TY - CONF A1 - Matthews, Lauren T1 - Rapid Desease Monitoring with Resistive-Pulse Sensing in Nanopipettes N2 - Following parts of the research project as proceeded at University of Birminngham are presented: Translocation, Experiments, Synthesis of DNA Structures, Antibody, Biomarker, Binding. Following works have been carried out at BAM: High Resolution Electron Microscopy, Dedicated Sample Preparation, Surface Analysis Methods. T2 - UoB-BAM Chemistry Theme Meeting CY - Online meeting DA - 15.05.2024 KW - Nanopipettes KW - Sensing KW - Diagnosis KW - Surface analysis PY - 2024 AN - OPUS4-60451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Interlaboratory comparisons as tool in advanced materials characterisation N2 - Interlaboratory comparisons (ILCs) are an important tool for the validation of characterisation methods, and, herwith, a prerequisite for standardisation. The "Versailles Project on Advanced Materials and Standards" offers a framework for performing such ILCs: (i) TiO2 nanoparticles using ToF-SIMS, and (ii) the chemical composition of functionalized graphene using XPS. The results of both ILCs underline the importance of sample preparation for the measured results. T2 - NanoMeasure France Meeting CY - Online meeting DA - 07.06.2024 KW - Standardisation KW - Validation KW - Interlaboratory comparison KW - Graphene related 2D materials KW - Titania nanoparticles PY - 2024 AN - OPUS4-60532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chen, Z. A1 - Perez, J. P. H. A1 - Smales, Glen Jacob A1 - Blukis, R. A1 - Pauw, Brian Richard A1 - Stammeier, J. A. A1 - Radnik, Jörg A1 - Smith, A. J. A1 - Benning, L. G. T1 - Impact of organic phosphates on the structure and composition of short-range ordered iron nanophases N2 - Organic phosphates (OP) are important nutrient components for living cells in natural environments, where they readily interact with ubiquitous iron phases such as hydrous ferric oxide, ferrihydrite (FHY). FHY partakes in many key bio(geo)chemical reactions including iron-mediated carbon storage in soils, or iron-storage in living organisms. However, it is still unknown how OP affects the formation, structure and properties of FHY. Here, we document how β-glycerophosphate (GP), a model OP ligand, affects the structure and properties of GP–FHY nanoparticles synthesized by coprecipitation at variable nominal molar P/Fe ratios (0.01 to 0.5). All GP–FHY precipitates were characterized by a maximum solid P/Fe ratio of 0.22, irrespective of the nominal P/Fe ratio. With increasing nominal P/Fe ratio, the specific surface area of the GP–FHY precipitates decreased sharply from 290 to 3 m2 g−1, accompanied by the collapse of their pore structure. The Fe–P local bonding environment gradually transitioned from a bidentate binuclear geometry at low P/Fe ratios to monodentate mononuclear geometry at high P/Fe ratios. This transition was accompanied by a decrease in coordination number of edge-sharing Fe polyhedra, and the loss of the corner-sharing Fe polyhedra. We show that Fe(III) polymerization is impeded by GP, and that the GP–FHY structure is highly dependent on the P/Fe ratio. We discuss the role that natural OP-bearing Fe(III) nanophases have in biogeochemical reactions between Fe–P and C species in aquatic systems. KW - Organic phosphates KW - Iron nanophases KW - Scattering KW - Diffraction KW - Nanomaterials KW - Coprecipitation KW - Carbon storage PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599399 DO - https://doi.org/10.1039/d3na01045g SN - 2516-0230 SP - 1 EP - 13 PB - Royal Society of Chemistry (RSC) CY - Cambridge AN - OPUS4-59939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - The Dark Side of Science (2024 edition) N2 - This presentation highlights ongoing scientific misconduct as found in academic literature. This includes data- and image manipulation, and paper mills. Starting with an expose of examples, it delves deeper into the causes and metrics driving this phenomenon. Finally a range of possible tools is presented, that the young researcher can use to prevent themselves from sliding into the dark scientific methods. T2 - Winter School on Metrology and Nanomaterials for Clean Energy CY - Claviere, Italy DA - 28.01.2024 KW - Scientific misconduct KW - Data manipulation KW - Image manipulation KW - Paper mills KW - Causes leading to scientific misconduct KW - Tools to combat scientific misconduct KW - Metrics PY - 2024 AN - OPUS4-59622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Smales, G. J. A1 - Pauw, Brian Richard T1 - DACHS/MOFs/AutoMOFs_1/Synthesis N2 - The DACHS (Database for Automation, Characterization and Holistic Synthesis) project aims to create completely traceable experimental data, covering syntheses, measurements, analyses, and interpretations. DACHS_MOFs focuses on the synthesis and characterisation of metal-organic frameworks, across multiple, automation-assisted experimental series (AutoMOFs), with the overall goal of producing reproducible MOF samples through tracking of the synthesis parameters. DACHS_MOFs is simultaneously used to test the DACHS principles. This upload contain synthesis data from AutoMOFs_1 in HDF5 format (.h5). Each .h5 file contains detailed information on the chemical, experimenal, and synthesis parameters used during the synthesis of a single AutoMOF sample. KW - Synthesis KW - Automation KW - Traceability KW - Procedure PY - 2024 DO - https://doi.org/10.5281/zenodo.11236031 PB - Zenodo CY - Geneva AN - OPUS4-60243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Hörmann, Anja T1 - Trinamic TMCL IOC for exposing Trinamics motor controllers to EPICS CA N2 - Trinamic TMCL IOC is a Python package designed for controlling stepper motors connected to a Trinamic board using the TMCL language (all boards supported by PyTrinamic should now work, has been tested on the TMCM 6110 and the TMCM 6214). Since it is implementing the TMCL protocol, it should be easy to adapt to other Trinamic motor controller boards. This package assumes the motor controller is connected over a machine network via a network-to-serial converter, but the underlying PyTrinamic package allows for other connections too. This allows the control of attached motors via the EPICS Channel-Access virtual communications bus. If EPICS is not desired, plain Pythonic control via motion_control should also be possible. An example for this will be provided in the example.ipynb Jupyter notebook. This package leverages Caproto for EPICS IOCs and a modified PyTrinamic library for the motor board control, and interfaces between the two via an internal set of dataclasses. Configuration for the motors and boards are loaded from YAML files (see tests/testdata/example_config.yaml). The modifications to PyTrinamic involved extending their library with a socket interface. This was a minor modification that should eventually find its way into the official package (a pull request has been submitted). KW - Instrumentation KW - Motor controller KW - EPICS KW - Channel access KW - Instrument control KW - Laboratory automation PY - 2024 DO - https://doi.org/10.5281/zenodo.10792593 PB - Zenodo CY - Geneva AN - OPUS4-59624 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Moeez, A. A1 - Hörmann, Anja A1 - Breßler, Ingo T1 - Example configurations and test cases for the Python HDF5Translator framework. N2 - This is a set of use examples for the HDF5Translator framework. This framework lets you translate measurement files into a different (e.g. NeXus-compatible) structure, with some optional checks and conversions on the way. For an in-depth look at what it does, there is a blog post here. The use examples provided herein are each accompanied by the measurement data necessary to test and replicate the conversion. The README.md files in each example show the steps necessary to do the conversion for each. We encourage those who have used or adapted one or more of these exampes to create their own conversion, to get in touch with us so we may add your example to the set. KW - Measurement data conversion KW - Data conversion KW - HDF5 KW - NeXus KW - NXsas KW - Framework KW - Python PY - 2024 DO - https://doi.org/10.5281/zenodo.10925971 PB - Zenodo CY - Geneva AN - OPUS4-59796 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Hörmann, Anja A1 - Moeez, Abdul A1 - Breßler, Ingo T1 - BAMresearch/HDF5Translator: A Framework for translating and transforming data between HDF5 files N2 - HDF5Translator is a Python framework for translating and transforming data between HDF5 files. It supports operations like unit conversion, dimensionality adjustments, and subtree copying, making it suitable for managing and manipulating a wide range of scientific datasets. KW - Measurement data conversion KW - Data conversion KW - HDF5 KW - NeXus KW - NXsas KW - Framework KW - Python KW - Methodology PY - 2024 DO - https://doi.org/10.5281/zenodo.10927639 PB - Zenodo CY - Geneva AN - OPUS4-59797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - da Costa, P. F. G. M. A1 - Merízio, L. G. A1 - Wolff, N. A1 - Terraschke, H. A1 - de Camargo, Andrea Simone Stucchi T1 - Real-time monitoring of CdTe quantum dots growth in aqueous solution N2 - Quantum dots (QDs) are remarkable semiconductor nanoparticles, whose optical properties are strongly size-dependent. Therefore, the real-time monitoring of crystal growth pathway during synthesis gives an excellent opportunity to a smart design of the QDs luminescence. In this work, we present a new approach for monitoring the formation of QDs in aqueous solution up to 90 °C, through in situ luminescence analysis, using CdTe as a model system. This technique allows a detailed examination of the evolution of their light emission. In contrast to in situ absorbance analysis, the in situ luminescence measurements in reflection geometry are particularly advantageous once they are not hindered by the concentration increase of the colloidal suspension. The synthesized particles were additionally characterized using X-ray diffraction analysis, transition electron microscopy, UV-Vis absorption and infrared spectroscopy. The infrared spectra showed that 3-mercaptopropionic acid (MPA)-based thiols are covalently bound on the surface of QDs and microscopy revealed the formation of CdS. Setting a total of 3 h of reaction time, for instance, the QDs synthesized at 70, 80 and 90 °C exhibit emission maxima centered at 550, 600 and 655 nm. The in situ monitoring approach opens doors for a more precise achievement of the desired emission wavelength of QDs. KW - CdTe quantum dots KW - In situ synthesis KW - Real time growth control PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-603596 DO - https://doi.org/10.1038/s41598-024-57810-8 VL - 14 IS - 1 SP - 1 EP - 11 PB - Springer Science and Business Media LLC AN - OPUS4-60359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Fengchan A1 - Oiticica, Pedro Ramon Almeida A1 - Abad-Arredondo, Jaime A1 - Arai, Marylyn Setsuko A1 - Oliveira, Osvaldo N. A1 - Jaque, Daniel A1 - Fernandez Dominguez, Antonio I. A1 - de Camargo, Andrea Simone Stucchi A1 - Haro-González, Patricia T1 - Brownian Motion Governs the Plasmonic Enhancement of Colloidal Upconverting Nanoparticles N2 - Upconverting nanoparticles are essential in modern photonics due to their ability to convert infrared light to visible light. Despite their significance, they exhibit limited brightness, a key drawback that can be addressed by combining them with plasmonic nanoparticles. Plasmon-enhanced upconversion has been widely demonstrated in dry environments, where upconverting nanoparticles are immobilized, but constitutes a challenge in liquid media where Brownian motion competes against immobilization. This study employs optical tweezers for the three-dimensional manipulation of an individual upconverting nanoparticle, enabling the exploration of plasmon-enhanced upconversion luminescence in water. Contrary to expectation, experiments reveal a long-range (micrometer scale) and moderate (20%) enhancement in upconversion luminescence due to the plasmonic resonances of gold nanostructures. Comparison between experiments and numerical simulations evidences the key role of Brownian motion. It is demonstrated how the three-dimensional Brownian fluctuations of the upconverting nanoparticle lead to an “average effect” that explains the magnitude and spatial extension of luminescence enhancement. KW - Upconversion KW - Plasmon enhancement KW - Optical tweezers KW - Brownian motion KW - Nanoparticles PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-603551 DO - https://doi.org/10.1021/acs.nanolett.4c00379 VL - 24 IS - 12 SP - 3785 EP - 3792 PB - American Chemical Society (ACS) AN - OPUS4-60355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fernandez-Poulussen, D. A1 - Hodoroaba, Vasile-Dan A1 - Drobne, D. A1 - Novak, S. A1 - Kranjc, E. A1 - Pellegrino, F. A1 - Gullumian, M. A1 - Jones, E. A1 - Hardy, B. A1 - Valsami-Jones, E. A1 - Jurkschat, K. A1 - van der Zande, M. T1 - Holistic, reliable and practical Characterization Framework for Graphene Family Materials, a correlated approach including Imaging based techniques N2 - ACCORDs is an Horizon Europe project working in the development of an imaging-based characterization framework (ACCORDs framework) for the holistic correlative assessment of Graphene Family Materials (GFMs) as a representative of 2D nanomaterials (NMs) to assess and predict 2D NMs health and environmental risks. The ACCORDs framework will operationalise safe and sustainable by design (SSbD) strategies proposed in past or ongoing H2020 projects or within OECD by correlating low-, medium-, and high-resolution physico-chemical-biological imaging-based methods with non-imaging methods in a tiered approach. ACCORDs will deliver the ACCORDs framework and user guidance, new imaging-based characterisation methods, reference in vitro tests, new reference 2D NMs for different matrices, a new minimum information reporting guideline for FAIR data sharing and reuse of images as well as an atlas with reference images for diagnostics of compromised safety of GFMs/GFM products. The new guidelines and standard proposals will be submitted to standardisation bodies to allow creation of regulatory ready products. The novelty of ACCORDs is in translating the principles of medical imaging-based diagnostics to 2D material hazard diagnostics. ACCORDs will accelerate industrial sectors in the area of aviation, marine construction, drone production, flexible electronics, photovoltaics, photocatalytics and print inks-based sensors. The value ACCORDs proposes to the graphene industry are practical, easy, imaging-based tools for GFM quality monitoring next to the production line with a possibility to be correlated with advanced highresolution imaging characterization methods in case hazard i.e. deviation from controls (benchmark values) are diagnosed. The ACCORDs framework and tools will contribute to the European Green Deal by addressing the topic: “Graphene: Europe in the lead” and to a new European strategy on standardization, released on 2nd February, 2022. T2 - MaterialsWeek 2024 CY - Limassol, Cyprus DA - 17.06.2024 KW - Graphene KW - Graphene-related 2D materials KW - SSbD KW - Imaging KW - ACCORDs PY - 2024 AN - OPUS4-60573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Chemello, Giovanni A1 - Reed, B.P. A1 - Marchesini, S. A1 - Pollard, A.J. A1 - Clifford, C.A. T1 - Reliable measurements of the chemical composition of graphene-related 2D materials with X-ray photoelectron spectroscopy N2 - Graphene and related 2D materials (GR2Ms) are now entering an exciting phase of commercialization and use in products. Graphene nanoplatelets (GNPs) can be obtained in rather large quantities, but the properties of these industrially produced powders can vary depending on the production method, and even from batch to batch. Understanding and optimizing the surface chemistry of GNPs, modified through chemical functionalization processes is crucial, because it affects their dispersibility in solvents and matrices for the purpose of embedding them into real-world products. Therefore, reliable and repeatable measurements of the surface chemistry of functionalized GNPs are an important issue for suppliers as well as users of these materials. To address these concerns, international documentary ISO standards for measurement methodologies are under development which incorporate protocols that are becoming widely accepted in the community. Recently, it was shown that pelletizing led to lower average O/C atomic ratios than those measured for powders [1]. In another study, the influence of the morphology on the degree of functionalization was shown [2]. As expected, a higher degree of functionalization was detected for smaller GNPs. The functionalization was located at the outermost surfaces of the GNPs by comparing experiments using photoelectron with soft (Al Kα, 1.486 keV) and hard X-rays (Cr Kα, 5.405 keV). Therefore, it is important for those using GNPs to understand both the physical and chemical properties of these particles, when considering their use in different applications. The next step for reliable characterization protocols was the realization of an interlaboratory comparison under the auspices of VAMAS (Versailles Project on Advanced Materials and Standards) with 22 participating laboratories from all over the world. Samples of oxygen-, nitrogen-, and fluorine- functionalized GNPs were provided to the participants along with a measurement protocol. Participants were asked to prepare the samples as powders on a tape, powders in a sample holder recess, or as pellets. The lower measured O/C ratio reported for pelletized samples [1] was confirmed. The lowest scattering of the results was observed for the powders measured in the recess (Fig. 1). Furthermore, an influence of the humidity on the results was observed. T2 - ECASIA 2024 CY - Gothenburg, Sweden DA - 09.06.2024 KW - Interlaboratory Comparison KW - Functionalized graphene KW - Sample preparation PY - 2024 AN - OPUS4-60533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Ciornii, Dmitri A1 - Knigge, Xenia A1 - Hodoroaba, Vasile-Dan A1 - Bennet, F. A1 - Meirer, F. A1 - Duijndam, A. A1 - Thünemann, Andreas A1 - Drexel, R. A1 - Fadda, M. A1 - Sacco, A. A1 - Giovannozzi, A.M. A1 - Donskyi, I. A1 - Schusterbauer, R. A1 - Nickl, P. A1 - Reichardt, P. A1 - Altmann, Korinna T1 - Revealing surface functionalities of micro- and nanoplastic particles’ surface by means of XPS N2 - Over the last 20 years, many researchers, politicians, and citizens themselves have become increasingly aware of the growing plastic problem of our time. Inadequate recycling concepts, collection points, and careless dumping of plastic products in the environment lead to an accumulation of plastic. External weather influences can cause these to degrade and fractionate, so that today microplastics (1-1000 µm, ISO/TR 21960:2020) [1] of different polymer materials can be detected in all parts of the world. The precautionary principle applies to microplastics. The particles can break down further to form nanoplastics (<1 µm, ISO/TR 21960:2020) [1]. Whether microplastics or nanoplastics pose a toxicological hazard is being investigated in a variety of ways. Valid results are still pending, however, investigations into the frequency, transport, possible sinks and entry paths must be taken into account. This is why monitoring of microplastics is already required in the revision of the Drinking Water Framework Directive [2]. The same is still pending in the final version of the revision of the Waste Water Framework Directive this year, but is expected. Nanoplastics are particularly under discussion for having a toxic effect on humans and animals, as these particles are small enough to be absorbed by cells. For targeted toxicological studies, it is important to have test and reference materials that resemble the particles found in the environment. To mimic environmental samples, these materials should also have an irregular shape and show aging at the surface, which can be detected with XPS or SEM/EDS. BAM in collaboration with the EMPIR project "PlasticTrace" works on a reference material candidate of nano-sized polypropylene (nano-PP) [3]. The nano-PP vials were tested for homogeneity with PTA and further characterized with bulk and surface-sensitive techniques. An SEM image and a corresponding XPS spectrum are presented in Figure 1. Raman measurements as well as XPS indicate an aged surface. T2 - ECASIA 2024 CY - Gothenburg, Sweden DA - 09.06.2024 KW - Surface chemistry KW - Micro- and nanoplastics KW - X-ray Photoelectron Spectroscopy KW - MNP production technique PY - 2024 AN - OPUS4-60535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Weimann, T. A1 - Bütefisch, S. T1 - A new XPS test material for more reliable surface analysis of microstructures N2 - Small-area XPS analysis is one of the most popular and powerful methods for analysing the surface of features in the micro-range. When measuring microstructures, the ques-tion arises whether the measuring point is really located at the point intended to be ana-lysed. Information in a measured spectrum might originate within the field of view (FoV) on the surface of the sample, from outside the FoV, or even from inherent contamination. To ensure that small structures can be measured correctly regardless of user and instru-ment, certain instrument and sample settings must be known and selected correctly: beam and aperture size as well as the aperture settings and the approximate dimensions of the structure to be analysed. This is the only way to ensure that the information in the spectrum originates only from the FoV on the analysed structure. To test the performance of the XPS instruments, a dedicated test material was developed that consists of a gold surface on which 8 circles and 8 squares of chrome are incorpo-rated using a masking process, so that the Au substrate and the Cr structure surfaces are in the same surface plane. In order to be able to test as many as possible instruments from different manufacturers, the structures have been designed with a size ranging from 300 µm down to 7 µm. The layout of the test material has been optimised in regard of the handling. The structures are arranged along lines instead of a circumference, marking arrows around the smaller structures (≤50 µm) are added, and the lithography mask is optimised regarding edge and diffraction effects. Furthermore, the manufacturing process was changed from electron-beam deposition to mask lithography due to costs reasons. The structures on the test material were measured with a metrological SEM to determine their accurate dimensions and check the repeatability of the manufacturing process. XPS investigations with a Kratos AXIS Ultra DLD and an ULVAC-Phi Quantes demonstrates the suitability of this new test material for measuring the analysed area. T2 - ECASIA 2024 CY - Gothenburg, Sweden DA - 09.06.2024 KW - Small-area XPS KW - Test material KW - Field of view KW - Imaging PY - 2024 AN - OPUS4-60539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Favre, G. T1 - How to expand the use of your test method? Validation is key towards standardisation N2 - Standardised methods need validation. The main validation parameters like trueness, repeatability and intermediate precision and reproducibility are presented. Furthermore, different methods for the validation are disussed: (certified) reference materials, representative testing materials and interlaboratory comparisons. At last, the need of proficiency testing is stressed. T2 - Materials Week 2024 CY - Limassol, Cyprus DA - 17.06.2024 KW - Validation KW - Reproducibility crisis KW - Metrological traceability KW - Measurement uncertainty PY - 2024 AN - OPUS4-60536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Habibimarkani, Heydar A1 - Abram, Sarah Luise A1 - Prinz, Carsten A1 - Hodoroaba, Vasile-Dan T1 - Comparative chemical analysis of Ni-Fe oxide nanoparticles N2 - Ni-Fe oxide nanoparticles have gained a lot of interest because of their high activity in the oxygen evolution reaction (OER) which is crucial for water splitting. [1] Although there have been great efforts in the last years, the understanding of the synergistic effect between Fe and Ni is still under discussion. Therefore, we prepared different Ni-Fe oxide nanoparticles with different compositions from pure iron oxide to pure nickel oxide adapting a known procedure. [2,3] Size and morphology of the nanoparticles depend on the composition which was shown with Transmission Electron Microscopy (TEM). The compositions of the nanoparticles were measured with a comparative approach using X-ray Photoelectron Spectroscopy (XPS), Hard X-ray Photoelectron Spectroscopy (HAXPES), and Energy Dispersive X-Ray Spectroscopy (EDS) coupled with the TEM providing detailed chemical information of the nanoparticles in different sample regions. EDS reveals that the different sample regions are dominated by one of the components, Fe or Ni, but a slight mixing between the components can be found (see Figure 1), which was confirmed with X-ray Diffraction (XRD). XPS indicates the enrichment of Fe at the sample surface, while HAXPES and EDS data agree on the stoichiometry of the bulk. High-resolution XPS and HAXPES exhibit some differences in the valence states of Fe and Ni, whereas Ni seems to be easier to reduce than Fe. Further investigations combining these different techniques and additionally Secondary Ion Mass Spectrometry (ToF-SIMS) are ongoing by using in situ approaches and coupling cyclic voltammetry to the analytical techniques. T2 - ECASIA 2024 CY - Gothenburg, Sweden DA - 09.06.2024 KW - Oxygen evolution reaction KW - Transmission Electron Microscopy KW - (Hard) X-ray Photoelectron Spectroscopy KW - Synergistic effects PY - 2024 AN - OPUS4-60534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Standardisation needs for regulatory testing of graphene and related 2D materials. phy-chem properties N2 - The main properties and main methods which are needed for the physico-chemical characterisation of graphene related 2D materials are discussed. As expample for standardization, protocols for the measurement of the chemical composition with XPS are discussed. The results of an interlaboratory comparisons led to new recommendations for the reliable measurments protocols. T2 - Materials Week 2024 CY - Limassol, Cyprus DA - 17.06.2024 KW - Standardisation KW - Functionalized graphene KW - Interlaboratory comparison KW - Endpoints PY - 2024 AN - OPUS4-60537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Hörmann, Anja A1 - Moradi, Melika A1 - Smales, Glen Jacob A1 - Breßler, Ingo A1 - Moeez, Abdul T1 - Laboratory x-ray scattering instruments as agile test-beds towards holistic experimentation N2 - Laboratory sources offer a unique advantage compared to synchrotron sources, largely in terms of freedom of operation. This freedom from user obligations, technology and software stacks and legacy decisions make the laboratory a very flexible place to develop and explore new ideas. The unparalleled availability furthermore allows for iterative improvement of instrumentation, sample environments and measurement methodologies to maximise the quality of the data obtained. This talk will highlight the use of the laboratory as an agile test-bed and development space, by giving examples of some complete and incomplete investigations undertaken in our laboratory over the last years. Furthermore, it will introduce the concept of holistic experimentation, where the laboratory provides broad-ranging support for materials science investigations. This means that we assist in the experimental preparation, perform the measurements, correction and analysis, and follow-up with assistance in interpretation of our analyses in light of the results from other techniques applied to the investigation. T2 - Invited talk at Diamond Light Source CY - Didcot, UK DA - 22.05.2024 KW - X-ray scattering KW - Methodology development KW - Laboratory management KW - Holistic experimentation KW - Laboratory automation KW - Nanostructural analysis PY - 2024 AN - OPUS4-60582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Chambers, Aaron P. A. A1 - Hörmann, Anja A1 - Frontzek, Julius A1 - Du, Bofeng A1 - Breßler, Ingo T1 - Getting down to business: pragmatic solutions for laboratory automation N2 - A chemical engineer by training, Brian drifted towards physics and now focuses on a broad spectrum of activities with the aim to improve scientific reproducibility. This includes studies on holistically improving data quality, data collection efficiency and traceability, as well as concomitant laboratory automation for the preparation of consistent, well-documented sample series. The need for pragmatism led to an inexpensive, flexible laboratory automation platform that can be implemented in a modest amount of time. This talk presents that effort. T2 - Future Labs Live 2024 CY - Basel, Switzerland DA - 25.06.2024 KW - Laboratory automation KW - Experiment tracking KW - Holistic experimentation KW - Experimental traceability KW - Data visualisation KW - Parameter correlation. PY - 2024 AN - OPUS4-60583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Knigge, Xenia A1 - Radnik, Jörg A1 - Thünemann, Andreas A1 - Hodoroaba, Vasile-Dan A1 - Altmann, Korinna T1 - Identification of toxicologically relevant functional groups on micro- and nanoplastic particles’ surface by means of X-Ray photoelectron spectroscopy N2 - Microplastic and nanoplastic particles (MNP) are spread all over the world in various types, shapes and sizes making it very challenging to accurately analyse them. Each sampling procedure, sample preparation method and detection technique needs suitable reference materials to validate the method for accurate results. Furthermore, the effects of these MNPs should be evaluated by risk and hazard assessment with test particles close to reality. To better understand MNP behavior and aid in clarification of their interactions with organisms, we produced several MNP materials by top-down procedure and characterized their properties. Since surface properties mostly determine particles’ toxicity, the aim of the present study was to determine which functional groups are present on MNPs and how the surface can be affected by the production process and particle’s environment. T2 - SETAC 34th Meeting CY - Seville, Spain DA - 05.05.2024 KW - Microplastics KW - Nanoplastics KW - Polypropylene KW - XPS KW - SEM PY - 2024 AN - OPUS4-60037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Božičević, Lucija A1 - Altmann, Korinna A1 - Hildebrandt, Jana A1 - Knigge, Xenia A1 - Vrček, Valerije A1 - Peranić, Nikolina A1 - Kalcec, Nikolina A1 - Vinkovic Vrcek, Ivana T1 - Estrogenic activity of plastic nanoparticles mixture under in vitro settings N2 - The plastic value chain, central part of modern living, caused environmental pollution and bioaccumulation of plastic nanoparticles (PNPs). Their ubiquitous presence in different environmental and biological compartments has become a serious threat to human health and ecosystems. Frequently used plastic materials such as polypropylene (PP), polystyrene (PS) and polyethylene (PE) have been detected in the form of PNPs in the food chain, soil, water and air, as well as in human feces and blood. In this study, we aimed to provide novel insights in endocrine disrupting properties of PNPs using in vitro estrogen receptor (ER) transactivation assay. The effects of PP-NPs, PE-NPs and PS-NPs and their mixture on T47D-KBluc cell line stably transfected with luciferase as reporter enzyme was evaluated by means of cytotoxicity, cellular uptake and ER activation. Tested dose range for PNPs was 0.001 – 10 mg/L. Both cellular uptake and cytotoxicity for all PNPs was found to be dose-dependent. Only the highest dose of PP-NPs and PE-NPs induced apoptosis and cell death, while PS-NPs were not cytotoxic in tested dose range. For tested concentrations, PP-NPs and PE-NPs showed significant agonistic activity on ER, while PS-NPs cannot be considered ER active. When, applied as mixture, PNP demonstrated additive toxicity effects compared to the effect of each individual PNPs. Additivity was also observed for ER agonistic effect of PNPs mixture according to the benchmark dose-addition modelling approach. This study provides missing science-based evidence on endocrine disrupting effects of PE-NPs, PP-NPs, PS-NPs and their mixtures and highlights the importance of considering unintentional, aggregate and combined exposure to different PNPs in risk management. KW - Risk assessment KW - Nanoplastics KW - Estrogenic activity of plastic nanoparticles PY - 2024 DO - https://doi.org/10.1039/D3EN00883E SN - 2051-8153 VL - 11 IS - 5 SP - 2112 EP - 2126 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, Z. A1 - Raab, A. A1 - Kolmangadi, Mohamed Aejaz A1 - Busch, M. A1 - Grunwald, M. A1 - Demel, F. A1 - Bertram, F. A1 - Kityk, A. V. A1 - Schönhals, Andreas A1 - Laschat, S. A1 - Huber, P. T1 - Self-Assembly of Ionic Superdiscs in Nanopores N2 - Discotic ionic liquid crystals (DILCs) consist of self-assembled superdiscs of cations and anions that spontaneously stack in linear columns with high one-dimensional ionic and electronic charge mobility, making them prominent model systems for functional soft matter. Compared to classical nonionic discotic liquid crystals, many liquid crystalline structures with a combination of electronic and ionic conductivity have been reported, which are of interest for separation membranes, artificial ion/proton conducting membranes, and optoelectronics. Unfortunately, a homogeneous alignment of the DILCs on the macroscale is often not achievable, which significantly limits the applicability of DILCs. Infiltration into nanoporous solid scaffolds can, in principle, overcome this drawback. However, due to the experimental challenges to scrutinize liquid crystalline order in extreme spatial confinement, little is known about the structures of DILCs in nanopores. Here, we present temperaturedependent high-resolution optical birefringence measurement and 3D reciprocal space mapping based on synchrotron X-ray scattering to investigate the thermotropic phase behavior of dopamine-based ionic liquid crystals confined in cylindrical channels of 180 nm diameter in macroscopic anodic aluminum oxide membranes. As a function of the membranes’ hydrophilicity and thus the molecular anchoring to the pore walls (edge-on or face-on) and the variation of the hydrophilic−hydrophobic balance between the aromatic cores and the alkyl side chain motifs of the superdiscs by tailored chemical synthesis, we find a particularly rich phase behavior, which is not present in the bulk state. It is governed by a complex interplay of liquid crystalline elastic energies (bending and splay deformations), polar interactions, and pure geometric confinement and includes textural transitions between radial and axial alignment of the columns with respect to the long nanochannel axis. Furthermore, confinement-induced continuous order formation is observed in contrast to discontinuous first-order phase transitions, which can be quantitatively described by Landau-de Gennes free energy models for liquid crystalline order transitions in confinement. Our observations suggest that the infiltration of DILCs into nanoporous solids allows tailoring their nanoscale texture and ion channel formation and thus their electrical and optical functionalities over an even wider range than in the bulk state in a homogeneous manner on the centimeter scale as controlled by the monolithic nanoporous scaffolds. KW - Ionic Liquid Crystals KW - Nanopropous materials KW - Landau de-Gennes analysis KW - X-ray scattering KW - Optical birefringence PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600797 DO - https://doi.org/10.1021/acsnano.4c01062 SN - 1936-0851 VL - 18 IS - 22 SP - 14414 EP - 14426 PB - ACS AN - OPUS4-60079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sordello, F. A1 - Prozzi, M. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg A1 - Pellegrino, F. T1 - Increasing the HER efficiency of photodeposited metal nanoparticles over TiO2 using controlled periodic illumination N2 - Although the use of noble metal catalysts can increase the efficiency of hydrogen evolution reaction, the process is still limited by the characteristics of the metal-hydrogen (M−H) bond, which can be too strong or too weak, depending on the metal employed. Studies revealed that the hydrogen affinity for the metal surface (i.e. H absorption/desorption) is regulated also by the potential at the metal nanoparticles. Through controlled periodic illumination (CPI) of a series of metal/TiO2 suspensions, here we demonstrated that an increase of the HER efficiency is possible for those photodeposited metals which have a Tafel slope below 125 mV. Two possible explanations are here reported, in both of them the M−H interaction and the metal covering level play a prominent role, which also depend on the prevailing HER mechanism (Volmer-Heyrovsky or Volmer-Tafel). KW - Controlled periodic illumination KW - Hydrogen evolution reaction KW - Titanium dioxide KW - Photoreforming KW - Volcano plot KW - Sabatier KW - Nanoparticles PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589875 DO - https://doi.org/10.1016/j.jcat.2023.115215 VL - 429 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-58987 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Erzeugung und Charakterisierung anisotroper Nanostrukturen durch Ultrakurzpulslaser N2 - Der Vortrag gibt einen Überblick über die Erzeugung und Charakterisierung anisotroper Nanostrukturen mittels ultrakurzgepulster Laserstrahlung. Besonderes Augenmerk liegt dabei auf dem Phänomen der sogenannten Laser-induzierten periodischen Oberflächen-Nanostrukturen auf dielektrischen Werkstoffen und ihrer zeitlichen Dynamik. Weitere Beispiele von Volumen-Nanostrukturen aus der Literatur werden diskutiert. T2 - 21. Treffen des DGG-DKG Arbeitskreises „Glasig-kristalline Multifunktionswerkstoffe“ CY - Mainz, Germany DA - 22.02.2024 KW - Laser-induzierte periodische Oberflächen-Nanostrukturen KW - Quarzglas KW - Saphir KW - Bessel-Strahlen PY - 2024 AN - OPUS4-59565 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholtz, Lena A1 - Eckert, J. G. A1 - Graf, Rebecca T. A1 - Kunst, A. A1 - Wegner, Karl David A1 - Bigall, N. C. A1 - Resch-Genger, Ute T1 - Correlating semiconductor nanoparticle architecture and applicability for the controlled encoding of luminescent polymer microparticles N2 - Luminophore stained micro- and nanobeads made from organic polymers like polystyrene (PS) are broadly used in the life and material sciences as luminescent reporters, for bead-based assays, sensor arrays, printable barcodes, security inks, and the calibration of fluorescence microscopes and flow cytometers. Initially mostly prepared with organic dyes, meanwhile luminescent core/shell nanoparticles (NPs) like spherical semiconductor quantum dots (QDs) are increasingly employed for bead encoding. This is related to their narrower emission spectra, tuneability of emission color, broad wavelength excitability, and better photostability. However, correlations between particle architecture, morphology, and photoluminescence (PL) of the luminescent nanocrystals used for encoding and the optical properties of the NP-stained beads have been rarely explored. This encouraged us to perform a screening study on the incorporation of different types of luminescent core/shell semiconductor nanocrystals into polymer microparticles (PMPs) by a radical-induced polymerization reaction. Nanocrystals explored include CdSe/CdS QDs of varying CdS shell thickness, a CdSe/ZnS core/shell QD, CdSe/CdS quantum rods (QRs), and CdSe/CdS nanoplatelets (NPLs). Thereby, we focused on the applicability of these NPs for the polymerization synthesis approach used and quantified the preservation of the initial NP luminescence. The spectroscopic characterization of the resulting PMPs revealed the successful staining of the PMPs with luminescent CdSe/CdS QDs and CdSe/CdS NPLs. In contrast, usage of CdSe/CdS QRs and CdSe QDs with a ZnS shell did not yield luminescent PMPs. The results of this study provide new insights into structure–property relationships between NP stained PMPs and the initial luminescent NPs applied for staining and underline the importance of such studies for the performance optimization of NP-stained beads. KW - Quantitative spectroscopy KW - Energy transfer KW - Synthesis KW - Surface chemistry KW - Semiconductor quantum dot KW - Luminescence KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Quality assurance KW - Polymer particle KW - Quantum rod KW - Nanoplatelet PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602206 DO - https://doi.org/10.1038/s41598-024-62591-1 SN - 2045-2322 VL - 14 SP - 1 EP - 16 AN - OPUS4-60220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reiber, T. A1 - Hübner, Oskar A1 - Dose, C. A1 - Yushchenko, D. A. A1 - Resch-Genger, Ute T1 - Fluorophore multimerization on a PEG backbone as a concept for signal amplification and lifetime modulation N2 - Fluorescent labels have strongly contributed to many advancements in bioanalysis, molecular biology, molecular imaging, and medical diagnostics. Despite a large toolbox of molecular and nanoscale fluorophores to choose from, there is still a need for brighter labels, e.g., for flow cytometry and fluorescence microscopy, that are preferably of molecular nature. This requires versatile concepts for fluorophore multimerization, which involves the shielding of dyes from other chromophores and possible quenchers in their neighborhood. In addition, to increase the number of readout parameters for fluorescence microscopy and eventually also flow cytometry, control and tuning of the labels’ fluorescence lifetimes is desired. Searching for bright multi-chromophoric or multimeric labels, we developed PEGylated dyes bearing functional groups for their bioconjugation and explored their spectroscopic properties and photostability in comparison to those of the respective monomeric dyes for two exemplarily chosen fluorophores excitable at 488 nm. Subsequently, these dyes were conjugated with anti-CD4 and anti-CD8 immunoglobulins to obtain fluorescent conjugates suitable for the labeling of cells and beads. Finally, the suitability of these novel labels for fluorescence lifetime imaging and target discrimination based upon lifetime measurements was assessed. Based upon the results of our spectroscopic studies including measurements of fluorescence quantum yields (QY) and fluorescence decay kinetics we could demonstrate the absence of significant dye-dye interactions and self-quenching in these multimeric labels. Moreover, in a first fluorescence lifetime imaging (FLIM) study, we could show the future potential of this multimerization concept for lifetime discrimination and multiplexing. KW - Imaging KW - Quantum yield KW - Quality assurance KW - Antibody KW - Conjugate KW - Cell KW - FLIM KW - PEG KW - Flow cytometry KW - Lifetime KW - Energy transfer KW - Quantitative spectroscopy KW - Nano KW - Particle KW - Fluorescence KW - Dye KW - Amplification KW - Microscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602197 DO - https://doi.org/10.1038/s41598-024-62548-4 SN - 2045-2322 VL - 14 IS - 1 SP - 1 EP - 11 AN - OPUS4-60219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - A journey in science from a graduate student in physical chemistry to head of division biophotonics N2 - I will provide a personal overview of the most important steps of my career in science, a journey from a graduate student in physical chemistry in an environment dominated by male-scientists over a postdoc with a female professor in the US to the leader of a research group, head of division Biophotonics at BAM. This will include my choices of research topics, how I learnt to write well cited publications, even on topics such as reference materials and quality assurance,1-4 and eventually started to give lectures at Free University Berlin granting me the right to act as first supervisor of undergraduate and graduate students. T2 - Women in Science CY - Erlangen, Germany DA - 22.07.2024 KW - Lanthanide KW - Nanoparticle KW - Silica KW - Quantum dot KW - Polymer KW - Surface group KW - Luminescence KW - Quantitative spectroscopy KW - Quantum yield KW - Lifetime KW - Quality assurance KW - Synthesis KW - Surface modification KW - Photophysics PY - 2024 AN - OPUS4-60724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Tavernaro, Isabella A1 - Abram, Sarah-Luise A1 - Andresen, Elina A1 - Matiushkina, Anna T1 - Quantifying the number of total and accessible functional groups on nanomaterials N2 - Inorganic and organic functional nanomaterials (NM) of different size, shape, chemical composition, and surface chemistry are relevant for many key technologies of the 21st century. Decisive for most applications of NM are their specific surface properties, which are largely controlled by the chemical nature and number of ligands and functional groups (FG on the NM surface. The surface chemistry can strongly affect the physicochemical properties of NM, their charge, hydrophilicity/hydrophobicity, reactivity, stability, and processability and thereby their impact on the environment and biological species as well as their possible risk for human health. Thus, reliable, validated, and eventually standardized analytical methods for the characterization of NM surface chemistry, i.e., the chemical identification, quantification, and accessibility of FG and surface ligands 1,2] flanked by interlaboratory comparisons, control samples, and reference materials, 2 ,3 are of considerable importance for process and quality control of NM production and function. This is also important for the safe use of NM the design of novel NM, and sustainable concepts for NM fabrication. Here, we provide an overview of analytical methods for FG analysis and quantification and highlight method and material related challenges for selected NM. Analytical techniques address ed include electrochemical titration methods, optical assays, nuclear magnetic resonance (NMR) and vibrational (IR) spectroscopy, and X ray based and thermal analysis methods. Criteria for method classification and evaluation include the need for a signal generating label, provision of either the total or derivatizable number of FG, and suitability for process and production control. T2 - AUC - Analytical Ultracentrifugation CY - Nuremberg, Germany DA - 22.07.2024 KW - Nanoparticle KW - Particle KW - Microparticle KW - Silica KW - Quantum dot KW - Polymer KW - Surface group KW - Luminescence KW - Quality assurance KW - Synthesis KW - Surface modification KW - ILC KW - Optical assay KW - Functional group KW - Ligand KW - qNMR KW - Conductometry KW - Potentiometry KW - Standardization KW - Reference product KW - Reference material PY - 2024 AN - OPUS4-60749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Andresen, Elina A1 - Islam, Fahima A1 - Prinz, Carsten A1 - Gehrmann, P. A1 - Licha, K. A1 - Roik, Janina A1 - Recknagel, Sebastian A1 - Resch-Genger, Ute T1 - Assessing the reproducibility and up‑scaling of the synthesis of Er,Yb‑doped NaYF4‑based upconverting nanoparticles and control of size, morphology, and optical properties N2 - Lanthanide-based, spectrally shifting, and multi-color luminescent upconverting nanoparticles (UCNPs) have received much attention in the last decades because of their applicability as reporter for bioimaging, super-resolution microscopy, and sensing as well as barcoding and anti-counterfeiting tags. A prerequisite for the broad application of UCNPs in areas such as sensing and encoding are simple, robust, and easily upscalable synthesis protocols that yield large quantities of UCNPs with sizes of 20 nm or more with precisely controlled and tunable physicochemical properties from lowcost reagents with a high reproducibility. In this context, we studied the reproducibility, robustness, and upscalability of the synthesis of β-NaYF4:Yb, Er UCNPs via thermal decomposition. Reaction parameters included solvent, precursor chemical compositions, ratio, and concentration. The resulting UCNPs were then examined regarding their application-relevant physicochemical properties such as size, size distribution, morphology, crystal phase, chemical composition, and photoluminescence. Based on these screening studies, we propose a small volume and high-concentration synthesis approach that can provide UCNPs with different, yet controlled size, an excellent phase purity and tunable morphology in batch sizes of up to at least 5 g which are well suited for the fabrication of sensors, printable barcodes or authentication and recycling tags. KW - Photoluminescence KW - Nano KW - Nanomaterial KW - Synthesis KW - Reproducibility KW - Upconversion nanoparticle KW - Lanthanide PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570170 DO - https://doi.org/10.1038/s41598-023-28875-8 SN - 2045-2322 VL - 13 IS - 1 SP - 1 EP - 13 AN - OPUS4-57017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wegner, Karl David A1 - Coro, A. A1 - Marquez, R. M. A1 - Le Guevel, X. A1 - Juarez, B. H. A1 - Resch-Genger, Ute T1 - Exploring the photoluminescence of gold NCs and Ag2S NPs to boost their SWIR emission N2 - Current challenges and objectives for non-invasive optical bioimaging are deep tissue penetration, high detection sensitivity, high spatial and temporal resolution, and fast data acquisition. A promising spectral window to tackle these challenges is the short-wave infrared (SWIR) ranging from 900 nm to 1700 nm where scattering, absorption, and autofluorescence of biological components are strongly reduced compared to the visible/NIR. At present, the best performing SWIR contrast agents are based on nanomaterials containing toxic heavy-metal ions like cadmium or lead, which raises great concerns for biological applications. Promising heavy-metal free nanoscale candidates are gold nanoclusters (AuNCs) and Ag2S nanoparticles (NPs). The photoluminescence (PL) of both types of nanomaterials is very sensitive to their size, composition of their surface ligand shell, and element composition, which provides an elegant handle to fine-tune their absorption and emission features and boost thereby the size of the signals recorded in bioimaging studies. Aiming for the development of SWIR contrast agents with optimum performance, we dived deeper into the photophysical processes occurring in these nanomaterials, thereby exploring in depth how the environment, surface ligand composition, and the incorporation of transition metals influence the optical properties of AuNCs and Ag2S NPs. We observed a strong enhancement of the SWIR emission of AuNCs upon exposure to different local environments (in solution, polymer, and in the solid state). Addition of metal ions such as Zn2+ to Ag2S based NPs led to a strong PL enhancement, yielding PL quantum yields of about 10% and thus making them highly suitable for non-invasive deep imaging of vascular networks and 3D fluid flow mapping. T2 - NaNaX 10 - Nanoscience with Nanocrystals CY - Klosterneuburg, Austria DA - 03.07.2023 KW - Quantum dots KW - Ag2S KW - Fluorescence KW - SWIR KW - Gold nanocluster KW - Nanomaterial KW - bioimaging PY - 2023 AN - OPUS4-58104 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Pauli, J. A1 - Güttler, Arne A1 - Richter, Maria A1 - Fiedler, Saskia A1 - Frenzel, Florian A1 - Wegner, Karl David A1 - Würth, Christian T1 - Photoluminescence Quantum Yields of Luminescent Nanocrystals and Particles in the UV/vis/NIR/SWIR N2 - The rational design of functional luminescent materials such as semiconductor quantum dots and lanthanide-based upconversion nanoparticles, all photophysical and mechanistic studies, and the comparison of different emitters require accurate and quantitative photoluminescence measurements. Particularly the reliable determination of the key performance parameter photoluminescence quantum yield (f), the number of emitted per absorbed photons, and the brightness are of special importance for luminescence applications in the life and material sciences and nano(bio)photonics.[1] In this context, examples for absolute measurements of the photoluminescence quantum yields of UV/vis/NIR/SWIR emissive semiconductor quantum dots and rods, made from different materials, and spectrally shifting lanthanide upconversion nanocrystals with different surface chemistries in transparent matrices are presented including excitation wavelength and power density dependent studies utilizing integration sphere spectroscopy.[2,3] In addition, procedures for the absolute determination of the photoluminescence quantum yields of scattering dispersions of larger size quantum rods and differently sized inorganic particles have been developed as well as procedures for the characterization of solid luminescent nanomaterials such as different perovskites and YAG:Cer converter materials.[4] Thereby, challenges and pitfalls of f measurements in different wavelength regions including the SWIR and material-specific effects related to certain emitter classes are addressed, achievable uncertainties are quantified, and relative and absolute measurements of photoluminescence quantum yield measurements are compared to underline limitations of the former approach. Finally, a set of novel UV/vis/NIR quantum yield standards is presented including their certification with a complete uncertainty budget.[5] T2 - NANAX 10 CY - Klosterneuburg, Austria DA - 03.07.2023 KW - Fluorescence KW - Optical spectroscopy KW - Reference data KW - Traceability KW - NIR KW - Scattering KW - Reference material KW - Certification KW - Quality assurance KW - Dye KW - Reference product KW - SWIR KW - Nano KW - Particle KW - Perovskite KW - Integrating sphere spectroscopy KW - Quantum yield PY - 2023 AN - OPUS4-58238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Andresen, Elina A1 - Würth, Christian A1 - Weigert, Florian A1 - Frenzel, Florian T1 - Functional Luminophores – From Photophysics to Standardized Luminescence Measurements N2 - Inorganic nanocrystals with linear and nonlinear luminescence in the ultraviolet, visible, near infrared and short-wave infrared like semiconductor quantum dots and spectrally shifting lanthanide-based nanophosphors have meanwhile found applications in the life and material sciences ranging from optical reporters for bioimaging and sensing over security barcodes to solid state lighting and photovoltaics. These nanomaterials commonly have increasingly sophisticated core/shell particle architectures with shells of different chemical composition and thickness to minimize radiationless deactivation at the particle surface that is usually the main energy loss mechanism [1]. For lanthanide-based spectral shifters, particularly for very small nanoparticles, also surface coatings are needed which protect near-surface lanthanide ions from luminescence quenching by high energy vibrators like O-H groups and prevent the disintegration of these nanoparticles under high dilution conditions. [2,3,4]. The identification of optimum particle structures requires quantitative spectroscopic studies focusing on the key performance parameter photoluminescence quantum yield [5,6], ideally flanked by single particle studies to assess spectroscopic inhomogeneities on a particle-to-particle level for typical preparation methods [7,8], Moreover, in the case of upconversion nanoparticles with a multi-photonic and hence, excitation power density (P)-dependent luminescence, quantitative luminescence studies over a broad P range are required to identify particle architectures that are best suited for applications in fluorescence assays up to fluorescence microscopy. Here, we present methods to quantify the photoluminescence of these different types of emitters in the vis/NIR/SWIR and as function of P and demonstrate the importance of such measurements for a profound mechanistic understanding of the nonradiative deactivation pathways in semiconductor and upconversion nanocrystals of different size and particle architecture in different environments. T2 - Eingeladener Vortrag Uni Erlangen CY - Erlangen, Germany DA - 18.01.2023 KW - Semiconductor quantum dot KW - Upconversion nanocrystal KW - Luminescence KW - Quantitative spectroscopy KW - Photophysics KW - Quality assurance KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Standard KW - Reference material KW - Surface analysis KW - Quantification PY - 2023 AN - OPUS4-57011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Fürstenwerth, Paul A1 - Resch-Genger, Ute T1 - pH-Responsive Dyad Molecules: MiGraGen Project N2 - Optical pH sensors utilizing colorimetric or fluorescent indicator dyes are highly promising in many biomedical and life science applications where electrochemical sensors fail. For instance, optical sensors are not prone to electrical interferences, they are noninvasive and enable remote measurements. Moreover, fluorescence detection is very fast, highly sensitive, and provides several readout parameters ideal for multiplexing with nanometer resolution using simple, inexpensive, and miniaturizable instrumentation. Here, we present the design of a dyad sensor molecule, consisting of an analyte-responsive and an analyte inert reference fluorophore. T2 - MiGraGen Project Meeting 16.06.2023 CY - Online Meeting DA - 16.06.2023 KW - Dyad molecules KW - pH sensing KW - Fluorescent indicator KW - Ratiometric sensors PY - 2023 AN - OPUS4-58070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Fürstenwerth, Paul A1 - Eitinger, Lina A1 - Resch-Genger, Ute T1 - pH- and O2-Responsive Nanoparticles – The MiGraGen Project N2 - In recent years, the demand for reliable, versatile, fluorescent pH and oxygen sensors has increased rapidly in many biomedical applications since these analytes are important indicators of cell function or certain diseases. Therefore, sensor particles are needed that are small enough to penetrate cells, non-toxic, and allow for close-up optical monitoring. When developing such sensor systems, one must consider the pH and oxygen range detectable by the sensor dye and the matrix material of the used carrier particles. Here, we present the development of pH- and oxygen-responsive polymeric beads functionalized with fluorescent dyad molecules that consist of an analyte-responsive fluorophore and an analyte-inert dye. T2 - MiGraGen Project Meeting 09.08.2023 CY - Online Meeting DA - 09.08.2023 KW - Nano- and microsensors KW - Functionalized silica and polymeric particles KW - pH sensing KW - Oxygen sensing KW - Fluorescence PY - 2023 AN - OPUS4-58071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Matiushkina, Anna A1 - Litvinov, I. A1 - Bazhenova, A. A1 - Belyaeva, T. A1 - Dubavik, A. A1 - Veniaminov, A. A1 - Maslov, V. A1 - Kornilova, E. A1 - Orlova, A. A1 - Tavernaro, Isabella A1 - Andresen, Elina A1 - Prinz, Carsten A1 - Resch-Genger, Ute T1 - Synthesis and physical properties studies of bifunctional nanocomposites N2 - At present, the field of research on nanostructures is actively developing, which is due to their unique physico-chemical properties compared to bulk materials. Many research activities are focused on obtaining nanocomposites, which combine various types of nanostructures with different properties and function. For example, the development of magneto-luminescent nanocomposites makes it possible to use their luminescence for optical imaging, and their magnetic properties for magnetic targeted delivery and as agents of hyperthermia and magnetic resonance imaging. My master studies as part of the project Goszadanie 2019-1080 at ITMO were focused on the investigation of nanocomposites, consisting of semiconductor quantum dots (QDs) as luminescent component and superparamagnetic iron oxide nanoparticles (SPIONs) as magnetic one, in solution and during their incubation with HeLa cells. The spectrally resolved analysis of the QD photoluminescence (PL) kinetics of the free QDs and the QDs incorporated in these nanocomposites undergoing energy transfer processes allowed for (1) understanding the reasons for the quenching of QD luminescence in cells, (2) evaluating the average distance between the QDs and, based on this, concluding the degree of QD aggregation in cells, and (3) drawing conclusions about the QD-quencher composites integrity in cells. Overall, the analysis of the PL kinetics confirmed that QDs and SPIONs remain bound in the obtained nanocomposites during incubation with cells. To ensure the successful advancement of nanomaterials in biomedicine and the transition from their laboratory preparation and studies to their use in different applications and in industry, it is crucial to develop reliable measurement methods and reference materials candidates for the characterization of functional nanomaterials and assessing the quality of the obtained nanostructures. My recently started project at BAM, which is part of the EU metrology project MeTrINo, will be devoted to this topic. There we will focus on the development of methodologies for the synthesis and characterization of iron oxide nanoparticles, already used in biomedicine, and multi-element lanthanide-based nanoparticles with attractive upconversion luminescence, as reference materials with high monodispersity and reproducibility. Also, these nanoparticles will be functionalized with organic dyes for optical imaging and, probably, the study of the energy transfer phenomena. T2 - Bad Honnef Summer School CY - Bad Honnef, Germany DA - 30.07.2023 KW - Quantum dots KW - Iron oxide nanoparticles KW - Upconversion nanoparticles PY - 2023 AN - OPUS4-58075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Osipova, Viktoriia A1 - Tavernaro, Isabella A1 - Prinz, Carsten A1 - Langhammer, N. A1 - Heinze, K. A1 - Resch-Genger, Ute T1 - Incorporation of near-infrared light emitting chromium (III) complexes into the core and shell of silica nanoparticles and optimisation of their optical properties N2 - In recent years, chromium (III) complexes have received a lot of attention as novel near-infrared (NIR) emitters. This interest was triggered by the report on the first molecular ruby Cr(ddpd)2(BF4)3 with a high photoluminescence quantum yield of 13.7% of its near infrared (NIR) emission band and a long luminescence lifetime of 1.122 ms at room temperature. Meanwhile, the influence of triplet oxygen, temperature, and pressure on the optical properties of different molecular rubies have been assessed. These features make these molecular rubies promising candidates for multi-analyte optical sensing applications and the generation of singlet oxygen for photocatalysis and photodynamic therapy. However, in an oxygen-containing environment, the photoluminescence quantum yields and luminescence lifetimes of these chromium(III) complexes show only very small values. This hampers their application as NIR luminescence labels. This application, that cannot be tackled by conventional deoxygenating approaches, requires suitable strategies to protect the luminescence of the chromium(III) complexes from oxygen quenching. Typical approaches to reduce the oxygen sensitivity of long-lived luminophores include the encapsulation into an oxygen-shielding matrix or less commonly employed, by tuning the bulkiness of the ligands for oxygen-sensitive coordination compounds. An elegant approach to reduce the undesired luminescence quenching by triplet oxygen explored by us presents the incorporation of these chromium(III) complexes into amorphous, non-porous silica nanoparticles, that can be simply surface functionalized, e.g., with targeting ligands and/or other sensor molecules. This can enable the use of such chromium(III) complexes as reporters for bioanalytical assays and bioimaging without the need to introduce reactive groups into the ligands and can pave the road to lifetime tuning. In this work, as first proof-of-concept experiments, a set of chromium (III) complexes constituting of different ligands and counter anions, were embedded into the core of silica nanoparticles. As an alternative synthesis strategy, selected complexes were incorporated into a silica shell formed around the core of self-made silica nanoparticles. Subsequently, the optical properties of the resulting luminescent silica nanoparticles were spectroscopically assessed by steady state and time-resolved luminescence spectroscopy. First results of time-resolved luminescence measurements of the Cr(ddpd)2(PF6)3 complex incorporated into 25nm large silica nanoparticles dispersed in aerated water in comparison to the decay kinetics obtained for this complex in acetonitrile in air showed an increase in lifetime from 46 µs to 1147 µs. This confirming our design concept of nanoscale NIR emissive Cr(III) reporters. T2 - Bad Honnef summer school CY - Bad Honnef, Germany DA - 30.07.2023 KW - Chromium (III) complexes KW - Silica Nanoparticles KW - Luminescence lifetime measurments PY - 2023 AN - OPUS4-58076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Correlative Morphological-Chemical Imaging of Nanostructured Materials N2 - Newly developed methodical approaches with an emphasis on correlative imaging analysis of morphology and chemistry of nanomaterials will be presented. Correlative imaging by high-resolution SEM with STEM-in-SEM as well as with EDS, and further with AFM, or with the new technique TKD (Transmission Kikuchi Diffraction) will be explained on various examples of nanostructures, both as starting materials and as embedded/functionalized nanoparticles in products. The unique analytical benefits of the Auger electron probe as a veritable nano-tool for the local surface chemistry will be highlighted. Examples of hybrid analysis of the bulk of nanomaterials by X-ray Spectroscopy and the highest surface-sensitive methods XPS and ToF-SIMS as advanced surface characterization methods available in the Competence Centre nano@BAM will be showed. Particularly for the spatially resolved analysis of the chemistry of nanostructures, such in-depth and lateral gradients of chemistry within mesoporous thin layers, or the completeness of the shells of core-shell nanoparticles, the latter methods are inherent. Other dedicated developments like approaches for the quantitative determination of the porosity of thin mesoporous layers by electron probe microanalysis (EPMA) with SEM or the quantitative determination of the roughness of particle surface by high-resolution imaging with electron microscopy will be also presented. T2 - Conference on Applied Surface and Solid Material Analysis AOFKA 2023 CY - Zurich, Switzerland DA - 11.09.2023 KW - Correlative imaging KW - Electron microscopy KW - X-ray spectroscopy KW - Nanostructures PY - 2023 UR - https://aofka23.scg.ch/ AN - OPUS4-58338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Terborg, R. A1 - Procop, Mathias T1 - Theoretical calculation and experimental determination of x-ray production efficiencies for copper, zirconium, and tungsten N2 - The X-ray intensities of the K-, L- and M-lines of copper, zirconium and tungsten have been measured with an energy-dispersive X-ray spectrometer of known efficiency as function of photon energy. X-ray production efficiencies were determined from the measured intensities for Kα- and L-series of Cu and Zr and for the L- and M-series of W. These data were compared to calculated X-ray production efficiencies based on the widely used matrix correction models of Pouchou and Pichoir (XPP) and Bastin (PROZA96). Our results indicate that a replacement of the stopping power in the PROZA96 algorithm by expressions of Joy and Jablonski has only a minor influence on the calculated X-ray production efficiencies. In contrast, the modifications of the ionization cross-section show a stronger effect. We replaced the ionization cross-sections for K lines of the PROZA96 algorithm with different models. The results for L- and M-Lines are different. For the L-lines of Cu the original XPP and PROZA96 models show the best agreement while using the Bote cross-sections result in an overestimation. For the Zr-L and W-L1, -L2, -L3 X-ray production efficiencies, the Bote cross-sections lead to a significant improvement compared to all other models. The original XPP model represents the best agreement for the M5 efficiencies but underestimates the M4 efficiencies. There is no superior model or modification because the parameter sets in the models need to be aligned to each other. However, using the ionization cross-sections of Bote, which are based on quantum mechanical calculations, show promising results in many cases. KW - X-ray production efficiency KW - EPMA KW - Copper KW - Zirconium KW - Tungsten PY - 2023 DO - https://doi.org/10.1093/micmic/ozad067.110 SN - 1435-8115 VL - 29 IS - Supplement 1 SP - 245 EP - 246 PB - Oxford University Press CY - Oxford AN - OPUS4-58339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, J. A1 - Güttler, Arne A1 - Schneider, T. A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Fluorescence Quantum Yield Standards for the UV/Visible/NIR: Development, Traceable Characterization, and Certification N2 - The rational design of next generation molecular and nanoscale reporters and the comparison of different emitter classes require the determination of the fluorometric key performance parameter fluorescence quantum yield (Φf), i.e., the number of emitted photons per number of absorbed photons. Main prerequisites for reliable Φf measurements, which are for transparent luminophore solutions commonly done relative to a reference, i.e., a fluorescence quantum yield standard of known Φf, are reliable and validated instrument calibration procedures to consider wavelength-, polarization-, and time-dependent instrument specific signal contributions, and sufficiently well characterized fluorescence quantum yield standards. As the standard’s Φf value directly contributes to the calculation of the sample’s Φf, its accuracy presents one of the main sources of uncertainty of relative Φf measurements. To close this gap, we developed a first set of 12 fluorescence quantum yield standards, which absorb and emit in the wavelength region of 330−1000 nm and absolutely determined their Φf values with two independently calibrated integrating sphere setups. Criteria for standard selection and the configuration of these novel fluorescence reference materials are given, and the certification procedure is presented including homogeneity and stability studies and the calculation of complete uncertainty budgets for the certified Φf values. The ultimate goal is to provide the community of fluorescence users with available reference materials as a basis for an improved comparability and reliability of quantum yield data since the measurement of this spectroscopic key property is an essential part of the characterization of any new emitter. KW - Optical spectroscopy KW - Traceability KW - Reference product KW - Dye KW - Fluorescence KW - Quantum yield KW - Reference material KW - Reference data KW - Certification KW - Quality assurance PY - 2023 DO - https://doi.org/10.1021/acs.analchem.2c05530 VL - 95 SP - 5671 EP - 5677 PB - American Chemical Society AN - OPUS4-58151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Labrador-Paez, Lucia, L. A1 - Kankare, J. A1 - Hyppanen, I. A1 - Soukka, T. A1 - Andresen, Elina A1 - Resch-Genger, Ute A1 - Widengren, J A1 - Liu, H. T1 - Frequency-Domain Method for Characterization of Upconversion Luminescence Kinetics N2 - The frequency-domain (FD) method provides an alternative to the commonly used time-domain (TD) approach in characterizing the luminescence kinetics of luminophores, with its own strengths, e.g., the capability to decouple multiple lifetime components with higher reliability and accuracy. While extensively explored for characterizing luminophores with down-shifted emission, this method has not been investigated for studying nonlinear luminescent materials such as lanthanide-doped upconversion nanoparticles (UCNPs), featuring more complicated kinetics. In this work, employing a simplified rate-equation model representing a standard two-photon energy-transfer upconversion process, we thoroughly analyzed the response of the luminescence of UCNPs in the FD method. We found that the FD method can potentially obtain from a single experiment the effective decay rates of three critical energy states of the sensitizer/activator ions involved in the upconversion process. The validity of the FD method is demonstrated by experimental data, agreeing reasonably well with the results obtained by TD methods. KW - Quality assurance KW - Luminescence KW - Method KW - Quantitative spectroscopy KW - Nano KW - Particle KW - Lifetime KW - Method development PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597435 DO - https://doi.org/10.1021/acs.jpclett.3c00269 SP - 3436 EP - 3444 AN - OPUS4-59743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - O'Connor, Daniel A1 - Evans, Alexander A1 - Balsamo, Alessandro A1 - Favres, Georges A1 - Przyklenk, Anita A1 - Bosse, Harald A1 - Phillips, Dishi T1 - European Metrology Network (EMN) for Advanced Manufacturing Development of the Strategic Research Agenda (SRA) N2 - The European Commission has identified Advanced Manufacturing and Advanced Materials as two of six Key Enabling Technologies (KETs). It is considered that Metrology is a key enabler for the advancement of these KETs. Consequently, EURAMET, the association of metrology institutes in Europe, has strengthened the role of Metrology for these KETs by enabling the creation of a European Metrology Network (EMN) for Advanced Manufacturing. The EMN is comprised of National Metrology Institutes (NMIs) and Designated Institutes (DIs) from across Europe and was formally established in October 2021. The aim of the EMN is to provide a high-level coordination of European metrology activities for the Advanced Manufacturing community. The EMN itself is organized in three sections representing the major stages of the manufacturing chain: 1) Advanced Materials, 2) Smart Manufacturing Systems, and 3) Manufactured Components & Products. The EMN for Advanced Manufacturing is engaging with stakeholders in the field of Advanced Manufacturing (large companies & SMEs, industry organisations, existing networks, and academia), as well as the wider Metrology community, including Technical Committees, to provide input for the Strategic Research Agenda (SRA) on Metrology for Advanced Manufacturing. This contribution will give an overview about the first version of the SRA prepared by the EMN for Advanced Manufacturing. T2 - Euspen, 23rd International Conference & Exhibitio CY - Copenhagen, Danmark DA - 13.06.2023 KW - European Metrology Network (EMN) KW - Advanced Manufacturing KW - Metrology KW - Strategic Research Agenda (SRA) PY - 2023 AN - OPUS4-59176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Bartczack, Dorota A1 - Taché, Olivier A1 - Hodoroaba, Vasile-Dan T1 - Report on the homogeneity assessment of bimodal gold materials (nPSize1 and nPSize2) and particle number concentration by frequency method N2 - The main objective was to assess homogeneity of two bimodal gold materials, namely nPsize1 and nPSize2, containing approximately 1:1 and 10:1 particle number-based ratio of ~30nm and ~60nm particles. Particle number-based concentration within the two size fractions was determined with spICP-MS using the particle frequency method of calibration. KW - Nanoparticles KW - Homogeneity KW - Particle number concentration KW - Gold KW - nPSize PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595451 DO - https://doi.org/10.5281/zenodo.10654245 SP - 1 EP - 5 PB - Zenodo CY - Geneva AN - OPUS4-59545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krenzer, Julius A1 - Mueller, Thomas A1 - El Abbassi, Abdelouahad A1 - Resch-Genger, Ute A1 - Petrov, Eugene T1 - Aroyl-S,N-ketene acetal based bichromophores exhibiting energy transfer and aggregation induced (dual) emission N2 - A series of aroyl-S,N-ketene acetal based bichromophores is readily synthesized by Buchwald-Hartwig amination and Ullmann reaction in moderate to good yields. The aminated aroyl-S,N-ketene acetals are emissive in the solid state and in the aggregate, but not in solution, thus, they are AIEgens (aggregation induced emission chromogens). Aggregation is induced by fractional alternation of the solvent mixture, here by increasing the water fraction of ethanol/water mixtures. For most derivatives, the emission upon induced aggregation stems solely from the aroyl-S,N-ketene acetal chromophore, regardless whether excitation occurs at the absorption maximum of the triarylamine or the aroyl-S,N-ketene acetal. Therefore, a pronounced energy transfer from the triarylamine donor to the aroyl-S,N-ketene acetal acceptor can be inferred. The color of the emission can be controlled by choosing the para-aroyl substituent. A partial energy transfer could also be observed for some bichromophores, leading to aggregation-induced dual emission (AIDE). In addition, four examples of aminated diaroyl-S,N-ketene acetals were added to the compound library. The electron-withdrawing properties of the additional aroyl group provide a bathochromic shift of the emission band of the aroyl-S,N-ketene acetal. These bichromophores also show AIDE and in one case even aggregation-induced white light emission as a result of additive color mixing. T2 - Beilstein Symposium on pi-Conjugated Molecules and Materials CY - Limburg, Germany DA - 07.11.2023 KW - aggregation-induced dual emission (AIDE) PY - 2023 AN - OPUS4-59006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Driscoll, Laura L. A1 - Driscoll, Elizabeth H. A1 - Dong, Bo A1 - Sayed, Farheen N. A1 - Wilson, Jacob N. A1 - O’Keefe, Christopher A. A1 - Gardner, Dominic J. A1 - Grey, Clare P. A1 - Allan, Phoebe K. A1 - Michalchuk, Adam A. L. A1 - Slater, Peter R. T1 - Under pressure: offering fundamental insight into structural changes on ball milling battery materials N2 - Synthesis of Li ion battery materials via ball milling has been a huge area of growth, leading to new high-capacity electrode materials, such as a number of promising disordered rocksalt (DRS) phases. In prior work, it was generally assumed that the synthesis was facilitated simply by local heating effects during the milling process. In this work, we show that ball milling Li2MoO4 leads to a phase transformation to the high pressure spinel polymorph and we report electrochemical data for this phase. This observation of the formation of a high pressure polymorph shows that local heating effects alone cannot explain the phase transformation observed (phenakite to spinel) and so indicates the importance of other effects. In particular, we propose that when the milling balls collide with the material, the resulting shockwaves exert a localised pressure effect, in addition to local heating. To provide further support for this, we additionally report ball milling results for a number of case studies (Li2MnO3, Li2SnO3, Nb2O5) which reinforces the conclusion that local heating alone cannot explain the phase transformations observed. The work presented thus provides greater fundamental understanding of milling as a synthetic pathway and suggests potential strategies to prepare such samples without milling (e.g., doping to create internal chemical pressure). In addition, we suggest that further research is needed into the effect of the use of milling as a route to smaller particles, since we believe that such milling may also be affecting the surface structure of the particles through the influence of the shockwaves generated. KW - Pollution KW - Nuclear Energy and Engineering KW - Sustainability and the Environment KW - Environmental Chemistry KW - Renewable Energy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-590086 DO - https://doi.org/10.1039/d3ee00249g VL - 16 IS - 11 SP - 5196 EP - 5209 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Design and Quantitative Characterization of Functional Molecular Chromophores and Nanomaterials with UV/vis/NIR/IR Emission – An Overview of Research Activities in Division Biophotonics N2 - In the focus of division Biophotonics are the design, preparation, analytical and spectroscopic characterization, and application of molecular and nanoscale functional materials, particularly materials with a photoluminescence in the visible, near infrared (NIR) and short-wave infrared (SWIR). This includes optical reporters for bioimaging and sensing, security and authentication barcodes, and materials for solid state lighting, energy conversion, and photovoltaics. For the identification of optimum particle structures quantitative spectroscopic studies are performed under application-relevant conditions, focusing on the key performance parameter photoluminescence quantum yield. In addition, simple, cost-efficient, and standardizable strategies for quantifying functional groups on the surface of nano- and microparticles are developed, here with a focus on optical assays and electrochemical titration methods, cross-validated by more advanced methods such as quantitative NMR. In addition, reference materials and reference products are developed for optical methods, particularly luminescence techniques, and for analytical methods utilized for the characterization of nanomaterials. T2 - Projekttreffen Nile-Chrome 2.0 CY - Mainz, Germany DA - 11.12.2023 KW - Fluorescence KW - Quantum yield KW - Optical spectroscopy KW - Reference material KW - Reference data KW - Quality assurance KW - Dye KW - Reference product KW - NIR KW - SWIR KW - Nano KW - Particle KW - Silica KW - Polymer KW - Surface group analysis KW - Sensor molecules PY - 2023 AN - OPUS4-59123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Nirmalananthan-Budau, Nithiya A1 - Di Giacomo, Bruno A1 - Srivastava, Priyanka A1 - Scholtz, Lena A1 - Resch-Genger, Ute T1 - A Multimodal Approach to Quantify Surface Functional Groups and Ligands on Amorphous Silica Nanoparticles N2 - Nowadays amorphous silica nanoparticles (SiO2-NP) are one of the most abundant engineered nanomaterials, that are highly stable and can be easily produced on a large scale at low cost. Surface functionalized SiO2-NP are of great interest in the life and material sciences, as they can be used e.g. as drug carriers, fluorescent sensors, and multimodal labels in bioanalytical assays and imaging applications. Their performance in such applications depends not only on particle size, size distribution, and morphology, but also on surface chemistry, i.e. the total number of surface functional groups (FG) and the number of FG accessible for subsequent functionalization with ligands or biomolecules, which in turn determines surface charge, colloidal stability, biocompatibility, and toxicity. Aiming at the development of simple, versatile, and multimodal tools for the quantification of many bioanalytically relevant FG and ligands, we investigated and compared various analytical methods commonly used for FG quantification. This includes electrochemical titration methods, dye-based optical assays, and other instrumental analytical techniques such as nuclear magnetic resonance and thermal analysis methods. The potential of our multimodal approach for FG quantification was demonstrated for commercial and custom-made silica particles of varying FG, showing not only an influence of the synthesis methods on the number of FG but also on the performance. In the future, our strategy can contribute to establish multi-method characterization strategies to provide a more detailed picture of the structure-properties relationship. T2 - Advanced Materials Safety 2023 CY - Saarbrücken, Germany DA - 08.11.2023 KW - Amorphous silica particles KW - Surface group analysis KW - Ligands KW - Reference material KW - Optical spectroscopy KW - Quantitative NMR KW - Optical assays KW - Titration KW - Engineered nanomaterials KW - Advanced Materials PY - 2023 AN - OPUS4-59124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Srivastava, Priyanka A1 - Scholtz, Lena A1 - Nirmalananthan-Budau, Nithiya A1 - Resch-Genger, Ute T1 - Multicolored sensors based on silica and polymeric particles for ratiometric monitoring of pH, oxygen and saccharides N2 - In recent years, the use of functionalized micro- and nanomaterials has increased rapidly for a wide range of applications in the life and material sciences, due to their unique properties in combination with their high surface-to-volume ratio and stability. For instance, functionalized micro- and nanomaterials, that are labeled or stained with a multitude of sensor dyes can be used for monitoring, and quantification of neutral and ionic analytes. These materials have several advantages as compared to conventional molecular probes like enhanced brightness, ease of designing ratiometric systems by combining analyte-sensitive and inert reference dyes, and increased photostability. Moreover, stained nanoparticles can enable the use of hydrophobic dyes in aqueous environments. Versatile templates and carriers for the fabrication of nanosensors by staining and/or labeling with different fluorophores and sensor molecules are biocompatible silica and polymeric particles, because they can be synthesized in large scales at low costs with different surface chemistries. Here we present our work on multicolored sensors for the measurement of pH, oxygen and saccharides utilizing commercially available or in-house synthesized silica and polymeric particles. T2 - 4th European Biosensor Symposium 2023 CY - Aachen, Deutschland DA - 27.08.2023 KW - Nano- and microsensors KW - Silica and polystyrene nanoparticles KW - PH probe KW - Ratiometric sensors KW - Optical spectroscopy KW - Dye KW - Saccharide sensing KW - Multicolored PY - 2023 AN - OPUS4-59125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Nirmalananthan-Budau, Nithiya A1 - Scholtz, Lena A1 - Resch-Genger, Ute T1 - A Multimodal Approach to Quantify Surface Functional Groups on Nanomaterials for Safe and Sustainable by Design N2 - Engineered nanomaterials (NM) with their large surface-to-volume ratios and their for some materials observed size-dependent functional properties are of increasing relevance for current and future developments in various fields such as medical and pharmaceutical industry, computing and electronics or food and consumer products. The performance and safety of NM are determined by the sum of their intrinsic physicochemical properties. Especially, the particle surface chemistry, which is largely controlled by the chemical nature and density of functional groups (FG) and ligands, is an important key driver for NM performance, stability, and processibility as well as the interaction of NM with the environment. Thus, methods for FG quantification can foster the sustainable development of functional and safe(r) NM. Aiming at the development of simple, versatile, and multimodal tools for the quantification of many bioanalytically relevant FG and ligands, we investigated and compared various analytical methods commonly used for FG quantification. This includes electrochemical titration methods, dye-based optical assays, and other instrumental analytical techniques such as nuclear magnetic resonance and thermal analysis methods. The potential of our multimodal approach for FG quantification was demonstrated for commercial and custom-made polymeric and silica particles of varying FG, used as optical pH sensors. In the future, our strategy can contribute to establish multi-method characterization strategies to provide a more detailed picture of the structure-properties relationship. T2 - NanoSAFE & NanoSafety Cluster 2023 CY - Grenoble, France DA - 05.06.2023 KW - Engineered Nanomaterials KW - Safe-by-Design KW - Sustainable-by-Design KW - Surface Group Analysis KW - Silica and Polystyrene Particles KW - Surface Modification KW - Dye KW - Optical Spectroscopy KW - Quantitative NMR KW - Electrochemical Titration KW - Functionalized Nanomaterials KW - Nanosafety PY - 2023 AN - OPUS4-59126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Nirmalananthan-Budau, Nithiya A1 - Scholtz, Lena A1 - Resch-Genger, Ute T1 - Development of multimodal methods to quantify the total and accessible number of functional groups and ligands on nanomaterials N2 - Engineered and tailored nanomaterials (NM) are of great interest in the life and material sciences, as they can be used, e.g., as drug carriers, barcodes, fluorescent sensors, and multimodal labels in bioanalytical assays and imaging applications. Their performance and safety depend not only on their particle size, size distribution, and morphology, but also on their surface chemistry, i.e., the total number of surface functional groups (FG) and the number of FG accessible for subsequent functionalization with ligands or biomolecules, which in turn determines surface charge, colloidal stability, biocompatibility, and toxicity. It also underlines the importance of validated analytical methods that provide accurate information on these application-relevant physicochemical properties with a known uncertainty. In the case of FG quantification, this calls for robust, fast, inexpensive, and reliable methods which allow for the characterization of a broad variety of NM differing in size, chemical composition, and optical properties. Methods Aiming at the development of simple, versatile, and multimodal tools for the quantification of bioanalytically relevant FG such as amine, carboxy, thiol, and aldehyde functionalities, we investigated and compared various analytical methods commonly used for FG quantification. This includes electrochemical titration methods, dye-based optical assays, and other instrumental analytical techniques such as nuclear magnetic resonance (NMR), mass spectrometry (MS), and thermal analysis methods. Results Here, we will present examples for different types of NMs and FGs including results from a currently running interlaboratory comparison (ILC) with the National Research Council of Canada (NRC) to pave the road for method standardization. Innovative aspects • Surface analysis • Performance and safety of nanomaterials • Standardization T2 - ANAKON 2023 CY - Vienna, Austria DA - 11.04.2023 KW - Engineered Nanomaterials KW - Surface group analysis KW - Optical spectroscopy KW - Quantitative NMR KW - Ligands KW - Dye KW - Particle synthesis KW - Optical Assays KW - Titration KW - Safe-by-Design KW - Nano KW - Nanosafety KW - Silica- and Polystyrene Particles PY - 2023 AN - OPUS4-59127 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Liaison of ISO/TC 202 Microbeam Analysis with VAMAS/TWA 37 Quantitative Microstructural Analysis N2 - The progress in activities on Microbeam Analysis under VAMAS/TWA 37 is reviewed. Particularly the liaison with the new projects within the ISO technical committee TC 202 is presented and discussed with respect to the identification and launching corresponding VAMAS projects. The ongoing project "FIB sample processing for TEM" is presented in detail. T2 - 30th Meeting of ISO/TC 202 Microbeam Analysis CY - Berlin, Germany DA - 22.11.2023 KW - VAMAS KW - ISO/TC 202 KW - Microbeam Analysis KW - Standardisation KW - Electron microscopy KW - FIB PY - 2023 AN - OPUS4-58984 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan ED - Hodoroaba, Vasile-Dan T1 - Liaison Report from ISO/TC 202 'Microbeam Analysis' to ISO/TC 229 'Nanotechnologies' N2 - Liaison activities within ISO/TC 202 'Microbeam Analysis' which are relevant to ISO/TC 229 'Nanotechnologies' are reported acoording to the structure defined by ISO/TC229 Nanotechnologies Liaisons Coordination Group (NLCG): new standards/documents, coordination issues, and further detailed specific information, e.g. publications, events, comments. KW - ISO/TC 229 Nanotechnologies KW - ISO/TC 202 Microbeam Analysis KW - Standardisation PY - 2023 SP - 1 EP - 3 CY - ISO, Geneva, CH AN - OPUS4-58986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - O'Connor, Daniel A1 - Evans, Alexander A1 - Balsamo, Alessandro A1 - Favres, Georges A1 - Przyklenk, Anita A1 - Bosse, Harald A1 - Phillips, Dishi T1 - European Metrology Network (EMN) for Advanced Manufacturing ─ Development of the Strategic Research Agenda (SRA) N2 - The European Commission has identified Advanced Manufacturing and Advanced Materials as two of six Key Enabling Technologies (KETs). It is considered that Metrology is a key enabler for the advancement of these KETs. Consequently, EURAMET, the association of metrology institutes in Europe, has strengthened the role of Metrology for these KETs by enabling the creation of a European Metrology Network (EMN) for Advanced Manufacturing. The EMN is comprised of National Metrology Institutes (NMIs) and Designated Institutes (DIs) from across Europe and was formally established in October 2021. The aim of the EMN is to provide a high-level coordination of European metrology activities for the Advanced Manufacturing community. The EMN itself is organized in three sections representing the major stages of the manufacturing chain: 1) Advanced Materials, 2) Smart Manufacturing Systems, and 3) Manufactured Components & Products. The EMN for Advanced Manufacturing is engaging with stakeholders in the field of Advanced Manufacturing (large companies & SMEs, industry organisations, existing networks, and academia), as well as the wider Metrology community, including Technical Committees, to provide input for the Strategic Research Agenda (SRA) on Metrology for Advanced Manufacturing. This contribution will give an overview about the first version of the SRA prepared by the EMN for Advanced Manufacturing T2 - Euspen, 23rd International Conference & Exhibitio CY - Copenhagen, Danmark DA - 12.06.2023 KW - European Metrology Network (EMN) KW - Advanced Manufacturing KW - Metrology KW - Strategic Research Agenda (SRA) PY - 2023 SP - 363 EP - 364 AN - OPUS4-59196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella T1 - (Nano-)Partikel-Tracking-Analyse (PTA/NTA) N2 - Einführung in die Partikelgrößenbestimmung von (Nano)Materialien mittels NTA/PTA. Normative Grundlagen (ISO 19430:2016 und ASTM E2834), Messprinzip, Messgeräte, Einflussfaktoren und Besonderheiten, Implementierung, Informationsgehalt der Daten, Reporting. T2 - BAM Akademie: Info-Tage "NANO OR NOT NANO" CY - Online meeting DA - 16.02.2023 KW - Partikelgrößenbestimmung KW - Partikelkonzentration KW - Nano KW - Standardisierung KW - Brownsche Molekularbewegung KW - Lichtstreuung PY - 2023 AN - OPUS4-59132 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Osipova, Viktoriia A1 - Tavernaro, Isabella A1 - Resch-Genger, Ute T1 - Incorporation of near-infrared light emitting chromium (III) complexes into silica nanoparticles and spectroscopic characterization N2 - In recent years, chromium (III) complexes have received a lot of attention as novel near-infrared (NIR) emitters triggered by the report on the first molecular ruby Cr(ddpd)2(BF4)3 with a high photoluminescence quantum yield of 13.7% of its near infrared (NIR) emission band and a long luminescence lifetime of 1.122 ms at room temperature.[1] However, in an oxygen-containing environment, the photoluminescence quantum yields and luminescence lifetimes of these chromium(III) complexes show only very small values. This hampers their application as NIR luminescence labels. This application, that cannot be tackled by conventional deoxygenating approaches, requires suitable strategies to protect the luminescence of the chromium(III) complexes from oxygen quenching. An elegant approach to reduce the undesired luminescence quenching by triplet oxygen explored by us presents the incorporation of these chromium(III) complexes into different types of amorphous, non-porous silica nanoparticles, that can be simply surface functionalized, e.g., with targeting ligands and/or other sensor molecules. In this work, as first proof-of-concept experiments, a set of chromium (III) complexes constituting of different ligands and counter anions, were embedded into the core of silica nanoparticles. Subsequently, the optical properties of the resulting luminescent silica nanoparticles were spectroscopically assessed by steady state and time-resolved luminescence spectroscopy. First results of time-resolved luminescence measurements confirm our design concept of nanoscale NIR emissive Cr(III) complex-based reporters T2 - Projekttreffen Nile-Chrome 2.0 CY - Mainz, Germany DA - 11.12.2023 KW - Cr(III) complex KW - NIR KW - Luminescence KW - Nano KW - Silica KW - Lifetime KW - Quantum Yields KW - Particle Synthesis KW - Sensors KW - Probe KW - Surface Group Analysis PY - 2023 AN - OPUS4-59149 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Scholtz, Lena A1 - Resch-Genger, Ute T1 - Behind the Paper - Dual color pH probes made from silica and polystyrene nanoparticles and their performance in cell studies N2 - In this contribution we highlight the importance of comparison for scientific research while developing a new, functional pH sensor system, and the valuable insights this can provide. KW - Dye KW - Optical Spectroscopy KW - pH probe KW - Silica and Polystyrene Particles KW - Nano KW - Surface groups KW - Safe-by-Design KW - Cell studies KW - Sensors KW - Particle Synthesis KW - Fluorescence PY - 2023 UR - https://communities.springernature.com/posts/dual-color-ph-probes-made-from-silica-and-polystyrene-nanoparticles-and-their-performance-in-cell-studies SP - 1 EP - 2 PB - Springer Nature CY - London AN - OPUS4-59150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Osipova, Viktoriia A1 - Srivastava, Priyanka A1 - Huang, Zixuan A1 - Merei, Rabih A1 - Resch-Genger, Ute T1 - Design of Fluorescent, Amorphous Silica-NPs and their Versatile Use in Sensing Applications N2 - Surface functionalized silica nanoparticles (SiO2-NP) gained great interest in the life and material sciences, as they can be used e.g. as drug carriers, fluorescent sensors, and multimodal labels in bioanalytical assays and imaging applications. They are highly stable, are easily produced and modified on a large scale at low cost and can be labeled or stained with a multitude of sensor dyes. These dye modified particle conjugates have several advantages as compared to conventional molecular probes like enhanced brightness, ease of designing ratiometric systems by combining analyte-sensitive and inert reference dyes, and increased photostability. Moreover, stained nanoparticles can enable the use of hydrophobic dyes in aqueous environments. Here we present our work on multicolored sensors for the measurement of pH, oxygen and saccharides utilizing amorphous SiO2 NPs. T2 - Focus Area Day Analytical Sciences 2023 CY - Berlin, Germany DA - 20.04.2023 KW - Amorphous silica particles KW - Particle Synthesis KW - Nano KW - Ratiometric Sensors KW - Fluorescence KW - pH probe KW - Dye PY - 2023 AN - OPUS4-59151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Favres, Georges A1 - O'Connor, Daniel A1 - Balsamo, Alessandro A1 - Evans, Alexander A1 - Castro, Fernando A1 - Przyklenk, Anita A1 - Bosse, Harald T1 - European Metrology Network (EMN) for Advanced Manufacturing N2 - The European Commission has identified Advanced Manufacturing and Advanced Materials as two of six Key Enabling Technologies (KETs). By fully utilizing these KETs, advanced and sustainable economies will be created. It is considered that Metrology is a key enabler for the advancement of these KETs. EURAMET, the association of metrology institutes in Europe, has strengthened the role of Metrology for these KETs by enabling the creation of a European Metrology Network for Advanced Manufacturing. The EMN is made up of National Metrology Institutes (NMIs) and Designated Institutes (DIs) from across Europe and was formally established in October 2021. The EMN aims to provide a high-level coordination of European metrology activities for the Advanced Materials and Advanced Manufacturing community. The EMN itself is organized in three sections representing the major stages of the manufacturing chain: 1) Advanced Materials, 2) Smart Manufacturing Systems, and 3) Manufactured Components & Products. The EMN for Advanced Manufacturing is engaging with stakeholders in the field of Advanced Manufacturing and Advanced Materials (Large companies & SMEs, industry organisations, existing networks, and academia), as well as the wider metrology community (including TCs) to provide input for the preparation of a Strategic Research Agenda (SRA) for Metrology for Advanced Manufacturing. This presentation will describe the progress in the development of the SRA by the EMN for Advanced Manufacturing. The metrology challenges identified across the various key industrial sectors, which utilise Advanced Materials and Advanced Manufacturing will be presented. The EMN for Advanced Manufacturing is supported by the project JNP 19NET01 AdvManuNet. T2 - 21st International Metrology Congress, CIM 2023 CY - Lyon (Chassieu), France DA - 07.03.2023 KW - Advanced Materials KW - EMN KW - European Metrology Network for Advanced Manufacturing, Strategic Research Agenda KW - SRA PY - 2023 AN - OPUS4-59208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - SEM/EDS as THE Versatile and Powerful Tool for Micro and Nano Analysis N2 - The basic principles of generation of electrons and X-rays and the operation of SEM/EDS instruments are presented. Examples, recent successes and challenges in the analysis of nano-structures are given. Multi-method analytical approaches with the focus on imaging the nanoscale are highlighted. Details on the sample preparation and persepective on the automated analysis (sample preparation, measurement, data analyis and storage) are given. Metrological aspects, standardisation, and reference materials are also emphasized by examples. T2 - Training Course Metrological Determination of Micro and Nano Contaminants in Food CY - Berne, Switzerland DA - 05.09.2023 KW - SEM KW - EDS KW - Microanalysis KW - Nanoanalysis KW - Imaging PY - 2023 UR - https://www.sem.admin.ch/metas/en/home/dl/kurs_uebersicht/micro_nano_contaminants_in_food.html AN - OPUS4-58188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Altmann, Korinna A1 - Hodoroaba, Vasile-Dan T1 - Getting reliable data on microplastic detection methods by means of ILC N2 - There is an urgent demand for reliable data on microplastic analysis, particularly on its physico-chemical properties as well as validated methodology to obtain such data. Through interlaboratory comparisons (ILCs) it becomes possible to assess accuracy and precision of methods by involving many laboratories around the world. At BAM, my tasks focused around organisation of an ILC on physico-chemical characterisation of microplastic detection methods under the international pre-standardisation platform VAMAS (www.vamas.org/twa45/) as Project 2 “Development of standardized methodologies for characterisation of microplastics with microscopy and spectroscopy methods” under the Technical Working Area TWA 45 “Micro and Nano Plastics in the Environment”. With a proud number of 84 participants this ILC is able to provide superior statistical results. Thermoanalytical (Py-GC/MS and TED-GC/MS) and vibrational (µ-IR and µ-Raman) methods were asked for identification and quantification of microplastic test samples according to mass or particle number. Preliminary results indicate which methods show a higher accuracy and precision and reveal some sample preparation ideas which work best for microplastics characterisation. At the end of the ILC an overall plausibility of the results will be assessed. T2 - CUSP Early Career Researchers Meeting CY - Online meeting DA - 21.11.2023 KW - Micro- and Nanoplastics KW - Interlaboratory comparison KW - Microplastic reference materials PY - 2023 AN - OPUS4-59056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholtz, Lena A1 - Tavernaro, Isabella A1 - Eckert, J. G. A1 - Lutowski, Marc A1 - Geißler, Daniel A1 - Hertwig, Andreas A1 - Hidde, Gundula A1 - Bigall, N. C. A1 - Resch-Genger, Ute T1 - Influence of nanoparticle encapsulation and encoding on the surface chemistry of polymer carrier beads N2 - Surface-functionalized polymer beads encoded with molecular luminophores and nanocrystalline emitters such as semiconductor nanocrystals, often referred to as quantum dots (QDs), or magnetic nanoparticles are broadly used in the life sciences as reporters and carrier beads. Many of these applications require a profound knowledge of the chemical nature and total number of their surface functional groups (FGs), that control bead charge, colloidal stability, hydrophobicity, and the interaction with the environment and biological systems. For bioanalytical applications, also the number of groups accessible for the subsequent functionalization with, e.g., biomolecules or targeting ligands is relevant. In this study, we explore the influence of QD encoding on the amount of carboxylic acid (COOH) surface FGs of 2 μm polystyrene microparticles (PSMPs). This is done for frequently employed oleic acid and oleylamine stabilized, luminescent core/shell CdSe QDs and two commonly used encoding procedures. This included QD addition during bead formation by a thermally induced polymerization reaction and a post synthetic swelling procedure. The accessible number of COOH groups on the surface of QD-encoded and pristine beads was quantified by two colorimetric assays, utilizing differently sized reporters and electrostatic and covalent interactions. The results were compared to the total number of FGs obtained by a conductometric titration and Fourier transform infrared spectroscopy (FTIR). In addition, a comparison of the impact of QD and dye encoding on the bead surface chemistry was performed. Our results demonstrate the influence of QD encoding and the QD-encoding strategy on the number of surface FG that is ascribed to an interaction of the QDs with the carboxylic acid groups on the bead surface. These findings are of considerable relevance for applications of nanoparticle-encoded beads and safe-by-design concepts for nanomaterials. KW - Optical spectroscopy KW - Particle KW - Optical assay KW - IR spectroscopy KW - Fluorescence KW - Quantum yield KW - Quality assurance KW - Nano KW - Synthesis KW - Surface chemistry KW - Quantification KW - Method KW - Conductometry PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581502 DO - https://doi.org/10.1038/s41598-023-38518-7 SN - 2045-2322 VL - 13 IS - 1 SP - 1 EP - 15 PB - Springer Nature CY - London AN - OPUS4-58150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wolff, M. A1 - Wonneberger, R. A1 - Freiberg, K.E. A1 - Hertwig, Andreas A1 - Bonse, Jörn A1 - Giebeler, L. A1 - Koitzsch, A. A1 - Kunz, C. A1 - Weber, H. A1 - Hufenbach, J.K. A1 - Müller, F.A. A1 - Gräf, S. T1 - Formation of laser-induced periodic surface structures on Zr-based bulk metallic glasses with different chemical composition N2 - Bulk metallic glasses (BMG) are amorphous metal alloys known for their unique physical and mechanical properties. In the present study, the formation of femtosecond (fs) laser-induced periodic surface structures (LIPSS) on the Zr-based BMGs Zr46Cu46Al8, Zr61Cu25Al12Ti2, Zr52.5Cu17.9Al10Ni14.6Ti5 (Vit105) and Zr57Cu15.4Al10Ni12.6Nb5 (Vit106) was investigated as a function of their different chemical composition. For this purpose, LIPSS were generated on the sample surfaces in an air environment by fs-laser irradiation (λ = 1025 nm, τ = 300 fs, frep = 100 kHz). The surface topography was characterized by scanning electron microscopy and atomic force microscopy. Moreover, the impact of LIPSS formation on the structure and chemical surface composition was analyzed before and after fs-laser irradiation by X-ray diffraction and X-ray photoelectron spectroscopy as well as by transmission electron microscopy in combination with energy dispersive X-ray spectroscopy. Despite the different chemical composition of the investigated BMGs, the fs-laser irradiation resulted in almost similar properties of the generated LIPSS patterns. In the case of Zr61Cu25Al12Ti2, Vit105 and Vit106, the surface analysis revealed the preservation of the amorphous state of the materials during fs-laser irradiation. The study demonstrated the presence of a native oxide layer on all pristine BMGs. In addition, fs-laser irradiation results in the formation of laser-induced oxide layers of larger thickness consisting of an amorphous ZrAlCu-oxide. The precise laser-structuring of BMG surfaces on the nanoscale provides a versatile alternative to thermoplastic forming of BMG surfaces and is of particular interest for the engineering of functional material surfaces. KW - Bulk metallic glasses KW - Femtosecond laser KW - Laser-induced periodic surface structures (LIPSS) KW - Chemical analysis KW - Oxidation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581799 DO - https://doi.org/10.1016/j.surfin.2023.103305 SN - 2468-0230 VL - 42 SP - 1 EP - 11 PB - Elsevier B.V. AN - OPUS4-58179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tavasolyzadeh, Zeynab A1 - Tang, Peng A1 - Hahn, Marc Benjamin A1 - Hweidi, Gada A1 - Nordholt, Niclas A1 - Haag, Rainer A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - 2D and 3D Micropatterning of Mussel‐Inspired Functional Materials by Direct Laser Writing N2 - AbstractThis work addresses the critical need for multifunctional materials and substrate‐independent high‐precision surface modification techniques that are essential for advancing microdevices and sensing elements. To overcome existing limitations, the versatility of mussel‐inspired materials (MIMs) is combined with state‐of‐the‐art multiphoton direct laser writing (DLW) microfabrication. In this way, 2D and 3D MIM microstructures of complex designs are demonstrated with sub‐micron to micron resolution and extensive post‐functionalization capabilities. This study includes polydopamine (PDA), mussel‐inspired linear, and dendritic polyglycerols (MI‐lPG and MI‐dPG), allowing their direct microstructure on the substrate of choice with the option to tailor the patterned topography and morphology in a controllable manner. The functionality potential of MIMs is demonstrated by successfully immobilizing and detecting single‐stranded DNA on MIM micropattern and nanoarray surfaces. In addition, easy modification of MIM microstructure with silver nanoparticles without the need of any reducing agent is shown. The methodology developed here enables the integration of MIMs in advanced applications where precise surface functionalization is essential. KW - Direct laser writing KW - Mussel-inspired materials KW - Polyglycerol KW - Polydopamine KW - Micropatterning PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588778 DO - https://doi.org/10.1002/smll.202309394 SN - 1613-6829 SP - 1 EP - 12 PB - Wiley-VCH CY - Weinheim AN - OPUS4-58877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritzsche, Sven A1 - Pauw, Brian Richard A1 - Weimann, Christiane A1 - Sturm, Heinz T1 - First of its kind: A test artifact for direct laser writing N2 - With femtosecond-laser direct writing (fs-LDW) maturing in all aspects as a manufacturing technology, a toolset for quality assurance must be developed. In this work we introduce a first of its kind test artifact. Test artifacts are standardized 3D models with specific geometric features to evaluate the performance of writing parameters. Test artifacts are already common in other 3D additive manufacturing technologies e.g. selective laser melting. The test artifact introduced in this work was developed in particular to accommodate the high geometrical resolution of fs-LDW structures and the limited possibilities to examine the resulting structure. Geometric accuracy, surface adhesion as well as confocal Raman spectroscopy results were considered when evaluating the design of the test artifact. We will explain the individual features and design considerations of our fs-LDW test artifact. The difference between two slicers, Cura and 3DPoli, and the implications on measured feature sizes and the general shape is quantified. The measured geometries are used to derive a general design guide for a specific combination of photoresists, laser power and scanning speed and to analyze the geometric accuracy of a structure produced using these guidelines. The shown test artifact is publicly available as STL file on GitHub (https://github.com/BAMresearch/2PP-TestArtifact) and in the supplement. KW - Laser direct writing KW - Multi photon lithography KW - Reference material KW - Raman spectroscopy KW - Confocal raman imaging KW - Slicers KW - Open data on zenodo PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580951 DO - https://doi.org/10.1088/1361-6501/acc47a VL - 34 IS - 7 SP - 1 EP - 14 PB - IOP Science AN - OPUS4-58095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Costache, F. A1 - Valette, S. A1 - Bonse, Jörn T1 - Editorial: Special Issue “Dynamics and Processes at Laser-Irradiated Surfaces—A Themed Issue in Honor of the 70th Birthday of Professor Jürgen Reif” N2 - The Special Issue “Dynamics and Processes at Laser-irradiated Surfaces” is dedicated to the 70th birthday of Jürgen Reif, retired full professor, former Chair of Experimental Physics II of the Faculty of Physics of the Brandenburg University of Technology Cottbus—Senftenberg in Germany. KW - Laser ablation KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - Femtosecond laser PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569482 DO - https://doi.org/10.3390/nano13030611 SN - 2079-4991 VL - 13 IS - 3 SP - 1 EP - 3 PB - MDPI CY - Basel AN - OPUS4-56948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Porta-Velilla, L. A1 - Martínez, E. A1 - Frechilla, A. A1 - Castro, M. A1 - de la Fuente, G. F. A1 - Bonse, Jörn A1 - Angurel, L. A. T1 - Grain orientation, angle of incidence, and beam polarization effects on ultraviolet 300 ps-laser-induced nanostructures on 316L stainless steel N2 - Laser-induced periodic surface structures (LIPSS) represent a unique route for functionalizing materials through the fabrication of surface nanostructures. Commercial AISI 316L stainless steel (SS316L) surfaces are laser treated by ultraviolet 300 ps laser pulses in a laser line scanning (LLS) approach. Processing parameters are optimized (pulse energy of 2.08 µJ, pulse repetition frequency of 300 kHz, and suitable laser scan and sample displacement rates) for the generation of low spatial frequency LIPSS over a large 25 × 25 mm2 area. Different angles of incidence of the laser radiation (0°, 30°, and 45°) and different linear laser beam polarizations (s and p) produce a plethora of rippled surface morphologies at distinct grains. Scanning electron microscopy and 2D Fourier transforms, together with calculations of the optical energy deposited at the treated surfaces using Sipe's first-principles electromagnetic scattering theory, are used to study and analyze in detail these surface morphologies. Combined with electron backscattering diffraction, analyses allow associating site-selectively various laser-induced-surface morphologies with the underlying crystalline grain orientation. Resulting grain orientation maps reveal a strong impact of the grain crystallographic orientation on LIPSS formation and point toward possible strategies, like multi-step processes, for improving the manufacturing of LIPSS and their areal coverage of polycrystalline technical materials. KW - Laser-induced periodic surface structures (LIPSS) KW - Steel KW - Grain orientation KW - Electron backscattering diffraction (EBSD) KW - Laser processing PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588929 DO - https://doi.org/10.1002/lpor.202300589 SN - 1863-8899 SP - 1 EP - 21 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-58892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Kai A1 - Mirabella, Francesca A1 - Knigge, Xenia A1 - Mezera, Marek A1 - Weise, Matthias A1 - Sahre, Mario A1 - Wasmuth, Karsten A1 - Voss, Heike A1 - Hertwig, Andreas A1 - Krüger, Jörg A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Bonse, Jörn T1 - Chemical and topographical changes upon sub-100-nm laser-induced periodic surface structure formation on titanium alloy: the influence of laser pulse repetition rate and number of over-scans N2 - Titanium and its alloys are known to allow the straightforward laser-based manufacturing of ordered surface nanostructures, so-called high spatial frequency laser-induced periodic surface structures (HSFL). These structures exhibit sub-100 nm spatial periods – far below the optical diffraction limit. The resulting surface functionalities are usually enabled by both, topographic and chemical alterations of the nanostructured surfaces. For exploring these effects, multi-method characterizations were performed here for HSFL processed on Ti–6Al–4V alloy upon irradiation with near-infrared ps-laser pulses (1030 nm, ≈1 ps pulse duration, 1–400 kHz) under different laser scan processing conditions, i.e., by systematically varying the pulse repetition frequency and the number of laser irradiation passes. The sample characterization involved morphological and topographical investigations by scanning electron microscopy (SEM), atomic force microscopy (AFM), tactile stylus profilometry, as well as near-surface chemical analyses hard X-ray photoelectron spectroscopy (HAXPES) and depth-profiling time-of-flight secondary ion mass spectrometry (ToF-SIMS). This provides a quantification of the laser ablation depth, the geometrical HSFL characteristics and enables new insights into the depth extent and the nature of the non-ablative laser-induced near-surface oxidation accompanying these nanostructures. This allows to answer the questions how the processing of HSFL can be industrially scaled up, and whether the latter is limited by heat-accumulation effects. T2 - 2023 E-MRS Spring Meeting, Symposium L "Making light matter: lasers in material sciences and photonics" CY - Strasbourg, France DA - 29.05.2023 KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser pulses KW - Laser processing KW - Hard X-ray photoelectron spectroscopy (HAXPES) KW - Time-of-flight secondary ion mass spectrometry (ToF-SIMS) PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589902 UR - https://onlinelibrary.wiley.com/doi/full/10.1002/pssa.202300719 DO - https://doi.org/10.1002/pssa.202300719 SN - 1862-6319 VL - 220 SP - 1 EP - 12 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-58990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Omar, Hassan A1 - Gawek, Marcel A1 - Hertwik, Andreas A1 - Madkour, Sherif A1 - Schönhals, Andreas T1 - Investigation of the behavior of thin polymeric films including the adsorbed layer on the substrate by nano-sized relaxation spectroscopy and complementary methods N2 - Thin polymeric films are of great importance of high number of high-tech applications for instance in sensors and nanoelectronics. Form the scientific point of view thin films with thickness below 100 nm are ideal model systems to study confinement effects on its properties for instance on the molecular relaxation processes. In this contribution an overview is presented about the behavior of different systems as investigated by nanosized relaxation spectroscopy like broadband dielectric spectroscopy employing nano structured capacitors and AC chip calorimetry complimented by ellipsometry. The systems considered are PVME1, PVME/PS blends2,3 P2VP4, PBAC5 and polysulfone6. Besides the film also the adsorbed layer on the substrate prepared by a leaching approach and investigated by AFM is considered.1,4-7. For these investigationsss it is found that the adsorbed layer itself exhibits a relaxation dynamics which might be assigned either to molecular motions or to adsorptions desorption kinetics. T2 - 9. International Discussion Meeting Relaxation Complex Systems CY - Chiba, Japan DA - 12.08.2023 KW - Thin polymer films PY - 2023 AN - OPUS4-58103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schartel, Bernhard ED - Hu, Y. ED - Wang, X. T1 - Influence of the Size and Dispersion State of Two-Dimensional Nanomaterials on the Fire Safety of Polymers N2 - Only the nano-scaled structure of the nanocomposite and the dispersion of nanoparticles within the polymer matrix harbor multifunctional potential including superior fire retardancy. Thus, this chapter focuses on the dispersion of nanoplates, based mainly on studies of layered silicates and graphene/graphene-related nanoplates. The nanostructure and properties of the nanocomposites are dependent mainly on thermodynamic and kinetic factors during preparation. Improving nano-dispersion often directly improves flame retardancy. Therefore, the modification of the nanoplates as well as the preparation of nanocomposites becomes very important to control this dispersion. The dispersion of nanoplates functions as a prerequisite for the formation of an efficient protective layer, changing the melt flow and dripping behavior, or the improvement of the char properties. KW - Nanocomposite KW - Flame retardancy KW - 2D nanoparticle KW - Exfoliation KW - Dispersion KW - Flammability PY - 2023 SN - 978-1-032-35268-8 SN - 978-1-032-35502-3 SN - 978-1-003-32715-8 DO - https://doi.org/10.1201/9781003327158-2 SP - 23 EP - 58 PB - CRC Press CY - Boca Raton AN - OPUS4-58290 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - Ermilova, Elena T1 - Ellipsometry as a production measurement tool N2 - Spectroscopic Ellipsometry is an enormously versatile measurement tool for surfaces and thin layers. We discuss the use of ellipsometry in the context of quality control in production processes of eletrconic devices. T2 - Photonics Days Berlin Brandenburg CY - Berlin, Germany DA - 09.10.2023 KW - Ellipsometry KW - Quality control KW - Metrology PY - 2023 AN - OPUS4-59837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Silbernagl, Dorothee A1 - Szymoniak, Paulina A1 - Tavasolyzadeh, Zeynab A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - Interpenetrating networks with tuned thermal and mechanical properties N2 - Text Multiphoton lithography (MPL) has recently attracted significant research interest as a versatile tool capable of producing 2D and 3D micro- and nanoscopic features with high spatial resolution. The integrity of MPL microstructures, or their ability to respond to external stimuli, is of critical importance. However, achieving the desired properties of fabricated microcomponents for a specific application remains a challenge. In this work, we present new MPL materials based on epoxy-acrylate interpenetrating networks (IPNs). We aim at 3D microstructures, whose properties can be easily tuned by varying the ratio of the IPN components and fabrication parameters (Figure 1). The resulting library of 3D microstructures was investigated for their thermal and mechanical properties using highly-sensitive space-resolved methods. Flash scanning calorimetry revealed the influence of both, IPN composition and fabrication parameters, on glass transition temperature and material fragility. AFM force-distance curve and intermodulation methods were used to characterize the mechanical properties with a lateral resolution of 1 micron and 4 nm, respectively. The deformation, stiffness and elastic behavior are discussed in detail in relation to the morphology. Moreover, we found that some 3D IPN microstructures exhibit fully elastic behavior. Our funding encourages the further development of IPN systems as versatile and easily tunable MPL materials. T2 - Micro Nano Engineering (MNE conference) CY - Berlin, Germany DA - 25.09.2023 KW - Interpenetrating polymer network KW - Multiphoton Lithography KW - Two photon polymerisation KW - Direct laser writing KW - Polyethylene glycol diacrylate PY - 2023 AN - OPUS4-58879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Silbernagl, Dorothee A1 - Szymoniak, Paulina A1 - Tavasolyzadeh, Zeynab A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - Interpenetrating Polymer Networks with Tuned Thermal and Mechanical Properties by Multiphoton Lithography N2 - Multiphoton lithography (MPL) has recently attracted significant research interest as a versatile tool capable of fabricating 2D and 3D micro- and nanoscopic features with high spatial resolution. The integrity of MPL microstructures, or their ability to respond to external stimuli, is of critical importance. Often, the mechanically flexible micro-objects are expected to be capable of shape morphing, bending, or other motion to ensure their functionality. However, achieving the desired properties of MPL-manufactured micro components for a specific application still remains challenging. In this work, we present new MPL materials based on epoxy-acrylate interpenetrating networks (IPNs). We aim at fabrication 3D microstructures, whose properties can be easily tuned by varying the ratio of the IPN components and fabrication parameters. The studied mixtures consist of polyethylene glycol diacrylate (PEGDA) and cycloaliphatic epoxide functional groups. Consequently, tryarylsylfonium salt and cyclopentanone photoinitiator tailored for MPL were used to ensure cationic and radical polymerization, respectively. The resulting library of 3D microstructures was investigated for their thermal and mechanical properties using highly sensitive space-resolved methods. For the first time, we were able to evaluate the glass transition behavior of 3D MPL microstructures using fast scanning calorimetry. The influence of both IPN composition and fabrication parameters on glass transition temperature and material fragility was demonstrated. AFM force-distance curve and intermodulation methods were used to characterize the micromechanical properties with lateral resolution of the techniques in the range of 1 micron and 4 nm, respectively. The elastic-plastic behavior of the microarchitectures was evaluated and explained in terms of IPN morphology and thermal properties. The fabricated 3D IPN microstructures exhibit higher structural strength and integrity compared to PEGDA. In addition, IPNs exhibit high to full elastic recovery (up to 100%) with bulk modulus in the range of 4 to 6 MPa. This makes IPNs a good base material for modeling microstructures with intricate 3D designs for biomimetics and scaffold engineering. The effects of composition and MPL microfabrication parameters on the resulting IPN properties give us a better understanding of the underlying mechanisms and microfabrication-structure-property relationships. Moreover, our funding supports the further development of IPN systems as versatile and easily tunable MPL materials. T2 - Material Research Society Meeting CY - Boston, Massachusetts, USA DA - 26.11.2023 KW - Multiphoton Lithography KW - Two-photon polymerisatio KW - Interpenetrating polymer network PY - 2023 SP - 1 AN - OPUS4-59382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Knigge, Xenia A1 - Radnik, Jörg A1 - Sturm, Heinz T1 - Maskless Micropatterning of Polydopamine for versatile surface functionalization N2 - Inspired by the chemistry of mussel adhesive proteins, polydopamine (PDA has been shown as one of the most versatile platforms for altering the properties and incorporating new functionalities to nearby any material surface despite its nature. Rich chemistry of PDA enables broad variety of surface modification and diverse secondary reactions that makes it extremely interesting for a wide range of application including biomedical field, e.g., drug delivery, adhesives, cell adhesion, biosensing. Despite high potential of polydopamine, the lack of deposition control and precision in existed methods limits their applications in microdevices and miniaturized functional systems like, for example, MEMS, microfluidic and sensorics. Herein, we demonstrate a novel maskless approach for surface micropatterning with polydopamine based on Multiphoton Lithography that overcomes present limitations. Neither strong oxidants, metal ions nor adjustment of pH to alkaline is required by this technique. The spatial resolution down to 0.8 µm has been achieved which is at least an order of magnitude smaller than shown by other existed methods. We are able to control the morphology and thickness of the micropattern by altering fabrication parameters allowing structure gradient. Apart from the glass substrate, we achieved PDA patterning at surfaces of different nature such as polychlorotrifluoroethylene, polydimethylsiloxane, polyethylene terephthalate, silicon wafers, and fluorinated glass coverslips. Post-modification of polydopamine micropatterns with protein enzyme like trypsin is demonstrated to highlight its sensing potential. Presented in this work microfabrication technique empowers advanced applications of mussel-inspired materials in single-molecule bioassays, sensors and other complex microdevices. T2 - International Conference on Precision Engineering and Sustainable Manufacturing CY - Okinawa, Japan DA - 18.07.2023 KW - Multiphoton lithography KW - Polydopamine KW - Micropatterning PY - 2023 AN - OPUS4-58878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ermilova, Elena A1 - Hertwig, Andreas A1 - Weise, Matthias A1 - Grundmann, Jana A1 - Bodermann, Bernd A1 - Klapetek, Petr A1 - Hoffmann, Johannes A1 - de Preville, Sophie T1 - Imaging spectroscopic ellipsometry for investigation of energy materials and materials for nano-electronics N2 - Ellipsometry is a very powerful tool used for accurate material investigation in a wide wavelength range. It is a non-destructive and fast method. Imaging ellipsometry as a combination of optical microscopy and ellipsometry enables spatially resolved measurements when determining the layer thickness and dielectric properties of thin layers. It is known for its high polarisation sensitivity and high contrast for the surface structures. In this contribution we show the application of the imaging ellipsometry for detection of defects in energy materials and quality validation of possible reference materials for nano-electronics. Defects in wide bandgap semiconductors, in homoepitaxial SiC and heteroepitaxial GaN layers on transparent SiC substrates, can be successfully detected and classified by means of imaging ellipsometry. Correlation of imaging ellipsometry results with results from complementary techniques such as white light interference microscopy as well as atomic force microscopy contribute to understanding of surface topography and defect formation mechanisms. We discuss the potential of different methods for analysing ellipsometric map data for monitoring the defect densities. Electric properties of materials at the nanoscale can be investigated by means of scanning probe microscopy methods such as scanning microwave microscopy and conductive atomic force microscopy. However, development of new robust and easy-to-use calibration methods and calibration standards is essential to increase the traceability of these methods and allow their broad application in industry. We show how imaging spectroscopic ellipsometry can be used for development and monitoring of processing quality of patterned reference samples based on indium tin oxide (ITO) layer with different thickness and conductivity. T2 - 12th Workshop on Spectroscopic Ellipsometry (WSE) CY - Prague, Czech Republic DA - 18.09.2023 KW - Ellipsometry KW - Thin Films KW - Transparent Conductive Oxides KW - Energy materials KW - White light interference microscopy KW - Nanoelectronics KW - Wide-bandgap semiconductors PY - 2023 AN - OPUS4-59340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ermilova, Elena A1 - Weise, Matthias A1 - Hertwig, Andreas T1 - Multi-scale optical imaging methods for quality control of electronic devices N2 - The presentation demonstrates an application of multi-scale optical imaging methods such as spectroscopic imaging ellipsometry and white light interference microscopy for the investigation of wide-bandgap semiconductors for power electronics. The capabilities of these methods for the development of new reference calibration samples for scanning microwave microscopes (SMM) and conductive atomic force microscopes (C AFM) are discussed. T2 - Photonics Days Berlin Brandenburg 2023 CY - Berlin, Germany DA - 09.10.2023 KW - Imaging ellipsometry KW - White light interference microscopy KW - Power electronics KW - Reference standards KW - Metrology KW - Nanoelectronics PY - 2023 AN - OPUS4-59838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abram, Sarah-Luise A1 - Mrkwitschka, Paul A1 - Thünemann, Andreas A1 - Radnik, Jörg A1 - Häusler, I. A1 - Bresch, Harald A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute T1 - Iron Oxide Nanocubes as a New Certified Reference Material for Nanoparticle Size Measurements N2 - The rational design and increasing industrial use of nanomaterials require a reliable characterization of their physicochemical key properties like size, size distribution, shape, and surface chemistry. This calls for nanoscale reference materials (nanoRMs) for the validation and standardization of commonly used characterization methods closely matching real-world nonspherical nano-objects. This encouraged us to develop a nonspherical nanoRM of very small size consisting of 8 nm iron oxide nanocubes (BAM-N012) to complement spherical gold, silica, and polymer nanoRMs. In the following, the development and production of this nanoRM are highlighted including the characterization by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) as complementary methods for size and shape parameters, homogeneity and stability studies, and calculation of a complete uncertainty budget of the size features. The determination of the nanocubes’ edge length by TEM and SAXS allows a method comparison. In addition, SAXS measurements can also provide the mean particle number density and the mass concentration. The certified size parameters, area equivalent circular diameter and square edge length, determined by TEM with a relative expanded uncertainty below 9%, are metrologically traceable to a natural constant for length, the very precisely known (111) lattice spacing of silicon. Cubic BAM-N012 qualifies as a certified nanoRM for estimating the precision and trueness, validation, and quality assurance of particle size and shape measurements with electron microscopy and SAXS as well as other sizing methods suitable for nanomaterials. The production of this new iron oxide nanocube RM presents an important achievement for the nanomaterial community, nanomaterial manufacturers, and regulators. KW - Certification KW - SAXS KW - Homogeneity KW - Nano KW - Particle KW - Iron oxide KW - Quality assurance KW - Reference material KW - Size KW - Electron microscopy KW - Stability KW - Shape PY - 2023 DO - https://doi.org/10.1021/acs.analchem.3c00749 SN - 0003-2700 VL - 95 IS - 33 SP - 12223 EP - 12231 PB - American Chemical Society CY - Columbus, Ohio AN - OPUS4-58176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Giovannozzi, A. A1 - Rossi, A. A1 - Kovac, J. A1 - Ekar, J. A1 - Goenaga-Infante, H. A1 - Clarkson, C. A1 - Clifford, C. A1 - Cant, D. A1 - Minelli, C. A1 - Reithofer, M. A1 - Lindner, G. A1 - Venzago, C. A1 - Bohmer, N. A1 - Drexler, C.-P. A1 - Schedler, U. A1 - Thiele, T. A1 - Lechart, F. A1 - Kästner, B. A1 - Sjövall, P. A1 - Johnston, L. A1 - Tan, Gunnar A1 - Radnik, Jörg T1 - Standardised Measurements of Surface Functionalities on Nanoparticles N2 - Engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely fabricated for industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, opto-electronics, and information storage which improve the quality of life and European prosperity. NP function, performance, interaction with biological species, and environmental fate are largely determined by their surface functionalities. Standardized repeatable surface characterization methods are therefore vital for quality control of NPs, and to meet increasing concerns regarding their safety. Therefore, industry, regulatory agencies, and policymakers need validated traceable measurement methods and reference materials. This calls for fit-for-purpose, validated, and standardized methods, and reference data and materials on the surface chemistry of engineered NPs. Here, we present a concept for the development of such standardized measurement protocols utilizing method cross-validation and interlaboratory comparisons (ILCs) with emphasis on both advanced measurement methods such as quantitative Nuclear Magnetic Resonance (qNMR), X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS) and cost-efficient, non-surface specific methods like optical assays and electrochemical titration methods. T2 - European Partnership on Metrology 2023 Review Conference CY - Amsterdam, Netherlands DA - 07.11.2023 KW - Surface chemistry KW - Quality assurance KW - Traceability PY - 2023 AN - OPUS4-59142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Matthews, Lauren T1 - Breaking the Wall of Rapid Diagnostics N2 - In this short presentation the diagnostics, biomarkers and analysis are interrelated. The specificity and sensitivity of the DNA structures as well as the high-throughput option of the nanopore sensing are discussed. T2 - Falling Walls Lab Berlin-Adlershof CY - Berlin, Germany DA - 21.09.2023 KW - Nanopipettes KW - Sensing KW - Diagnosis KW - DNA structures PY - 2023 AN - OPUS4-60450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dal Molin, E. S. A1 - Henning, L. M. A1 - Müller, J. T. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Bekheet, M. F. A1 - Gurlo, A. A1 - Simon, U. T1 - Robocasting of ordered mesoporous silica‐based monoliths: Rheological, textural, and mechanical characterization N2 - Hierarchically porous, high‐surface‐area silica materials are excellent candidates for multiple applications like catalysis and environmental remediation. Shaping these materials with additive manufacturing (AM) techniques, like robocasting, could enable their use with the benefit of on‐demand, customized shaping and maximizing performance. Herein, ordered mesoporous silica COK‐12 slurries were robocasted into monoliths, containing different ratios of uncalcined COK‐12 and sodium bentonite (0–25 wt.%). The rheology of the mixed slurries is characterized by lower flow indexes (0.69 vs. 0.32) and higher yield stresses (96 vs. 259 Pa) compared to pure COK‐12 ones. Monoliths were printed in woodpile structures and calcined at 600°C. Micro‐CT measurements showed a linear shrinkage of 25% after calcination. Mechanical characterization showed increased uniaxial strength (0.20 ± 0.07 to 1.0 ± 0.3 MPa) with increasing binder/solids ratio from 13 to 25%. The amorphous, mesoporous structure of COK‐12 was retained. The structures exhibited open porosities of 52 ± 4% and showed higher specific mesopore volumes, and increased average mesopore size (6 vs. 8 nm) compared to COK‐12. Small‐angle x‐ray scattering analysis revealed an increased lattice parameter (10.3 vs. 11.0 nm) and reduced wall thickness (3.1 nm vs. 4.1 nm) of the COK‐12 in the monoliths. These properties indicate suitability for their application as porous supports and adsorbents. KW - Industrial and Manufacturing Engineering KW - Additive manufacturing KW - OMS KW - Porous materials KW - Robocasting KW - X-ray scattering KW - MOUSE PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582503 DO - https://doi.org/10.1002/nano.202300109 VL - 4 IS - 11-12 SP - 615 EP - 631 PB - Wiley-VCH GmbH AN - OPUS4-58250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - X-ray Scattering USAXS/SAXS/WAXS (/XRD/PDF) N2 - A ten minute introduction to the technique of X-ray scattering. This talk discusses the foundation and the resulting morphological parameters that can be obtained from the technique. The talk is prepared for discussion within the framework of the OECD REACH guideline for nanomaterials. T2 - Digitaler Info-Tag "Nano or not Nano" CY - Berlin, Germany DA - 16.02.2023 KW - X-ray scattering KW - BAM Academy KW - SAXS KW - XRD KW - WAXS KW - Nanomaterial KW - REACH KW - OECD KW - Guideline PY - 2023 AN - OPUS4-57013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Chambers, Aaron P. A. A1 - Breßler, Ingo T1 - Glimpses of the Future ✨: Advancing X-ray Scattering in an Automated Materials Research Laboratory N2 - In our (dramatically understaffed) X-ray scattering laboratory, developing a systematic, holistic methodology1 let us provide scattering and diffraction information for more than 2100 samples for 200+ projects led by 120+ collaborators. Combined with automated data correction pipelines, and our analysis and simulation software, this led to more than 40 papers2 in the last 5 years with just over 2 full-time staff members. This year, our new, modular synthesis platform has made more than 1000 additional samples for us to analyse and catalogue. By virtue of the automation, the synthesis of these samples is automatically documented in excruciating detail, preparing them for upload and exploitation in large-scale materials databases. Having developed these proof-of-concepts, we find that materials research itself is changed dramatically by automating dull tasks in a laboratory. This talk is intended to spark ideas and invite collaborations by providing an overview of: 1) the current improvements in our wide-range X-ray scattering laboratory methodology, 2) Introduce some of our open-source analysis and simulation software, touching on scattering, diffraction and PDF, and 3) introducing our open, modular robotic platform for systematic sample preparation. Finally, the remaining bottlenecks and points of attention across all three are highlighted. T2 - Swiss Society for Crystallography (SSCr) annual meeting CY - Zurich, Switzerland DA - 08.09.2023 KW - Lab automation KW - Fourier transforms KW - X-ray scattering KW - Robotic synthesis KW - Data stewardship KW - Holistic experimental procedures KW - MOUSE KW - Metal-organic frameworks KW - High-throughput measurements PY - 2023 AN - OPUS4-58237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Chambers, Aaron P. A. A1 - Breßler, Ingo T1 - Digital Everything: X-ray Scattering and Synthesis Laboratories N2 - In our (dramatically understaffed) X-ray scattering laboratory, developing a systematic, holistic methodology let us provide scattering and diffraction information for more than 2100 samples for 200+ projects led by 120+ collaborators. Combined with automated data correction pipelines, and our analysis and simulation software, this led to more than 40 papers in the last 5 years with just over 2 full-time staff members. This year, our new, modular synthesis platform has made more than 1000 additional samples for us to analyse and catalogue. By virtue of the automation, the synthesis of these samples is automatically documented in excruciating detail, preparing them for upload and exploitation in large-scale materials databases. This talk is intended to spark ideas and invite collaborations by providing an overview of: 1) the current improvements in our wide-range X-ray scattering laboratory methodology, and 2) introducing our open, modular robotic platform for systematic sample preparation. T2 - Seminar at KIT CY - Karlsruhe, Germany DA - 17.08.2023 KW - Lab automation KW - Data stewardship KW - Scattering KW - X-ray scattering KW - Automated synthesis KW - Data pipelines PY - 2023 AN - OPUS4-58234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Everything SAXS Part 2: Data Processing, Workflow and Pitfalls N2 - The second talk for the Swiss Society for Crystallography (SSCr) workshop on SAXS will highlight the data processing challenges, holistic experimental workflow developments, and the pitfalls. In particular, the following items will be addressed: - The importance of data processing and estimating uncertainty - A universal correction pipeline – away with the headaches, at least for this step! - Experiment planning part 2, some tips and advice to improve your corrected data. - Sample preparation, background selection, some tips and advice to improve your corrected data. - Automate for your mental well-being; electronic logbooks, measurement catalogs and workflow management software - Life on the edge: several pitfalls to avoid… T2 - Topical workshop of the Swiss Society for Crystallography CY - Zurich, Switzerland DA - 08.09.2023 KW - X-ray scattering KW - MOUSE KW - Data processing KW - Uncertainties KW - Pitfalls PY - 2023 AN - OPUS4-58236 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Everything SAXS Part 1: Introduction, Sample Requirements and Measurement "Space" N2 - This talk for the Swiss Society for Crystallography (SSCr) workshop on SAXS will introduce scattering from various angles, focusing in particular on: - Information content of X-ray scattering experiments, three entry points… - An introduction to Fourier Transforms - Sample criteria, compatibility, and selection - Key indicators of a measurement – where is the information? - Key indicators of measurement quality - Experiment planning, the basics T2 - Topical workshop of the Swiss Society for Crystallography CY - Zurich, Switzerland DA - 08.09.2023 KW - X-ray scattering KW - Data stewardship KW - Measurement science KW - MOUSE KW - Holistic experiment approaches PY - 2023 AN - OPUS4-58235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Laskina, Sofya A1 - Naik, Aakash Ashok A1 - Smales, Glen Jacob A1 - George, Janine T1 - “Ultima Ratio”: Multi-scale, high-resolution 3D-FFT scattering pattern simulations N2 - This talk highlights a proof-of-concept that demonstrates the ability to calculate high-resolution Fourier transforms. These can be combined with multi-scale modeling to simulate scattering over a wide range, from small-angle scattering to XRD and PDF. T2 - Shapespyer/MuSSIC launch workshop CY - Didcot, UK DA - 20.02.2023 KW - X-ray scattering KW - Simulation KW - Fourier Transform KW - 3D KW - High resolution KW - Multi-scale PY - 2023 AN - OPUS4-57031 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kolmangadi, Mohamed A. A1 - Zhuoqing, L. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Wuckert, E. A1 - Raab, A. A1 - Laschat, S. A1 - Huber, P. A1 - Schönhals, Andreas T1 - Confinement-suppressed phase transition and dynamic self-assembly of ionic superdiscs in ordered nanochannels: Implication for nanoscale applications N2 - Ionic Liquid Crystals are ionic liquids that exhibit liquid crystalline mesomorphism together with ionic conductivity. As known confined liquid crystal mesophases can show an anomalous dynamics and phase behavior. Investigations considering the factors controlling the macroscopic properties of ILCs in confinement are scare in the literature. This study reports the molecular mobility, and the phase transition behavior of a guanidinium based columnar ILC confined in the nanopores of self-ordered anodic aluminum oxide membranes of various pore diameters (25 – 180 nm) using Broadband Dielectric Spectroscopy (BDS), calorimetry and X-ray scattering. It is aimed to reveal in which way the pore size as well as the pore surface wettability (hydrophobic or hydrophilic) alters the molecular dynamics, and phase transition behavior for this system. These properties are crucial for applications. The DSC investigations reveal: (i) the phase transition temperature for the transition from the plastic crystalline to the crystalline-liquid state has non-monotonic dependence versus the inverse pore diameter and (ii) the transition from the liquid crystalline to the isotropic phase is suppressed for all nanoconfined samples. This transition suppressed in the thermal signal was evidenced by BDS and X-ray scattering. It is discussed as a continuous phase transition taking place in the pores instead of a discontinuous first order transition as observed for the bulk. BDS investigations show different relaxation processes for the bulk and the nanoconfined ILC. Molecular origins for various relaxation processes are discussed and suggested. It is further shown that the self-assembly of this ILC is dynamic in nature which might apply for other ILCs too. The obtained results will have implications for the nanoscale applications of ionic liquid crystals. KW - Ionic Liquid Crystals PY - 2023 DO - https://doi.org/10.1021/acsanm.3c02473 VL - 6 IS - 17 SP - 15673 EP - 15684 PB - ACS AN - OPUS4-58210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krauss, S. W. A1 - Eckardt, M. A1 - Will, J. A1 - Spiecker, E. A1 - Siegel, R. A1 - Dulle, M. A1 - Schweins, R. A1 - Pauw, Brian Richard A1 - Senker, J. A1 - Zobel, M. T1 - H-D-isotope effect of heavy water affecting ligand-mediated nanoparticle formation in SANS and NMR experiments N2 - An isotopic effect of normal (H2O) vs. heavy water (D2O) is well known to fundamentally affect structure and chemical properties of proteins, for instance. Here we correlate results from small angle X-ray and neutron scattering (SAXS, SANS) with high-resolution scanning transmission electron microscopy to track the evolution of CdS nanoparticle size and crystallinity from aqeuous solution in presence of the organic ligand ethylenediaminetetraacetate (EDTA) at room temperature in both H2O and D2O. We provide evidence via SANS experiments that exchanging H2O by D2O impacts nanoparticle formation by changing the equilibria and dynamics of EDTA clusters in solution as investigated by nuclear magnetic resonance. The colloidal stability of the CdS nanoparticles, covered by a layer of [Cd(EDTA)]2- complexes, is significantly reduced in D2O despite the strong stabilizing effect of EDTA in suspensions of normal water. Hence, conclusions about nanoparticle formation mechanisms from D2O solutions can bare limited transferability to reactions in normal water due to isotopic effects, which thus need to be discussed for contrast match experiments. KW - General Materials Science KW - Quantum dots KW - CdS KW - Deuterium KW - X-ray scattering KW - MOUSE PY - 2023 DO - https://doi.org/10.1039/D3NR02419A SN - 2040-3364 VL - 15 IS - 40 SP - 16413 EP - 16424 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Luminescent multifunctional nanostructures for sensing and theranostics applications N2 - An overview of the work carried out at LEMAF - Laboratory of Spectroscopy of Functional Materials at IFSC/USP was given. The work presented focus on the design, production and functional characterization of multifunctional nanoparticles. T2 - NANOANDES - Latin American School on Nanomaterials and Appllications CY - Araraquara, SP, Brazil DA - 10.10.2023 KW - Multifunctional nanoparticles KW - Upconversion nanoparticles KW - Quantum dots KW - Noble metal nanoparticles PY - 2023 AN - OPUS4-60363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Luminescent multifunctional nanostructures for sensing and theranostics applications N2 - The research carried out at the Laboratory of Spectroscopy of Functional Materials at IFSC/USP, in Brazil, is focused on the synthesis and structural-property correlation of luminescent materials including rare-earth (RE) doped glasses, ceramics and hybrid host-guest materials. For the past five years, we have been particularly interested in the development of single- and multifunctional nanosystems based on core-shell upconversion nanoparticles (UCNP) associated with dyes, organometallic complexes and other organic molecules, for biophotonic and sensing applications. In these systems, we take advantage of energy transfer between the UCNPs and the molecules to either supress or enhance luminescent response. Examples include the possibility of bioimaging and photodynamic therapy of bacteria and cancer cells, simultaneous magnetothermia and thermometry, localized O2 sensing, fast detection and quantification of biological markers (e.g. kidney disease) and microorganisms. On what concerns the development of luminescent sensors - a recently started project, our aim is to develop paper-based platforms for point-of-care devices. In this presentation, an overview of our contributions for the past years and our future aims will be presented with several examples. T2 - ICL2023 - 20th International Conference on Luminescence CY - Paris, France DA - 27.08.2023 KW - Upconversion KW - Sensing KW - Theranostics KW - Nanoparticles KW - Photodynamic therapy PY - 2023 AN - OPUS4-60362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bennet, Francesca A1 - Opitz, R. A1 - Ghoreishi, N. A1 - Plate, K. A1 - Barnes, J.-P. A1 - Bellew, A. A1 - Bellu, A. A1 - Ceccone, G. A1 - de Vito, E. A1 - Delcorte, A. A1 - Franquet, A. A1 - Fumageli, F. A1 - Gilliland, D. A1 - Jungnickel, H. A1 - Lee, T.G. A1 - Poleunis, C. A1 - Rading, D. A1 - Shon, H.K. A1 - Spampinato, V. A1 - Son, J.G. A1 - Wang, F. A1 - Wang, Y.-C. A. A1 - Zhao, Y. A1 - Roloff, A. A1 - Tentschert, J. A1 - Radnik, Jörg T1 - VAMAS TWA2 interlaboratory comparison: Surface analysis of TiO2 nanoparticles using ToF-SIMS N2 - Due to the extremely high specific surface area of nanoparticles and corresponding potential for adsorption, the results of surface analysis can be highly dependent on the history of the particles, particularly regarding sample preparation and storage. The sample preparation method has, therefore, the potential to have a significant influence on the results. This report describes an interlaboratory comparison (ILC) with the aim of assessing which sample preparation methods for ToF-SIMS analysis of nanoparticles provided the most intra- and interlaboratory consistency and the least amount of sample contamination. The BAM reference material BAM-P110 (TiO2 nanoparticles with a mean Feret diameter of 19 nm) was used as a sample representing typical nanoparticles. A total of 11 participants returned ToF-SIMS data,in positive and (optionally) negative polarity, using sample preparation methods of “stick-and-go” as well as optionally “drop-dry” and “spin-coat.” The results showed that the largest sources of variation within the entire data set were caused by adventitious hydrocarbon contamination or insufficient sample coverage, with the spin-coating protocol applied in this ILC showing a tendency toward insufficient sample coverage; the sample preparation method or the participant had a lesser influence on results. KW - Secondary Ion Mass Spectrometry KW - VMAAS KW - Titania KW - Interlaboratory comparison KW - Reproducibility PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582290 DO - https://doi.org/10.1116/6.0002814 SN - 0734-2101 VL - 41 IS - 5 SP - 053210-1 EP - 053210-13 PB - AIP (American Institute of Physics) AN - OPUS4-58229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hallier, Dorothea C. A1 - Smales, Glen Jacob A1 - Seitz, H. A1 - Hahn, Marc Benjamin T1 - Inside back cover for the article "Bio-SAXS of single-stranded DNA-binding proteins: Radiation protection by the compatible solute ectoine" N2 - Showcasing research from the Federal Institute for Material Research and Testing Berlin and Fraunhofer Institute for Celltherapy and Immunology Branch Bioanalytics and Bioprocesses Potsdam. Bio-SAXS of single-stranded DNA-binding proteins: Radiation protection by the compatible solute ectoine. We aimed to increase the possible undisturbed exposure time during bio-SAXS measurements of single-stranded DNA-binding proteins. Therefore small angle X-ray scattering was performed on Gene-V Protein (G5P/GVP), which is involved in DNA repair processes. To achieve this, irradiations were performed in presence and absence of the hydroxyl-radical scavenger and osmolyte Ectoine, which showed efficient radiation protection and prevented protein aggregation, thus allows for a non-disturbing way to improve structure-determination of biomolecules. KW - Bio-SAXS KW - BioSAXS KW - Cosolute KW - DNA KW - Dosimetry KW - Ectoin KW - Ectoine KW - G5P KW - GVP KW - Geant4 KW - Geant4-DNA KW - Ionizing radiation damage KW - LEE KW - McSAS3 KW - Microdosimetry KW - Monte-Carlo simulations KW - OH Radical KW - OH radical scavenger KW - Protein KW - Protein unfolding KW - Radiation damage KW - Radical Scavenger KW - SAXS KW - Single-stranded DNA-binding proteins KW - Small-angle xray scattering KW - Topas-MC KW - Topas-nBio KW - TopasMC KW - X-ray scattering KW - Particle scatterin simulations KW - ssDNA PY - 2023 DO - https://doi.org/10.1039/D3CP90056H SN - 1463-9076 SN - 1463-9084 VL - 25 IS - 7 SP - 5889 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-57006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Xps/Haxpes at (core shell) nanoparticles N2 - The principles of (Hard) X-ray photoelectron spectroscopy and some application in the field of (core-shell) nanoparticles will be presented. The presentation should answer hoe to get reliable results. Furthermore, examples of the correlation between physical-chemical measurments and toxicological results are given which are crucial for the risk assessment of nanoparticles. T2 - Training Course Metrological Determination of Micro and Nano Contaminants in Food CY - Berne, Switzerland DA - 05.09.2023 KW - X-ray photoelectron spectroscopy KW - Core-shell nanoparticles KW - Reliabiilty KW - Risk assessment PY - 2023 AN - OPUS4-59496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Habibimarkani, Heydar A1 - John, Elisabeth A1 - Schusterbauer, Robert A1 - Abram, Sarah-Luise A1 - Prinz, Carsten A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Investigating the Synergistic Effects of FeNi-Oxide Nanoparticles as Water Electrolysis Catalysts: A Multi-Technique Characterization Approach N2 - Electrocatalysis is and will continue to play a central role in the development of a new and modern sustainable economy, especially for chemicals and fuels. The storage of excess electrical energy into chemical energy by splitting water into hydrogen and oxygen is a feasible solution in this economic sector. A major drawback of electrical energy lies in the storage. Therefore, hydrogen is discussed as promising alternative. Fortunately, this issue can be effectively addressed through the implementation of chemical storage mechanisms. Due to their abundance on Earth and inherent stability in alkaline solutions, transition-metal oxides have become one of several viable alternatives to conventional noble-metal catalysts. Since FeNi oxide is one of the most active oxygen evolution reaction (OER) electrocatalysts for alkaline water electrolysis, it has been the subject of extensive research. A series of different types of FeNi oxide nanoparticles (NPs) with atomic ratios covering a broad range, and various sizes with specific stoichiometric and non-stoichiometric iron and nickel ratios was synthesized and characterized by the combination of surface analysis techniques, such as time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). The morphology was studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which revealed the coexistence of mixed and unmixed iron and nickel NPs with comparable sizes in the range of 30–40 nm across all ratios. The synthesis technique displayed control over the iron-nickel ratio, as evidenced by energy dispersive X-ray spectroscopy (EDS) data. The presence of magnetite (Fe3O4) was detected in all samples investigated by X-ray diffraction (XRD). Furthermore, the existence of nickel ferrite (NiFe2O4) was shown in the Fe2Ni by XRD analysis. For the cyclic voltammetry (CV) measurements, the NPs were deposited onto glassy carbon electrodes using Nafion® as an ionomer, and 1 M KOH was employed as the electrolyte. Subsequently, the NPs/Nafion® electrode was transferred into the ToF-SIMS chamber to allow surface analysis and depth profiling. The ToF-SIMS analysis revealed distinct peaks corresponding to Fe, Ni, and other peaks associated with Nafion®, whereas a straightforward correlation between the Ni.Fe ratio and the SIMS peak pattern is not possible. The catalytic activity towards OER was evaluated through CV measurements, where the Fe2Ni3 ratio exhibited the most favorable performance, displaying a lower overpotential. T2 - European Materials Research Society (E-MRS) Fall 2023 CY - Warsaw, Poland DA - 18.09.2023 KW - FeNi-Oxide NPs KW - ToF-SIMS KW - Catalysts KW - OER PY - 2023 AN - OPUS4-59139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Habibimarkani, Heydar A1 - John, Elisabeth A1 - Schusterbauer, Robert A1 - Abram, Sarah-Luise A1 - Prinz, Carsten A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Complementary Characterization of FeNi-Oxide Nanoparticles as Catalysts for Water Electrolysis combining Electron Microscopy, EDS, XRD, ToF-SIMS and Electrochemical Analysis N2 - Electrocatalysis is and will continue to play a central role in the development of a new and modern sustainable economy, especially for chemicals and fuels. The storage of excess electrical energy into chemical energy by splitting water into hydrogen and oxygen is a feasible solution in this economic sector. A major drawback of electrical energy lies in the storage. Therefore, hydrogen is discussed as promising alternative. Fortunately, this issue can be effectively addressed through the implementation of chemical storage mechanisms. Due to their abundance on Earth and inherent stability in alkaline solutions, transition-metal oxides have become one of several viable alternatives to conventional noble-metal catalysts. Since FeNi oxide is one of the most active oxygen evolution reaction (OER) electrocatalysts for alkaline water electrolysis, it has been the subject of extensive research. A series of different types of FeNi oxide nanoparticles (NPs) with atomic ratios covering a broad range, and various sizes with specific stoichiometric and non-stoichiometric iron and nickel ratios was synthesized and characterized by the combination of surface analysis techniques, such as time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). The morphology was studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which revealed the coexistence of mixed and unmixed iron and nickel NPs with comparable sizes in the range of 30–40 nm across all ratios. The synthesis technique displayed control over the iron-nickel ratio, as evidenced by energy dispersive X-ray spectroscopy (EDS) data. The presence of magnetite (Fe3O4) was detected in all samples investigated by X-ray diffraction (XRD). Furthermore, the existence of nickel ferrite (NiFe2O4) was shown in the Fe2Ni by XRD analysis. For the cyclic voltammetry (CV) measurements, the NPs were deposited onto glassy carbon electrodes using Nafion® as an ionomer, and 1 M KOH was employed as the electrolyte. Subsequently, the NPs/Nafion® electrode was transferred into the ToF-SIMS chamber to allow surface analysis and depth profiling. The ToF-SIMS analysis revealed distinct peaks corresponding to Fe, Ni, and other peaks associated with Nafion®, whereas a straightforward correlation between the Ni.Fe ratio and the SIMS peak pattern is not possible. The catalytic activity towards OER was evaluated through CV measurements, where the Fe2Ni3 ratio exhibited the most favorable performance, displaying a lower overpotential. T2 - SIMS Europe 2023 CY - Nottingham, England DA - 02.09.2023 KW - FeNi-Oxide NPs KW - ToF-SIMS KW - Catalysts KW - OER PY - 2023 AN - OPUS4-59143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Graphene Flagship - Achievements and the way forward N2 - The activities of the Graphene in the field of standardization will be summarized. The future activities of the Graphene Flagship CSA which was established recently will be presented with the focus on future challenges in standardization and regulation of graphene and other 2D materials. T2 - Harmonisation & Standardisation of Test Methods for Nano- and Advanced Materials CY - Online meeting DA - 22.11.2023 KW - 2D materials KW - Regulation KW - Standardization PY - 2023 UR - https://macrame-project.eu/macrame-meetings-workshops/ws_hamonisation_standardisation_2023/ AN - OPUS4-59497 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pellegrino, F. A1 - Rossi, A. A1 - Sordello, A. A1 - Sordello, F. A1 - Alladio, E. A1 - Santalucia, R. A1 - Primieri, A. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg A1 - Maurino, V. T1 - Safe-by-Design Synthesis of 2D Materials N2 - The use of a dedicated approach: DoE for synthesis + characterization + Chemometric Analysis, is a valuable method for the safe-by-design synthesis of several types of materials for large-scale application in catalysis, energy harvesting, biomedical and environmental applications, etc. This approach is not only related to the material synthesis, but can be expanded to any type of molecules/material, with relevant saving of solvents, energy and times. T2 - Congress of the Environment and Cultural Heritage - Section of Italian Chemistry Society CY - Ischia, Italy DA - 28.09.2023 KW - Safe-by-design KW - 2D materials KW - Synthesis KW - Chemometric analysis PY - 2023 UR - https://www.congressodabc.it/ AN - OPUS4-59780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - Ermilova, Elena A1 - Weise, Matthias A1 - Schiek, Manuela A1 - dePréville, Sophie A1 - Hoffmann, Johannes T1 - Ellipsometry as a tool for electrical metrology - Referencing electrical properties of thin layers with TCO materials N2 - Ellipsometry is a highly valuable technology for bridging different measurement methods. As a fast, highly sensitive, and non-destructive optical technique with low environmental requirements, it is ideal for transporting measurement accuracy and for up-scaling measurements in the production environment. It can be used for highly precise determination of properties, material identity and correctness confirmation, as well as defect detection. Comparable, traceable, and accurate electrical measurements, especially at small scales are one of the biggest challenges in the development of the electrical and electronic devices of the future. In this project, we develop structured thin layer systems of the transparent conductive material indium tin oxide (ITO) to prove the concept of using these systems as standards for conductivity and permittivity. The layers are produced in a reactive magnetron sputtering process from raw ITO targets with additional oxidation achieved by oxygen injection. We present results of a study correlating the coating process conditions with the properties of the final layer material. We found that especially the temperature development during coating is of key importance and determines the layer properties to a large extent. We will discuss questions of homogeneity and reproducibility of the coating processes used. The finished layers undergo lithographic structuring and etching to produce patterns to serve as reference structures for scanning probe electrical measurements. TCOs have a large variety of applications. In this work we also study the usability of ITO for other purposes and investigate the stability of this material under application conditions. T2 - 12th Workshop Ellipsometry 2023 CY - Prague, Czech Republic DA - 18.09.2023 KW - Thin Films KW - Transparent Conductive Oxides KW - Ellipsometry KW - Electrical Properties KW - Nanoelectronics PY - 2023 AN - OPUS4-58410 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Chambers, Aaron P. A. A1 - Breßler, Ingo T1 - Glimpses of the future: a “full stack”, highly automated materials research laboratory N2 - In our (dramatically understaffed) X-ray scattering laboratory, developing a systematic, holistic methodology let us provide scattering and diffraction information for more than 2100 samples for 200+ projects led by 120+ collaborators. Combined with automated data correction pipelines, and our analysis and simulation software, this led to more than 40 papers in the last 5 years with just over 2 full-time staff members. This year, our new, modular synthesis platform has made more than 1000 additional samples for us to analyse and catalogue. By virtue of the automation, the synthesis of these samples is automatically documented in excruciating detail, preparing them for upload and exploitation in large-scale materials databases. Having developed these proof-of-concepts, we find that materials research itself is changed dramatically by automating dull tasks in a laboratory. This talk is intended to spark ideas and collaborations by providing an overview of: 1) the current improvements in our scattering laboratory methodology, 2) introducing our open, modular robotic platform that is used for systematic sample preparation, and 3) demonstrating the data structure of the synthesis logs and measurements. Finally, the remaining bottlenecks and points of attention across all three are highlighted. T2 - FAIRmat seminar CY - Berlin, Germany DA - 28.09.2023 KW - Data stewartship KW - Metadata collection KW - Laboratory methodology KW - MOUSE KW - Robotics KW - Lab automation KW - Holistic science PY - 2023 UR - https://www.fairmat-nfdi.eu/events/brian-pauw AN - OPUS4-58464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Bresch, Harald T1 - VAMAS Regional Report Germany N2 - Regional standardisation activities and how VAMAS can help in any way to promote activities are reported. Activities related to organisational updates, government initiatives/priorities (especially related to Materials), details of any strategy documents publicly available, networks within Germany and how we engage are presented. T2 - Versailles Project on Advanced Materials and Standards (VAMAS) 48th Steering Committee Meeting CY - New Delhi, India DA - 09.10.2023 KW - VAMAS KW - Standardisation PY - 2023 UR - https://www.nplindia.org/index.php/amcsnzt_2023/ AN - OPUS4-58572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Durlo Tambara, Luis Urbano A1 - Matos, P. R. de A1 - Lima, G. T. S. A1 - Silvestro, L. A1 - Rocha, J.C. A1 - Campos, C. E. M. de A1 - Gleize, P. J. P. T1 - Influence of Nanosilica and Superplasticizer Incorporation on the Hydration, Strength, and Microstructure of Calcium Sulfoaluminate Cement Pastes N2 - This study investigated the effect of incorporating three types of nanosilica (NS), two powders, and one colloidal suspension on the hydration, strength, and microstructure of calcium sulfoaluminate (CSA) cement pastes prepared with and without a superplasticizer (SP). X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), and compressive strength tests were performed after 2, 5, and 28 days of hydration. The results showed that both NS powders delayed cement hydration at an early age, which was attributed to particle agglomeration (confirmed by dynamic light scattering). Whereas well-dispersed colloidal NS did not significantly affect the hydration of CSA at the investigated ages. SP incorporation improved the dispersion of CSA cement particles, resulting in a 10% increase in the degree of hydration of ye’elimite at 28 days for the system without NS. Conversely, when the SP was incorporated in NS-containing mixtures, it hindered cement hydration of the systems with powdered NS, but did not significantly affect the cement hydration of the system containing colloidal NS. The SEM images suggested that the SP changed the ettringite morphology, thereby negatively affecting the mechanical strength of the CSA pastes. KW - Calcium sulfoaluminate (CSA) cement KW - Nanosilica (NS) KW - Hydration KW - Microstructure PY - 2023 DO - https://doi.org/10.1061/JMCEE7.MTENG-15570 SN - 0899-1561 VL - 35 IS - 7 SP - 04023216 PB - ASCE AN - OPUS4-57404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Dietrich, Paul M. A1 - Radnik, Jörg T1 - The change of DNA AND PROTEIN radiation damage upon hydration: In-situ observations by near-ambient-pressure XPS N2 - X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS experiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. Our results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further. T2 - Dyson Conference 2023 CY - Prague, Czech Republic DA - 24.04.2023 KW - Base damage KW - Base loss KW - Cancer treatment KW - DNA KW - DNA radiation damage KW - Direct damage KW - Dissociative electron attachment (DEA) KW - Dissociative electron transfer (DET) KW - Dosimetry KW - Double-strand break (DSB) KW - ESCA KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Hydrated DNA KW - Hydrated electron KW - Hydration shell KW - Hydroxyl radical KW - Indirect damage KW - Ionization KW - Ionisation KW - LEE KW - Low energy electrons KW - MCS KW - Microdosimetry KW - NAP-XPS KW - Near ambient pressure xray photo electron spectroscopy KW - Net-ionization reaction KW - OH radical KW - PES KW - Particle scattering KW - Prehydrated electron KW - Presolvated electron KW - Quasi-direct damage KW - ROS KW - Radiation damage KW - Radiation therapy KW - Radical KW - Radiolysis KW - Radiotherapy KW - Reactive oxygen species KW - Simulation KW - Single-strand break (SSB) KW - TOPAS KW - TOPAS-nbio KW - XPS KW - Xray KW - Xray photo electron spectrocopy KW - G5P KW - Protein KW - Single-stranded DNA-binding proteins PY - 2023 AN - OPUS4-57406 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -