcot, UK DA - 04.06.2019 KW - X-ray scattering KW - Nanostructure KW - Introduction KW - Practical aspects PY - 2019 AN - OPUS4-48191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Breßler, Ingo T1 - McSAS for SAS analysis: Usage, benefits, and potential pitfalls N2 - Introducing McSAS, the analytical tool (software) we developed for extracting form-free size distributions from X-ray scattering patterns. T2 - Small Angle Scattering Training School 2019 CY - Diamond Light Source, Didcot, UK DA - 04.06.2019 KW - X-ray scattering KW - SAXS KW - Software KW - Monte Carlo KW - Nanocharacterisation KW - Nanostructure PY - 2019 AN - OPUS4-48192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - Experimenting on MAUS N2 - Initial results, findings and experience after 1.5 years of using the Multi-scale Analyser for Ultrafine Structures (MAUS), a bespoke wide-range SAXS instrument for the nanostructure quantification of demanding materials science samples. T2 - S4SAS Conference 2019 CY - Diamond Light Source, Didcot, UK DA - 06.06.2019 KW - X-ray scattering KW - SAXS KW - Nanostructure quantification KW - Nanocharacterisation PY - 2019 AN - OPUS4-48193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waniek, Tassilo A1 - Ghasem Zadeh Khorasani, Media A1 - Braun, Ulrike A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Water as side effect of reinforcing boehmite filler Local changes in anhydride cured epoxy resin N2 - Nanocomposites offer wide opportunities for lightweight constructions and enable reduction of weight and volume. Beside macroscopic toughening nanoparticle reinforced polymers show a soft interface around boehmite (AlOOH) filler nanoparticles. A related strong interaction between boehmite and the anhydride cured resin system is widely suspected in literature but not determined by structural Analysis. Determination of the molecular structure is important to allow simulations approaching the real system and predict future reinforcing effects. DRIFT (diffuse refletance infrared fourier transformed) spectra of the boehmite reinforced anhydride cured epoxy show significant changes in the molecular structure compared to the neat polymer. Further investigations of the interactions between the single components of the resin system and the boehmite filler pointed out reactions between released water released from the boehmite filler and the anhydride hardener or amine accelerator. This leads to the discussion of competing polymerisation mechanisms that highly influence the polymer properties. Ongoing experiments and literature research approve that this impact of water is able to locally change the stoichiometrie, alter the curing mechanism or support an inhomogeneous crosslink density. T2 - Polydays 2019 CY - Erwin-Schrödinger-Zentrum, Berlin Adlershof, Germany DA - 11.09.2019 KW - Nanocomposites KW - Epoxy KW - FTIR spectroscopy KW - Boehmite alumina PY - 2019 AN - OPUS4-49010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breßler, Ingo T1 - SASfit and McSAS - Analyzing Small-Angle Scattering of Polymers N2 - Small-angle scattering (SAS) offers a reliable route to characterize the nanostructure of large amounts of material with a minimum of tedium, for example, easily extracting size distributions and volume fractions. There are a variety of analysis programs available while the evaluation of SAS measurements has been dominated by the classical curve fitting approach. SASfit represents such a classical curve fitting toolbox: it is one of the mature programs for SAS data analysis and has been available and used for many years. The latest developments will be presented and a scattering function of a mass fractal model of branched polymers in solution is provided as an example for implementing a plug-in. Alternatively to classical curve fitting, part two presents the latest developments of the user-friendly open-source Monte Carlo regression package McSAS. The form-free Monte Carlo nature of McSAS means, it is not necessary to provide further restrictions on the mathematical form of the parameter distribution: without prior knowledge, McSAS is able to extract complex multimodal or odd- shaped parameter distributions from SAS data. The headless mode is presented by an example of operation within interactive programming environments such as a Jupyter notebook. T2 - PolyDays 2019 CY - Berlin, Germany DA - 11.09.2019 KW - Small-angle scattering KW - SAXS KW - Software PY - 2019 AN - OPUS4-48958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thünemann, Andreas T1 - The Single Chain Architecture of (Bio)Polymers in Contact with Nanoplastics N2 - In contrast to microplastics, little is known about nanoplastics (1 to 100 nm). In order to make the dectecability of nanoplasics more reliable, we started to develop nanoplastic reference materials. This project also aims to anser the question of how the single chain conformation of bio(polymers) changes in contact with nanoplastics. Small-angle X-ray and neutron scattering methods are suitable methods for studing this topic. Recently the soft and hard interactions between polystyrene nanoplasics and human serum albumin corona was investigated with small-angle neutron scattering. Here we concentrate on small-angle X-ray scattering as our favorite method to study how (bio)polymers change their conformation in contact with nanoplastics. The scattering of bovine serum albumin in its native state can be detected easily. The scattering pattern of this biopolymer changes dramatically when its globular stucture changes to a coil structure. Modeling of chain conformations and the calculation of the scattering pattern is relatively easy to perform. Numerous model calculations will be provided to predict the changes of conformation of single bio(polymer) chains when in conatact with nanoplastics. These predictions will be compared with recent experimenal results from in situ measurments of bio(polymers) in contact with nanoplastics. The impact of temperature, polymer concentration and salt on the single-chain conformation changes will be discussed. T2 - PolyDays 2019 CY - Berlin, Germany DA - 11.09.2019 KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle KW - Protein KW - Nanoplastics PY - 2019 AN - OPUS4-48959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martynenko, Irina V. ED - Baimuratov, A. S. ED - Weigert, Florian ED - Soares, J. X. ED - Dhamo, Lorena ED - Nickl, Philip ED - Doerfel, I. ED - Pauli, Jutta ED - Rukhlenko, I. D. ED - Baranov, A. V. ED - Resch-Genger, Ute T1 - Photoluminescence of Ag–In–S/ZnS quantum dots: Excitation energy dependence and low-energy electronic structure N2 - Cd-free I–III–VI group semiconductor quantum dots (QDs) like Ag–In–S and Cu–In–S show unstructured absorption spectra with a pronounced Urbach tail, rendering the determination of their band gap energy (Eg) and the energy structure of the exciton difficult. Additionally, the origin of the broad photoluminescence (PL) band with lifetimes of several hundred nanoseconds is still debated. This encouraged us to study the excitation energy dependence (EED) of the PL maxima, PL spectral band widths, quantum yields (QYs), and decay kinetics of AIS/ZnS QDs of different size, composition, and surface capping ligands. These results were then correlated with the second derivatives of the corresponding absorption spectra. The excellent match between the onset of changes in PL band position and spectral width with the minima found for the second derivatives of the absorption spectra underlines the potential of the EED approach for deriving Eg values of these ternary QDs from PL data. The PL QY is, however, independent of excitation energy in the energy range studied. From the EED of the PL features of the AIS/ZnS QDs we could also derive a mechanism of the formation of the low-energy electronic structure. This was additionally confirmed by a comparison of the EED of PL data of as-synthesized and size-selected QD ensembles and the comparison of these PL data with PL spectra of single QDs. These results indicate a strong contribution of intrinsic inhomogeneous PL broadening to the overall emission features of AIS/ZnS QDs originating from radiative transitions from a set of energy states of defects localized at different positions within the quantum dot volume, in addition to contributions from dimensional and chemical broadening. This mechanism was confirmed by numerically modelling the absorption and PL energies with a simple mass approximation for spherical QDs and a modified donor–acceptor model, thereby utilizing the advantages of previously proposed PL mechanisms of ternary QDs. These findings will pave the road to a deeper understanding of the nature of PL in quantum confined I–III–VI group semiconductor nanomaterials. KW - Core/shell quantum dot KW - Silver indium sulfide KW - Defect photoluminescence KW - Photoluminescence quantum yield KW - Single-dot spectroscopy PY - 2019 DO - https://doi.org/10.1007/s12274-019-2398-4 SN - 1998-0124 SN - 1998-0000 VL - 12 IS - 7 SP - 1595 EP - 1603 PB - Springer Nature AN - OPUS4-48503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghasem Zadeh Khorasani, Media A1 - Elert, Anna Maria A1 - Hodoroaba, Vasile-Dan A1 - Agudo Jácome, Leonardo A1 - Altmann, Korinna A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Short- and long-range mechanical and chemical interphases caused by interaction of Boehmite (γ-AlOOH) with anhydride-cured epoxy resins N2 - Understanding the interaction between boehmite and epoxy and the formation of their interphases with different mechanical and chemical structures is crucial to predict and optimize the properties of epoxy-boehmite nanocomposites. Probing the interfacial properties with atomic force microscopy (AFM)-based methods, especially particle-matrix long-range interactions, is challenging. This is due to size limitations of various analytical methods in resolving nanoparticles and their interphases, the overlap of interphases, and the effect of buried particles that prevent the accurate interphase property measurement. Here, we develop a layered model system in which the epoxy is cured in contact with a thin layer of hydrothermally synthesized boehmite. Different microscopy methods are employed to evaluate the interfacial properties. With intermodulation atomic force microscopy (ImAFM) and amplitude dependence force spectroscopy (ADFS), which contain information about stiffness, electrostatic, and van der Waals forces, a soft interphase was detected between the epoxy and boehmite. Surface potential maps obtained by scanning Kelvin probe microscopy (SKPM) revealed another interphase about one order of magnitude larger than the mechanical interphase. The AFM-infrared spectroscopy (AFM-IR) technique reveals that the soft interphase consists of unreacted curing agent. The long-range electrical interphase is attributed to the chemical alteration of the bulk epoxy and the formation of new absorption bands. KW - Nanocomposites KW - Interphase KW - Intermodulation AFM KW - Electron microscopy KW - Infrared nano AFM PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483672 UR - https://www.mdpi.com/2079-4991/9/6/853/htm DO - https://doi.org/10.3390/nano9060853 SN - 2079-4991 VL - 9 IS - 6 SP - 853, 1 EP - 20 PB - MDPI AN - OPUS4-48367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Musnier, B. A1 - Wegner, Karl David A1 - Comby-Zerbino, C. A1 - Trouillet, V. A1 - Jourdan, M. A1 - Häusler, I. A1 - Antoine, R. A1 - Coll, J.-L. A1 - Resch-Genger, Ute A1 - Le Guevel, X. T1 - High photoluminescence of shortwave infrared-emitting anisotropic surface charged gold nanoclusters N2 - Incorporating anisotropic surface charges on atomically precise gold nanoclusters (Au NCs) led to a strong absorption in the nearinfrared region and could enable the formation of self-assembled Au NCs xhibiting an intense absorption band at ∼1000 nm. This surface modification showed a striking enhancement of the photoluminescence in the Shortwave Infrared (SWIR) region with a quantum yield as high as 6.1% in water. KW - Gold nanoclusters KW - SWIR photoluminescence KW - Self-assembly PY - 2019 DO - https://doi.org/10.1039/C9NR04120F VL - 11 IS - 25 SP - 12092 EP - 12096 PB - Royal Society of Chemistry AN - OPUS4-48305 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wegner, Karl David A1 - Pouget, S. A1 - Ling, W. L. A1 - Carriere, M. A1 - Reiss, P. T1 - Gallium – a versatile element for tuning the photoluminescence properties of InP quantum dots N2 - With the goal to tune the emission properties of colloidal InP quantum dots, the incorporation of Ga was explored. Unexpectedly, depending on the nature of the gallium precursor, the photoluminescence shifted either to the red (gallium oleate) or to the blue (gallium acetylacetonate). In the first case, larger-sized InP/GaP core/shell nanocrystals were formed, while in the second case the formation of an InGaP alloy structure enabled the blue range of emission (475 nm) to be accessed. KW - Indium phosphide KW - Quantum dots KW - Gallium doping PY - 2019 DO - https://doi.org/10.1039/C8CC09740B VL - 55 IS - 11 SP - 1663 EP - 1666 PB - Royal Society of Chemistry AN - OPUS4-48306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tarantini, A. A1 - Wegner, Karl David A1 - Dussert, F. A1 - Sarret, G. A1 - Beal, D. A1 - Mattera, L. A1 - Lincheneau, C. A1 - Proux, O. A1 - Truffier-Boutry, D. A1 - Moriscot, C. A1 - Gallet, B. A1 - Jouneau, P.-H. A1 - Reiss, P. A1 - Carriere, M. T1 - Physicochemical alterations and toxicity of InP alloyed quantum dots aged in environmental conditions: A safer by design evaluation N2 - Due to their unique optical properties, quantum dots (QDs) are used in a number of optoelectronic devices and are forecasted to be used in the near future for biomedical applications. The most popular QD composition consists of cadmium selenide (CdSe) or cadmium telluride (CdTe), which has been shown to pose health risks due to the release of toxic cadmium (Cd) ions. Due to similar optical properties but lower intrinsic toxicity, indium phosphide (InP) QDs have been proposed as a safer alternative. Nevertheless, investigations regarding their safety and possible toxicological effects are still in their infancy. The fate and toxicity of seven different water-dispersible indium (In) based QDs, either pristine or after ageing in a climatic chamber, was evaluated. The core of these QDs was composed of indium, zinc and phosphorus (InZnP) or indium, zinc, phosphorus and sulfur (InZnPS). They were assessed either as core-only or as core-shell QDs, for which the core was capped with a shell of zinc, selenium and sulfur (Zn(Se,S)). Their Surface was functionalized using either penicillamine or glutathione. In their pristine form, these QDs showed essentially no cytotoxicity. The particular case of InZnPS QD showed that core-shell QDs were less cytotoxic than core-only QDs. Moreover, surface functionalization with either penicillamine or glutathione did not appreciably influence cytotoxicity but affected QD stability. These QDs did not lead to over-accumulation of reactive oxygen species in exposed cells, or to any oxidative damage to cellular DNA. However, accelerated weathering in a climatic chamber led to QD precipitation and degradation, together with significant cytotoxic effects. Ageing led to dissociation of IneP and ZneS bonds, and to complexation of In Zn ions with carboxylate and/or phosphate moieties. These results show that InZnP and InZnPS alloyed QDs are safer alternatives to CdSe QDs. They underline the necessity to preserve as much as possible the structural integrity of QDs, for instance by developing more robust shells, in order to ensure their safety for future applications. KW - Indium phosphide KW - Safe by design KW - Toxicity KW - EXAFS PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483070 DO - https://doi.org/10.1016/j.impact.2019.100168 VL - 14 SP - 100168-1 EP - 100168-13 PB - Elsevier AN - OPUS4-48307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, J. A1 - Tarábek, J. A1 - Kulkarni, R. A1 - Wang, Cui A1 - Dračínský, M. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Resch-Genger, Ute A1 - Bojdys, M. J. T1 - A π-conjugated, covalent phosphinine framework N2 - Structural modularity of polymer frameworks is a key advantage of covalent organic polymers, however, only C, N, O, Si and S have found their way into their building blocks so far. Here, we expand the toolbox available to polymer and materials chemists by one additional nonmetal, phosphorus. Starting with a building block that contains a λ⁵‐phosphinine (C₅P) moiety, we evaluate a number of polymerisation protocols, finally obtaining a π‐conjugated, covalent phosphinine‐based framework (CPF‐1) via Suzuki‐Miyaura coupling. CPF‐1 is a weakly porous polymer glass (72.4 m2 g‐1 N2 BET at 77 K) with green fluorescence (λmax 546 nm) and extremely high thermal stability. The polymer catalyzes hydrogen evolution from water under UV and visible light irradiation without the need for additional co‐catalyst at a rate of 33.3 μmol h‐¹ g‐¹. Our results demonstrate for the first time the incorporation of the phosphinine motif into a complex polymer framework. Phosphinine‐based frameworks show promising electronic and optical properties that might spark future interest in their applications in light‐emitting devices and heterogeneous catalysis. KW - Phosphinine KW - Fully aromatic frameworks KW - Suzuki-Miyaura coupling KW - Polymers KW - Fluorescence KW - Small-angle scattering PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-485330 DO - https://doi.org/10.1002/chem.201900281 SP - 2 EP - 10 PB - Wiley VCH-Verlag CY - Weinheim AN - OPUS4-48533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin T1 - Temperature in micromagnetism: Cell size and scaling effects of the stochastic Landau-Lifshitz equation N2 - The movement of the macroscopic magnetic moment in ferromagnetic systems can be described by the Landau-Lifshitz (LL) or Landau-Lifshitz-Gilbert (LLG) equation. These equations are strictly valid only at absolute zero temperature. To include temperature effects a stochastic version of the LL or LLG equation for a spin density of one per unit cell can be used instead. To apply the stochastic LL to micromagnetic simulations, where the spin density per unit cell is generally higher, a conversion regarding simulation cell size and temperature has to be established. Based on energetic considerations, a conversion for ferromagnetic bulk and thin film systems is proposed. The conversion is tested in micromagnetic simulations which are performed with the Object Oriented Micromagnetic Framework (OOMMF). The Curie temperatures of bulk Nickel, Cobalt and Iron systems as well as Nickel thin-film systems with thicknesses between 6.3 mono layer (ML) and 31ML are determined from micromagnetic simulations. The results show a good agreement with experimentally determined Curie temperatures of bulk and thin film systems when temperature scaling is performed according to the presented model. KW - Micromagnetism KW - LLG KW - LL equation KW - Landau Lifshitz equation KW - Landau Lifshitz Gilbert equation KW - Stochastic Landau Lifshitz equation KW - Stochastic Landau Lifshitz Gilbert equation KW - Curie temperature KW - Magnetic Nanoparticles KW - Thin film systems KW - Temeprature scaling KW - Phase transition KW - Magnet coupling KW - Ferromagnetism KW - Superparamagnetism KW - Paramagnetism KW - Ni KW - Co KW - Fe KW - Steel KW - Nickel KW - Cobalt KW - Iron KW - Temperature effects KW - Cell size KW - Damping factor KW - Gamma KW - Alpha KW - Spin KW - Magnetic moment KW - Magnetic interacion KW - Magnetization dynamics KW - Domain wall KW - Exchange length KW - temeprature dependent exchange length KW - Bloch wall KW - Neel wall KW - Exchange interaction KW - Magnetic anisotropy KW - Simulation KW - OOMMF KW - Object oriented micromagnetic framework PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-484610 DO - https://doi.org/10.1088/2399-6528/ab31e6 VL - 3 IS - 7 SP - 075009-1 EP - 075009-8 PB - IOPscience CY - England AN - OPUS4-48461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rühle, Bastian A1 - Virmani, E. A1 - Engelke, H. A1 - Hinterholzinger, F. M. A1 - von Zons, T. A1 - Brosent, B. A1 - Bein, T. A1 - Godt, A. A1 - Wuttke, S. T1 - A Chemiluminescent Metal–Organic Framework N2 - The synthesis and characterization of a chemiluminescent metal–organic framework with high porosity is reported. It consists of Zr6O6(OH)4 nodes connected by 4,4′‐(anthracene‐9,10‐diyl)dibenzoate as the linker and luminophore. It shows the topology known for UiO‐66 and is therefore denoted PAP‐UiO. The MOF was not only obtained as bulk material but also as a thin film. Exposure of PAP‐UiO as bulk or film to a mixture of bis‐(2,4,6‐trichlorophenyl) oxalate, hydrogen peroxide, and sodium salicylate in a mixture of dimethyl and dibutyl phthalate evoked strong and long lasting chemiluminescence of the PAP‐UiO crystals. Time dependent fluorescence spectroscopy on bulk PAP‐UiO and, for comparison, on dimethyl 4,4′‐(anthracene‐9,10‐diyl)dibenzoate provided evidence that the chemiluminescence originates from luminophores being part of the PAP‐UiO, including the luminophores inside the crystals. KW - Chemiluminescence KW - Metal–organic framework KW - MOF KW - Thin film KW - UiO PY - 2019 DO - https://doi.org/10.1002/chem.201806041 SN - 0947-6539 VL - 25 IS - 25 SP - 6349 EP - 6354 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-48338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stock, V. A1 - Fahrenson, C. A1 - Voss, L. A1 - Thünemann, Andreas A1 - Boehmert, L. A1 - Sieg, S. A1 - Lampen, A. T1 - Impact of artificial digestion on the sizes and shapes of microplastic particles N2 - The environmental pollution with plastic debris is one of the great challenges scientists are facing in recent times Due to degradation by UV radiation and other environmental factors, larger pieces of plastic can decompose into microscale fragments which can enter human foodstuff through the food chain or by environmental entry Recent publications show a contamination of various food products with microplastic particles suggesting a widespread exposure Thus, orally ingested plastic particles pose a potential health risk to humans In this study, we investigated the impact of artificial digestive juices on the size and shape of the three environmentally relevant microplastic particles polystyrene (PS), polypropylene (PP) and polyvinyl chloride (PVC). T2 - 12th International Particle Toxicology CY - Salzburg , Austria DA - 11.09.2019 KW - Microplastic KW - Particle PY - 2019 AN - OPUS4-48847 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gao, S. A1 - Hou, J. A1 - Deng, Z. A1 - Wang, T. A1 - Beyer, Sebastian A1 - de Oliveira Guilherme Buzanich, Ana A1 - Richardson, J. J. A1 - Rawal, A. A1 - Seidel, R. A1 - Zulkifli, M. Y. A1 - Li, W. A1 - Bennett, T. D. A1 - Cheetham, A. K. A1 - Liang, K. T1 - Improving the Acidic Stability of Zeolitic Imidazolate Frameworks by Biofunctional Molecules N2 - Zeolitic imidazolate frameworks (ZIFs) have been widely investigated for their use in separation, gas adsorption, catalysis, and biotechnology. Their practical applications, however, can be hampered by their structural instability in humid acidic conditions. Here, guided by density functional theory calculations, we demonstrate that the acidic stability of two polymorphic ZIFs (i.e., ZIF-8 and ZIF-L) can be enhanced by the incorporation of functional groups on polypeptides or DNA. A range of complementary synchrotron investigations into the local chemical structure and bonding environment suggest that the enhanced acidic stability arises from the newly established coordinative interactions between the Zn centers and the inserted carboxylate (for polypeptides) or phosphate (for DNA) groups, both of which have lower pKas than the imidazolate ligand. With functional biomolecular homologs (i.e., enzymes), we demonstrate a symbiotic stability reinforcement effect, i.e., the encapsulated biomolecules stabilize the ZIF matrix while the ZIF exoskeleton protects the enzyme from denaturation. KW - Zeolitic Imidazolate Frameworks KW - Biofunctional Molecules KW - X-ray Absorption Spectroscopy PY - 2019 DO - https://doi.org/10.1016/j.chempr.2019.03.025 VL - 5 IS - 6 SP - 1597 EP - 1608 PB - Elsevier Inc. AN - OPUS4-48702 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Zutta Villate, J. M. T1 - Radioactive gold nanoparticles for cancer treatment: Size and cluster dependent damage studied by Geant4 Monte-Carlo simulations N2 - Dose enhancement by gold nanoparticles (AuNP) was shown to increase the biological effectiveness of radiation damage in biomolecules and tissue. Most of the current studies focus on external beam therapy on combination with AuNP. Here we present a Monte-Carlo study (Geant4) to characterise radioactive AuNP. Radioactive ¹⁹⁸Au emits beta and gamma rays and is considered for applications with solid tumours. To effectively apply ¹⁹⁸AuNP their energy deposit characteristics have to be determined in terms of intrinsic and extrinsic properties e.g. AuNP diameter, AuNP density, and their clustering behaviour. After each decay process, the energy deposit, inelastic scattering events, kinetic energy spectrum of secondary particles within the AuNP themselves and in a spherical target volume of water up to 1 μm radius were determined. Simulations were performed for AuNP radii ranging from 2.5 nm to 20 nm radius, different cluster sizes and densities. The results show an increase of the energy deposit in the vicinity of the AuNP up to 150 nm. This effect nearly vanishes for distances up to one micron. For the case of AuNP clusters and the same activity, the enhancement of the energy deposit increases with the relative gold mass percentage and therefore can be adjusted by changing AuNP radius or clustering behaviour. T2 - EUROMAT 2019 CY - Stockholm, Sweden DA - 01.09.2019 KW - DNA KW - Dosimetry KW - Microdosimetry KW - Geant4 KW - MCS KW - Nanoparticle KW - AuNP KW - Gold Nanoparticle KW - low energy electrons KW - LEE KW - OH radicals KW - particle scattering KW - Radiationtherapy KW - Radioactive decay KW - Monte-Carlo simulation KW - Energy deposit KW - DNA damage PY - 2019 AN - OPUS4-48763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geißler, Daniel A1 - Resch-Genger, Ute T1 - Development of reference materials (WP1) and reference methods (WP2) for the standardisation of concentration measurements of extracellular vesicles N2 - BAM provides leading expertise in preparation, characterisation and application of fluorescent reference standards and biomedical relevant nanomaterials, as well as in traceable, absolute, and quantitative fluorometric measurements of transparent and scattering systems in the ultraviolet, visible, and near infrared spectral region. BAM will prepare solid low-RI particles in WP1, will develop reference methods to determine the fluorescence intensity and RI of reference materials in WP2, and will measure the fluorescence intensity of EVs in biological test samples of WP3. T2 - EMPIR 18HLT01 "MetVesII" Kick-off meeting CY - Delft, The Netherlands DA - 17.06.2019 KW - Reference materials KW - Reference methods KW - Extracellualr vesicles PY - 2019 AN - OPUS4-48813 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakenecker, A. A1 - Topolniak, Ievgeniia A1 - Lüdtke-Buzug, K. A1 - Pauw, Brian Richard A1 - Buzug, T. T1 - Additive manufacturing of superparamagnetic micro-devices for magnetic actuation N2 - 3D microstructures with sub-micron resolution can be manufactured in additive manner applying multi-photon laser structuring technique. This paper is focused on the incorporation of superparamagnetic iron oxide nanoparticles into the photoresist in order to manufacture micrometer-sized devices featuring a magnetic moment. The aim of the project is to achieve untethered actuation of the presented objects through externally applied magnetic fields. Future medical application scenarios such as drug delivery and tissue engineering are targeted by this research. T2 - Additive Manufacturing Meets Medicine 2019 CY - Lübeck, Germany DA - 12.09.2019 KW - MPI KW - Two-Photon Polymerization KW - Magnetic swimmers KW - MPLS PY - 2019 UR - www.journals.infinite-science.de/ammm DO - https://doi.org/10.18416/AMMM.2019.1909S09T06 SP - 153 EP - 154 PB - Infinite Science Publishing AN - OPUS4-49114 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Florian, Camilo A1 - Kirner, Sabrina V. A1 - Krüger, Jörg T1 - Femtosecond laser-induced periodic surface structures: from light localization to applications N2 - This presentation reviews the current state in the field of Laser-induced Periodic Surface Structures (LIPSS). These surface nanostructures are a universal phenomenon and can be generated on almost any material by irradiation with intense linearly polarized laser radiation. LIPSS are formed in a “self-ordered” way and are often accompanying material processing applications. They can be produced following a single-step process and enable surface functionalization through the adaption of optical, mechanical and chemical surface properties. Their structural sizes typically range from several micrometers down to less than 100 nanometers exhibiting a clear correlation with the polarization direction of the laser radiation. Various types of surface structures are classified, relevant control parameters are identified, and their material specific formation mechanisms are analyzed for different types of inorganic solids, i.e., metals, semiconductors, and dielectrics, through time-resolved optical experiments and theoretical simulations. Finally, technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed. T2 - International Conference on Advanced Laser Technologies (ALT'19) CY - Prague, Czech Republic DA - 15.09.2019 KW - Laser-induced periodic surface structures, LIPSS KW - Femtosecond laser KW - Surface functionalization KW - Electromagnetic scattering PY - 2019 AN - OPUS4-49098 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thünemann, Andreas T1 - A look inside nanoparticles N2 - Small-angle scattering is the method of choice when it comes to obtaining information about the interior of nanoparticles. The aim is to make nanotechnology safer. While the use of small-angle neutron scattering (SANS) is limited to a few instruments in the world, small-angle X-ray scattering (SAXS) is widely accessible, with an upward trend. The example of core-shell particles shows how simple their analysis is with data from an Anton Paar laboratory system. Here, SAXS is a central tool for the development of new reference materials based on poly(methyl) acrylate-PVDF core-shell particles. The dimensions of the cores and shells can be precisely determined. A detailed analysis makes it possible to show that the cores contain fluorinated and nonfluorinated polymers, whereas the shell consist only of PVDF. This core-shell particles with a diameter around 40 nm show a significantly higher PVDF beta phase content than the PVDF homopolymer when using an emulsion polymerization technique. This finding is of importance with respect to applications in electroactive devices. T2 - SAXS excites: International SAXS Symposium 2019 CY - Graz, Austria DA - 24.09.2019 KW - Small-angle X-ray scattering KW - SAXS KW - Nanoplastics PY - 2019 AN - OPUS4-49126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Modena, Mario M. A1 - Rühle, Bastian A1 - Burg, Thomas P. A1 - Wuttke, Steffan T1 - Nanoparticle characterization: What to measure? N2 - What to measure? is a key question in nanoscience, and it is not straightforward to address as different physicochemical properties define a nanoparticle sample. Most prominent among these properties are size, shape, surface charge, and porosity. Today researchers have an unprecedented variety of measurement techniques at their disposal to assign precise numerical values to those parameters. However, methods based on different physical principles probe different aspects, not only of the particles themselves, but also of their preparation history and their environment at the time of measurement. Understanding these connections can be of great value for interpreting characterization results and ultimately controlling the nanoparticle structure–function relationship. Here, the current techniques that enable the precise measurement of these fundamental nanoparticle properties are presented and their practical advantages and disadvantages are discussed. Some recommendations of how the physicochemical parameters of nanoparticles should be investigated and how to fully characterize these properties in different environments according to the intended nanoparticle use are proposed. The intention is to improve comparability of nanoparticle properties and performance to ensure the successful transfer of scientific knowledge to industrial real‐world applications. KW - Nanoparticle characterization KW - Nanoparticles KW - Porosity KW - Shape KW - Size PY - 2019 DO - https://doi.org/10.1002/adma.201901556 SN - 0935-9648 SN - 1521-4095 VL - 31 IS - 32 SP - 1901556, 1 EP - 26 PB - Wiley AN - OPUS4-49129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, X. A1 - Schmidt, Franziska A1 - Gurlo, A. T1 - Fabrication of polymer-derived ceramics with hierarchical porosities by freeze casting assisted by thiol-ene click chemistry and HF etching N2 - The freeze casting technique assisted with cryo thiol-ene photopolymerization is successfully employed for the fabrication of macroporous polymer-derived silicon oxycarbide with highly aligned porosity. It is demonstrated that the free radical initiated thiol-ene click reaction effectively cross-linked the vinyl-containing liquid polysiloxanes into infusible thermosets even at low temperatures. Furthermore, mixed solution- and suspension-based freeze casting is employed by adding silica nanopowders. SiOC/SiO2 foams with almost perfect cylindrical shapes are obtained, demonstrating that the presence of nano-SiO2 does not restrict the complete photoinduced cross-linking. The post-pyrolysis HF acid treatments of produced SiOC monoliths yields hierarchical porosities, with SiOC/SiO2 nanocomposites after etching demonstrating the highest specific surface area of 494 m2/g and pore sizes across the macro-, meso- and micropores ranges. The newly developed approach gives a versatile solution for the fabrication of bulk polymer-derived ceramics with controlled porosity. KW - Freeze casting KW - Preceramic polymer KW - Hierarchical porosities KW - Thiol-ene click chemistry KW - Frozen state photopolymerization PY - 2019 DO - https://doi.org/10.1016/j.jeurceramsoc.2019.09.038 SN - 0955-2219 VL - 40 IS - 2 SP - 315 EP - 323 PB - Elsevier AN - OPUS4-49172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saloga, Patrick E. J. A1 - Thünemann, Andreas T1 - Microwave-Assisted Synthesis of Ultrasmall Zinc Oxide Nanoparticles N2 - We report on ultrasmall zinc oxide single-crystalline nanoparticles of narrow size distribution and long-term colloidal stability. These oleate-stabilized nanoparticles were synthesized using microwave-assisted synthesis for 5 min, corresponding to a 99% decrease in synthesis time, when compared to the conventional synthesis method. It was observed that the average particle radius increases from 2.6 ± 0.1 to 3.8 ± 0.1 nm upon increasing synthesis temperature from 125 to 200 °C. This change also corresponded to observed changes in the optical band gap and the fluorescence energy of the particles, from 3.44 ± 0.01 to 3.36 ± 0.01 eV and from 2.20 ± 0.01 to 2.04 ± 0.01 eV, respectively. Small-angle X-ray scattering, dynamic light scattering, and UV–vis and fluorescence spectroscopy were employed for particle characterization. Debye–Scherrer analysis of the X-ray diffraction (XRD) pattern reveals a linear increase of the crystallite size with synthesis temperature. The consideration of the convolution of a Lorentz function with a Gaussian function for data correction of the instrumental peak broadening has a considerable influence on the values for the crystallite size. Williamson–Hall XRD analyses in the form of the uniform deformation model, uniform stress deformation model, and uniform deformation energy density model revealed a substantial increase of strain, stress, and deformation energy density of the crystallites with decreasing size. Exponential and power law models were utilized for quantification of strain, stress, and deformation energy density. KW - SAXS KW - Zinc oxide KW - Microwave synthesis KW - Nanoparticles PY - 2019 DO - https://doi.org/10.1021/acs.langmuir.9b01921 SN - 0743-7463 VL - 35 IS - 38 SP - 12469 EP - 12482 PB - American Chemical Society CY - Washington, D.C., USA AN - OPUS4-49136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -