TY - GEN ED - Simon, P. ED - Ihlemann, J. ED - Bonse, Jörn T1 - Laser-generated periodic nanostructures N2 - This book is a reprint collection of articles from the Special Issue published online in the open access journal Nanomaterials. KW - Laser-induced periodic surface structures (LIPSS) KW - Direct laser-interference patterning (DLIP) KW - Applications KW - Numerical simulations PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535146 UR - https://www.mdpi.com/books/pdfview/book/4426 SN - 978-3-0365-2027-8 SN - 978-3-0365-2028-5 DO - https://doi.org/10.3390/books978-3-0365-2028-5 SP - 1 EP - 328 PB - MDPI CY - Basel AN - OPUS4-53514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, P. A1 - Ihlemann, J. A1 - Bonse, Jörn T1 - Editorial: Special issue "Laser-generated periodic nanostructures" N2 - The study of laser-fabricated periodic nanostructures is one of the leading topics of today’s photonics research. Such structures on the surface of metals, semiconductors, dielectrics, or polymers can generate new material properties with special functionalities. Depending on the specific material parameters and the morphology of the structures, new devices such as microlasers, optical nanoswitches, optical storage devices, sensors or antifraud features can be realized. Furthermore, laser-generated surface textures can be used to improve the tribological properties of surfaces in contact and in relative motion—to reduce friction losses or wear, to modify the wettability or the cell and biofilm growth properties of surfaces through bioinspired laser engineering, for emerging medical applications, or as decoration elements for the refinement of precious goods. This Special Issue “Laser-Generated Periodic Nanostructures” focuses on the latest experimental and theoretical developments and practical applications of laser-generated periodic structures that can be generated in a “self-organized” way (laser-induced periodic surface structures, LIPSS, ripples) or via laser interference-based direct ablation (often referred to as direct laser interference patterning, DLIP). We aimed to attract both academic and industrial researchers in order to collate the current knowledge of nanomaterials and to present new ideas for future applications and new technologies. By 8 August 2021, 22 scientific articles have been published in the Special Issue, see www.mdpi.com/journal/nanomaterials/special_issues/laser-generated_periodic. KW - Laser-induced periodic surface structures (LIPSS) KW - Direct laser interference patterning (DLIP) KW - Surface functionalization KW - Laser ablation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530980 DO - https://doi.org/10.3390/nano11082054 SN - 2079-4991 VL - 11 IS - 8 SP - 1 EP - 7 PB - MDPI CY - Basel AN - OPUS4-53098 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zou, T. A1 - Nonappa, N. A1 - Khavani, M. A1 - Vuorte, M. A1 - Penttilä, P. A1 - Zitting, A. A1 - Valle-Delgado, J. J. A1 - Elert, Anna Maria A1 - Silbernagl, Dorothee A1 - Balakshin, M. A1 - Sammalkorpi, M. A1 - Österberg, M. T1 - Experimental and Simulation Study of the Solvent Effects on the Intrinsic Properties of Spherical Lignin Nanoparticles N2 - Spherical lignin nanoparticles (LNPs) fabricated via nanoprecipitation of dissolved lignin are among the most attractive biomass-derived nanomaterials. Despite various studies exploring the methods to improve the uniformity of LNPs or seeking more application opportunities for LNPs, little attention has been given to the fundamental aspects of the solvent effects on the intrinsic properties of LNPs. In this study, we employed a variety of experimental techniques and molecular dynamics (MD) simulations to investigate the solvent effects on the intrinsic properties of LNPs. The LNPs were prepared from softwood Kraft lignin (SKL) using the binary solvents of aqueous acetone or aqueous tetrahydrofuran (THF) via nanoprecipitation. The internal morphology, porosity, and mechanical properties of the LNPs were analyzed with electron tomography (ET), small-angle X-ray scattering (SAXS), atomic force microscopy (AFM), and intermodulation AFM (ImAFM). We found that aqueous acetone resulted in smaller LNPs with higher uniformity compared to aqueous THF, mainly ascribing to stronger solvent−lignin interactions as suggested by MD simulation results and confirmed with aqueous 1,4-dioxane (DXN) and aqueous dimethyl sulfoxide (DMSO). More importantly, we report that both LNPs were compact particles with relatively homogeneous density distribution and very low porosity in the internal structure. The stiffness of the particles was independent of the size, and the Young’s modulus was in the range of 0.3−4 GPa. Overall, the fundamental understandings of LNPs gained in this study are essential for the design of LNPs with optimal performance in applications. KW - Lignin KW - Electron tomography KW - Intermodulation AFM KW - Modulus KW - SAXS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546948 DO - https://doi.org/10.1021/acs.jpcb.1c05319 SN - 1520-5207 VL - 125 IS - 44 SP - 12315 EP - 12328 PB - ACS AN - OPUS4-54694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolmangadi, Mohamed Aejaz A1 - Schönhals, Andreas A1 - Szymoniak, Paulina A1 - Smales, Glen Jacob A1 - Böhning, Martin T1 - Molecular dynamics of Janus Polynorbornenes: Glass Transitions and Nanophase separation N2 - We report the dielectric and calorimetric investigations of an homologous series of Janus polynorbornenes with rigid main backbone and flexible -Si(OR)3 side groups, of differing length alkyl chains (R = Propyl, Butyl, Hexyl, Octyl, Decyl). Dielectric dispersion reveals two active processes at low temperatures, denoted as β- and α- relaxation. The former can be assigned to localized fluctuations, whilst the latter relates to the glassy dynamics of the flexible -Si(OR)3 side groups, that creates a nanophase separation in both the alkyl chain rich and backbone rich domains. Temperature modulated DSC measurements and X-ray scattering experiment confirm the nanophase separation. Fast Scanning Calorimetry employing both fast heating and cooling rates detects the glass transition temperatures of the backbone rich domains, which are beyond or near to their degradation temperatures in terms of conventional DSC. The cooperative length scale of glass transition and the size of the alkyl chain rich domains increases with chain length. Alongside these results, a significant conductivity contribution was observed for all Poly(tricyclononenes) with Si(OR)3 side groups, which is interpreted in terms of a percolation model. T2 - IDS Online conference 2021 CY - Online meeting DA - 06.09.2021 KW - Glass transition KW - Conductivity KW - Dynamics KW - Fast Scanning Calorimetry PY - 2021 AN - OPUS4-53299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Battig, Alexander A1 - Abdou-Rahaman Fadul, Naïssa A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Schartel, Bernhard T1 - Multifunctional Graphene in Flame Retarded Polybutadiene/ Chloroprene/ Carbon Black Composites N2 - Multilayer graphene is investigated as a multifunctional nanofiller to polybutadiene/ chloroprene rubbers (BR/CR) that partially substitutes carbon black (CB) and aluminum trihydroxide (ATH). Loadings of only 3 parts per hundred rubber (phr) MLG replaced 15 phr of CB and/or 3 phr of ATH in BR/CR nanocomposites. Mechanical and fire behavior were investigated, and results point to improved rheological, curing and mechanical properties of MLG-containing rubber composites. T2 - 18th European Meeting on Fire Retardant Polymeric Materials, FRPM21 CY - Budapest, Hungary DA - 29.08.2021 KW - Graphene KW - Rubber KW - Fire Retardant KW - Nanofiller KW - Nanocomposite KW - ATH PY - 2021 AN - OPUS4-53202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strommer, Bettina A1 - Böhning, Martin A1 - Schulze, Dietmar A1 - Schartel, Bernhard T1 - Natural Rubber Nanocomposites via Optimized Latex Premixing and Conventional Technical Processing N2 - Creation of highly functional materials and replacement of high amounts of conventional fillers are driving forces for the development of nanocomposites. Besides the type and properties of nanoparticles, their dispersing in the elastomeric matrix and the stability of this dispersion through all processing steps are the main factors for the resulting performance of the produced material. Therefore, a preparation chain via latex premixing to a highly filled masterbatch, followed by conventional technical processing is to be developed. Three types of carbon-based particles are characterized as such (SEM, Raman Spectroscopy, BET specific surface area) and in combination with natural rubber, as nanocomposites (TEM. Hardness, Abrasion resistance, Compression set, Cone calorimetry). All of the studied particles lead to an improvement in the investigated mechanical properties, the extent of reinforcement depends strongly on the specific surface of the particle interacting with the elastomeric matrix in combination with their shape. T2 - DKG Elastomer Symposium CY - Online meeting DA - 28.06.2021 KW - Processing KW - Elastomers KW - Nanocomposites KW - Graphene KW - Nanoparticles KW - Latex KW - Natural rubber PY - 2021 AN - OPUS4-53106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Mezera, Marek A1 - Florian, Camilo A1 - Krüger, Jörg A1 - Gräf, S. T1 - Laser-induced periodic surface structures: When electromagnetics drives hydrodynamics N2 - Laser-induced Periodic Surface Structures (LIPSS, ripples) are a universal phenomenon and can be generated in a contactless, single-step process on almost any material upon irradiation of solids with intense laser radiation. Nowadays processing rates of up to m^2/min are enabling new industrial applications in medicine, optics, tribology, biology, etc. Depending on the specific type of LIPSS, their structural sizes typically range from several micrometers down to less than 100 nanometers – far beyond the optical diffraction limit – while their orientations exhibit a clear correlation with the local polarization direction of the laser radiation. From a theoretical point of view, however, a vivid, controversial, and long-lasting debate has emerged during the last two decades, whether LIPSS originate from electromagnetic effects (seeded already during the laser irradiation) – or whether they emerge from matter reorganization processes (distinctly after the laser irradiation). This presentation reviews the currently existent theories of LIPSS. A focus is laid on the historic development of the fundamental ideas, their corresponding mathematical descriptions and numerical implementations, along with a comparison and critical assessment of the different approaches. T2 - 28th International Conference on Advanced Laser Technologies (ALT'21) CY - Online meeting DA - 06.09.2021 KW - Laser-induced periodic surface structures, LIPSS KW - Electromagnetic scattering KW - Matter reorganization PY - 2021 DO - https://doi.org/10.24412/cl-35039-2021-21-25-25 AN - OPUS4-53218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mirabella, Francesca A1 - Mezera, Marek A1 - Wasmuth, Karsten A1 - Hertwig, Andreas A1 - Richter, Anja A1 - Schwibbert, Karin A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Hodoroaba, Vasile-Dan T1 - ToF-SIMS as a new tool for nano-scale investigation of ps-laser-generated surface structures on titanium substrates N2 - In recent years, the fabrication of laser-generated surface structures on metals such as titanium surfaces have gained remarkable interests, being technologically relevant for applications in optics, medicine, fluid transport, tribology, and wetting of surfaces. The morphology of these structures, and so their chemistry, is influenced by the different laser processing parameters such as the laser fluence, wavelength, pulse repetition rate, laser light polarization type and direction, angle of incidence, and the effective number of laser pulses per beam spot area. However, the characterization of the different surface structures can be difficult because of constraints regarding the analytical information from both depth and the topographic artifacts which may limit the lateral and depth resolution of elemental distributions as well as their proper quantification. A promising technique to investigate these structures even at the nano-scale is Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), a very surface sensitive technique that at the same time allows to perform depth-profiling, imaging and 3D-reconstruction of selected ion-sputter fragment distributions on the surface. In this study we combine chemical analyses such as Energy Dispersive X-ray spectroscopy (EDX) and high-resolution scanning electron microscopy (SEM) analyses with ToF-SIMS to fully characterize the evolution of various types of laser-generated micro- and nanostructures formed on Ti and Ti alloys at different laser fluence levels, effective number of pulses and at different pulse repetition rates (1 – 400 kHz), following irradiation by near-infrared ultrashort laser pulses (925 fs, 1030 nm) in air environment or under argon gas flow. We show how this combined surface analytical approach allows to evaluate alteration in the surface chemistry of the laser-generated surface structures depending on the laser processing parameters and the ambient environment. T2 - European Materials Research Society (EMRS) Fall Meeting 2021 CY - Online meeting DA - 20.09.2021 KW - ToF SIMS KW - Nano characterization PY - 2021 AN - OPUS4-53366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Weigert, Florian A1 - Häusler, I. A1 - Geißler, Daniel A1 - Resch-Genger, Ute T1 - Correlating HR-TEM and XPS to elucidate the core-shell structure of ultrabright CdSE/CdS semiconductor quantum dots N2 - Controlling the thickness and tightness of surface passivation shells is crucial for many applications of core-shell nanoparticles (NP). Usually, to determine shell thickness, core and core/shell particle are measured individually requiring the availability of both nanoobjects. This is often not fulfilled for functional nanomaterials such as many photoluminescent semiconductor quantum dots (QD) used for bioimaging, solid state lighting, and display technologies as the core does not show the application-relevant functionality like a high photoluminescence (PL) quantum yield. This calls for a whole nanoobject approach. Moreover, the thickness of the organic coating remains often unclear. By combining high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS), a novel whole nanoobject approach is developed representatively for an ultrabright oleic acid-stabilized, thick shell CdSe/CdS QD with a PL quantum yield close to unity. The size of this spectroscopically assessed QD, is in the range of the information depth of usual laboratory XPS. Information on particle size and monodispersity were validated with dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) and compared to data derived from optical measurements. The results of the different methods match very well within the different measurement uncertainties. Additionally, results obtained with energy-resolved XPS using excitation energies between 200 eV and 800 eV are discussed with respect to a potential core/shell intermixing. Moreover, the future application potential of this approach correlating different sizing and structural methods is discussed considering the method-inherent uncertainties and other core/multi-shell nanostructures. T2 - E-MRS Fall Meeting CY - Online meeting DA - 20.09.2021 KW - Core-shell nanoparticles KW - Quantum dots KW - High-resolution transmission electron microscopy KW - X-ray Photoelectron Spectroscopy PY - 2021 AN - OPUS4-53365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Florian, Camilo A1 - Deziel, J.-L. A1 - Kirner, Sabrina V. A1 - Siegel, J. A1 - Bonse, Jörn T1 - Femtosecond laser-induced oxidation in the formation of periodic surface structures N2 - Micro- and nanostructuring with laser-induced periodic surface structures (LIPSS) has been demonstrated to be feasible in a wide variety of materials including metals, semiconductors and dielectrics. Suitable processing regimes for flat, curved and complex surfaces have been identified for many materials, allowing the generation of diverse applications in fields such as optics, tribology and medicine, to name a few. A common side effect when producing such structures in air environment is the formation of a thin surface oxide layer in the laser irradiated areas. Previous studies have shown that oxidation plays an important role in the tribological performance for which the structures where created, and very recently it has been shown that the laser-induced oxide graded layers may contribute to the formation of a new type of embedded low-spatial frequency LIPSS (LSFL) with annomalous orientation parallel to the laser polarization, in addition to the appearance of the well-known high-spatial frequency LIPSS (HSFL) at the surface. In this contribution, we explore this effect experimentally for chromium nitride (CrN) irradiated with femtosecond laser pulses and compare the findings to finite-difference time-domain (FDTD) simulations of the intensity distributions at different depth positions. T2 - 2021 Conference on Lasers and Electro-Optics/Europe – European Quantum Electronics Virtual Conferences CY - Munich, Germany DA - 21.06.2021 KW - Femtosecond laser ablation KW - Finite-difference time-domain calculations KW - Laser-induced periodic surface structures (LIPSS) KW - Surface oxidation PY - 2021 SN - 978-1-6654-1876-8 DO - https://doi.org/10.1109/CLEO/Europe-EQEC52157.2021.9542774 VL - 2021 SP - 1 PB - Institute of Electrical and Electronics Engineers (IEEE) CY - Piscataway, NJ, USA AN - OPUS4-53457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peters, R. A1 - Elbers, I. A1 - Undas, A. A1 - Sijtsma, E. A1 - Briffa, S. A1 - Carnell-Morris, P. A1 - Siupa, A. A1 - Yoon, T.-H. A1 - Burr, L. A1 - Schmid, D. A1 - Tentschert, J. A1 - Hachenberger, Y. A1 - Jungnickel, H. A1 - Luch, A. A1 - Meier, F. A1 - Kocic, J. A1 - Kim, J. A1 - Park, B. C. A1 - Hardy, B. A1 - Johnston, C. A1 - Jurkschat, K. A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Lynch, I. A1 - Valsami-Jones, E. T1 - Benchmarking the ACEnano toolbox for characterisation of nanoparticle size and concentration by interlaboratory comparisons N2 - ACEnano is an EU-funded project which aims at developing, optimising and validating methods for the detection and characterisation of nanomaterials (NMs) in increasingly complex matrices to improve confidence in the results and support their use in regulation. Within this project, several interlaboratory comparisons (ILCs) for the determination of particle size and concentration have been organised to benchmark existing analytical methods. In this paper the results of a number of these ILCs for the characterisation of NMs are presented and discussed. The results of the analyses of pristine well-defined particles such as 60 nm Au NMs in a simple aqueous suspension showed that laboratories are well capable of determining the sizes of these particles. The analysis of particles in complex matrices or formulations such as consumer products resulted in larger variations in particle sizes within technologies and clear differences in capability between techniques. Sunscreen lotion sample analysis by laboratories using spICP-MS and TEM/SEM identified and confirmed the TiO2 particles as being nanoscale and compliant with the EU definition of an NM for regulatory purposes. In a toothpaste sample orthogonal results by PTA, spICP-MS and TEM/SEM agreed and stated the TiO2 particles as not fitting the EU definition of an NM. In general, from the results of these ILCs we conclude that laboratories are well capable of determining particle sizes of NM, even in fairly complex formulations. KW - Nanomaterials KW - Benchmarking KW - Inter-laboratory comparison KW - ACEnano KW - Characterisation KW - Size KW - Concentration PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531852 DO - https://doi.org/10.3390/molecules26175315 SN - 1420-3049 VL - 26 IS - 17 SP - 1 EP - 23 PB - MDPI CY - Basel AN - OPUS4-53185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fortes Martin, R. A1 - Thünemann, Andreas A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Koetz, J. T1 - From Nanoparticle Heteroclusters to Filament Networks by Self-Assembly at the Water–Oil Interface of Reverse Microemulsions N2 - Surface self-assembly of spherical nanoparticles of sizes below 10 nm into hierarchical heterostructures is under arising development despite the inherent difficulties of obtaining complex ordering patterns on a larger scale. Due to template-mediated interactions between oil-dispersible superparamagnetic nanoparticles (MNPs) and polyethylenimine-stabilized gold nanoparticles (Au(PEI)NPs) at the water–oil interface of microemulsions, complex nanostructured films can be formed. Characterization of the reverse microemulsion phase by UV–vis absorption revealed the formation of heteroclusters from Winsor type II phases (WPII) using Aerosol-OT (AOT) as the surfactant. SAXS measurements verify the mechanism of initial nanoparticle clustering in defined dimensions. XPS suggested an influence of AOT at the MNP surface. Further, cryo-SEM and TEM visualization demonstrated the elongation of the reverse microemulsions into cylindrical, wormlike structures, which subsequently build up larger nanoparticle superstructure arrangements. Such WPII phases are thus proven to be a new form of soft template, mediating the self-assembly of different nanoparticles in hierarchical network-like filaments over a substrate during solvent evaporation. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle KW - Nano structure PY - 2021 DO - https://doi.org/10.1021/acs.langmuir.1c01348 VL - 37 IS - 29 SP - 8876 EP - 8885 PB - American Chemical Society AN - OPUS4-53034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chemello, Giovanni A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Towards Reproducible Analysis Workflows for Reliable Structural and Chemical Composition of Industrial Graphene N2 - The scientific and technological interest in graphene has been growing more and more in the late years due to its outstanding properties and diverse promising applications. However, graphene implementation into the industrial market is still limited and many challenges are yet to be addressed before this material can become suitable for the large-scale production. One of the most crucial challenge to overcome is to develop reliable and reproducible ways to characterize the material properties which can heavily affect the product performance. In our study the chemical composition of nine different samples of industrial graphene, graphene oxide and functionalized graphene were investigated. The samples were analysed both in form of powder and pellets. A comparative characterisation of the chemical composition was performed through X-ray Photoelectron Spectroscopy (XPS) and Energy Dispersive X-ray Spectroscopy (EDX). XPS depth resolution is in the order of 10 nm, while for EDX the analysis was performed at two different energy levels, i.e. 5 keV and 15 keV, and thus varying the analysis depth from 200 nm to 2000 nm. The XPS measurement area is 300x700 µm² while the EDX measurement was performed by analysing a grid of 25 locations (5x5) of 150 x 150 ?m2 area, covering the whole pellet surface of 5 mm diameter and then calculating the mean of the elemental concentration. The results of the elemental concentration values from XPS and EDX analyses show a good agreement for all the elements presents in the samples, despite the different spatial resolutions of the two techniques. Therefore, the samples appear homogeneous both in the lateral and vertical directions. The results relative to powder and pellets samples do not differ in a significant way except for a slight increase in the carbon content regarding the pellet samples, probably due to a minor contamination effect introduced through pressing. Nevertheless, pellets samples appear to be quite representative for the material while being much more convenient in terms of handling and safety compared to nano-powders and providing a regular flat surface for EDX analysis. Finally, this approach correlating XPS and EDS represents a simple, fast and reliable way for characterizing the chemical composition and the homogeneity of industrial graphene. This study is part of the project Standardisation of structural and chemical properties of graphene (ISO-G-SCoPe) which has received funding from the EMPIR programme co-financed by the Participating States and from the European Union?s Horizon 2020 research and innovation programme under Grant agreement No. 19NRM04. T2 - SALSA Make and Measure... and Machines CY - Online meeting DA - 16.09.2021 KW - Graphene KW - XPS KW - EDX KW - Graphene functionalisation PY - 2021 UR - https://fakultaeten.hu-berlin.de/en/mnf/forschung_internationales/grs/salsa/SALSA_MM AN - OPUS4-53463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chemello, Giovanni A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Correlative analysis through XPS and EDX measurements for accurate chemical composition of industrial Graphene N2 - The scientific and technological interest in graphene has been growing more and more in the late years due to its outstanding properties and diverse promising applications. However, graphene implementation into the industrial market is still limited and many challenges are yet to be addressed before this material can become suitable for the large-scale production. One of the most crucial challenge to overcome is to develop reliable and reproducible ways to characterize the material properties which can heavily affect the product performance. In our study the chemical composition of nine different samples of industrial graphene, graphene oxide and functionalized graphene were investigated. The samples were analysed both in form of powder and pellets. A comparative characterisation of the chemical composition was performed through X-ray Photoelectron Spectroscopy (XPS) and Energy Dispersive X-ray Spectroscopy (EDX). XPS depth resolution is in the order of 10 nm, while for EDX the analysis was performed at two different energy levels, i.e. 5 keV and 15 keV, and thus varying the analysis depth from 200 nm to 2000 nm. The XPS measurement area is 300x700 µm² while the EDX measurement was performed by analysing a grid of 25 locations (5x5) of 150 x 150 ?m2 area, covering the whole pellet surface of 5 mm diameter and then calculating the mean of the elemental concentration. The results of the elemental concentration values from XPS and EDX analyses show a good agreement for all the elements presents in the samples, despite the different spatial resolutions of the two techniques. Therefore, the samples appear homogeneous both in the lateral and vertical directions. The results relative to powder and pellets samples do not differ in a significant way except for a slight increase in the carbon content regarding the pellet samples, probably due to a minor contamination effect introduced through pressing. Nevertheless, pellets samples appear to be quite representative for the material while being much more convenient in terms of handling and safety compared to nano-powders and providing a regular flat surface for EDX analysis. Finally, this approach correlating XPS and EDS represents a simple, fast and reliable way for characterizing the chemical composition and the homogeneity of industrial graphene. This study is part of the project ?Standardisation of structural and chemical properties of graphene? (ISO-G-SCoPe) which has received funding from the EMPIR programme co-financed by the Participating States and from the European Union?s Horizon 2020 research and innovation programme under Grant agreement No. 19NRM04. T2 - 2021 Fall Meeting of the European Materials Research Society (E-MRS) CY - Online meeting DA - 20.9.2021 KW - Graphene KW - XPS KW - EDS KW - Standardisation KW - Graphene functionalization PY - 2021 UR - https://www.european-mrs.com/meetings/2021-fall-meeting AN - OPUS4-53462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR ED - Simon, P. ED - Ihlemann, J. ED - Bonse, Jörn T1 - Special issue "Laser-generated periodic nanostructures" N2 - The study of laser-fabricated periodic nanostructures is one of the leading topics of today’s photonics research. Such structures on the surface of metals, semiconductors, dielectrics, or polymers can generate new material properties with special functionalities. Depending on the specific material parameters and the morphology of the structures, new devices such as microlasers, optical nanoswitches, optical storage devices, sensors or antifraud features can be realized. Furthermore, laser-generated surface textures can be used to improve the tribological properties of surfaces in contact and in relative motion—to reduce friction losses or wear, to modify the wettability or the cell and biofilm growth properties of surfaces through bioinspired laser engineering, for emerging medical applications, or as decoration elements for the refinement of precious goods. This Special Issue “Laser-Generated Periodic Nanostructures” focuses on the latest experimental and theoretical developments and practical applications of laser-generated periodic structures that can be generated in a “self-organized” way (laser-induced periodic surface structures, LIPSS, ripples) or via laser interference-based direct ablation (often referred to as direct laser interference patterning, DLIP). We aimed to attract both academic and industrial researchers in order to collate the current knowledge of nanomaterials and to present new ideas for future applications and new technologies. By 8 August 2021, 22 scientific articles have been published in the Special Issue. KW - Laser-induced periodic surface structures (LIPSS) KW - Direct laser-interference patterning (DLIP) KW - Surface functionalization KW - Laser processing KW - Applications PY - 2021 UR - https://www.mdpi.com/journal/nanomaterials/special_issues/laser-generated_periodic SN - 2079-4991 VL - 10(1)-11(8) SP - 147-1 EP - 2054-7 PB - MDPI CY - Basel AN - OPUS4-53099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Anja A1 - Mezera, Marek A1 - Buchberger, G. A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Heitz, J. A1 - Schwibbert, Karin T1 - Laser-processing – a tool to direct biofilm formation N2 - Using nanofiber-like cell appendages, secreted proteins and sugars, bacteria can establish initial surface contact followed by irreversible adhesion and the formation of multicellular biofilms, often with enhanced resistance towards antimicrobial treatment and established cleaning procedures. On e.g. medical implants, in water supply networks or food-processing industry, biofilms can be a fertile source of bacterial pathogens and are repeatedly associated with persisting, nosocomial and foodborne infections. Nowadays, the emergence of resistances because of extensive usage of antibiotics and biocides in medicine, agriculture and private households have become one of the most important medical challenges with considerable economic consequences. In addition, aggravated biofilm eradication and prolonged cell-surface interaction can lead to increased biodeterioration and undesired modification of industrial and medical surface materials. Various strategies are currently developed, tested, and improved to realize anti-bacterial surface properties through surface functionalization steps avoiding antibiotics. In this study, contact-less and aseptic large-area short or ultrashort laser processing is employed to generate different surface structures in the nanometer- to micrometer-scale on technical materials such as titanium-alloy and polyethylene terephthalate (PET). The laser processed surfaces were subjected to bacterial colonization studies with Escherichia coli test strains and analyzed with reflected-light and epi-fluorescence microscopy. Depending on the investigated surfaces, different bacterial adhesion patterns were found, ranging from bacterial-repellent to bacterial-attractant effects. The results suggest an influence of size, shape and cell appendages of the bacteria and – above all – the laser-processed nanostructure of the surface itself, emphasizing the potential of laser-processing as a versatile tool to control bacterial surface adhesion. T2 - International Biodeterioration & Biodegradation Symposium 2021 CY - Online meeting DA - 06.09.2021 KW - Bacterial adhesion KW - Biofilm formation KW - Laser-induced periodic surface structueres (LIPPS) KW - Laser processing PY - 2021 UR - https://www.ibbs18.org/programme AN - OPUS4-53223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Florian, Camilo A1 - Fischer, Daniel A1 - Freiberg, K. A1 - Duwe, M. A1 - Sahre, Mario A1 - Schneider, S. A1 - Hertwig, Andreas A1 - Krüger, Jörg A1 - Rettenmayr, M. A1 - Beck, Uwe A1 - Undisz, A. A1 - Bonse, Jörn T1 - Silicon surface amorphization and re-crystallization via single femtosecond laser pulses N2 - Silicon is the material responsible for most of the technological developments during the past century, making it one of the most studied materials along different disciplines. However, there are still unturned stones regarding its superficial re-solidification after femtosecond laser-induced local melting. In this presentation, we report irradiation experiments with single femtosecond pulses (790 nm, 30 fs) with a spatially Gaussian distribution on two different types of silicon with orientations <111> and <100>. The surface modifications were studied in detail via different techniques, including optical microscopy, atomic force microscopy, spectroscopic imaging ellipsometry, energy dispersive X-ray spectroscopy and high-resolution transmission electron microscopy. We quantitatively estimate the resulting radial amorphous layer depth profiles with maximum thicknesses around some tenths of nanometers for fluences in between the melting and ablation thresholds. In particular, spectroscopic imaging ellipsometry (SIE) allowed fast data acquisition using multiple wavelengths to provide experimental measurements for calculating the nanometric radial amorphous layer thickness profiles with micrometric lateral resolution based on a thin-film layer model. SIE proved to be capable of detecting and measuring nanometric structural and chemical modifications (oxidation) on the studied laser spots. The accuracy of the SIE-based calculations is verified experimentally by characterizing an in-depth material lamella via high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (STEM-EDX). For completeness, we present a mathematical modelling for the melt layer thickness considering different optical absorption processes including one photon absorption, two photon absorption and free-carrier absorption, highlighting the relevance of the latter one in the femtosecond laser-induced melting of silicon. T2 - 28th International Conference on Advanced Laser Technologies (ALT'21) CY - Online meeting DA - 06.09.2021 KW - Silicon KW - Femtosecond laser KW - Phase transitions KW - Spectroscopic imaging ellipsometry KW - Transmission electron microscopy PY - 2021 AN - OPUS4-53235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Nirmalananthan-Budau, Nithiya A1 - Rühle, Bastian A1 - Geißler, Daniel A1 - Resch-Genger, Ute T1 - Quantification of surface functional groups on inorganic and organic nanomaterials using cleavable reporters N2 - Engineered nanomaterials (NM) with their unique size-dependent properties are of increasing relevance for current and future developments in various fields such as medical and pharmaceutical industry, computing and electronics or food and consumer products. The performance and safety of NM are determined by the sum of their intrinsic physicochemical properties. Especially, the particle surface chemistry, which is largely controlled by the chemical nature and density of functional groups and ligands, is an important key driver for the performance, stability, and processibility of NM, as well as their interaction with the environment. Thus, methods for functional group quantification can foster the sustainable development of functional and safe(r) NM. Aiming at the development of simple, versatile and multimodal tools for the quantification of common bioanalytically relevant functional groups, we designed a catch-and-release assay based on cleavable probes that enable the quantification of the cleaved-off reporters in the supernatant after particle separation. Thus, the approach circumvents interferences resulting from particle light scattering and sample-inherent absorption or emission. To study the potential of the assay, commercially available and in-house synthesized aminated and carboxylated polymer and silica nanoparticles of different functional group densities were tested. Our cleavable probe strategy can be easily adapted to other analytical techniques requiring different reporters, or to different types of linkers that can be cleaved thermally, photochemically, or by variation of pH, utilizing well-established chemistry. In addition, it can contribute to the development of multi-method characterization strategies to provide a more detailed picture of the intrinsic physicochemical property - performance/safety relationships and thus can support the design of tailored nanomaterials with better controlled properties. T2 - E-MRS Spring Meeting 2021 / ALTECH 2021 - Analytical techniques for precise characterization of nanomaterials CY - Online meeting DA - 31.05.2021 KW - Surface modified nano- and microparticles KW - Optical assays KW - Particle surface analysis KW - Surface functional group quantification PY - 2021 AN - OPUS4-55596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, M. A1 - Schlaich, C. A1 - Zhang, J. A1 - Donskyi, Ievgen A1 - Schwibbert, Karin A1 - Schreiber, Frank A1 - Xia, Y. A1 - Radnik, Jörg A1 - Schwerdtle, T. A1 - Haag, R. T1 - Mussel-inspired multifunctional coating for bacterial infection prevention and osteogenic induction N2 - Bacterial infection and osteogenic integration are the two main problems that cause severe complications after surgeries. In this study, the antibacterial and osteogenic properties were simultaneously introduced in biomaterials, where copper nanoparticles (CuNPs) were generated by in situ reductions of Cu ions into a mussel-inspired hyperbranched polyglycerol (MI-hPG) coating via a simple dip-coating method. This hyperbranched polyglycerol with 10 % catechol groups’ modification presents excellent antifouling property, which could effectively reduce bacteria adhesion on the surface. In this work, polycaprolactone (PCL) electrospun fiber membrane was selected as the substrate, which is commonly used in biomedical implants in bone regeneration and cardiovascular stents because of its good biocompatibility and easy post-modification. The as-fabricated CuNPs-incorporated PCL membrane [PCL-(MI-hPG)-CuNPs] was confirmed with effective antibacterial performance via in vitro antibacterial tests against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and multi-resistant E. coli. In addition, the in vitro results demonstrated that osteogenic property of PCL-(MI-hPG)-CuNPs was realized by upregulating the osteoblast-related gene expressions and protein activity. This study shows that antibacterial and osteogenic properties can be balanced in a surface coating by introducing CuNPs. KW - Mussel-inspired coating KW - CuNPs KW - Multi-resistant bacteria KW - Antibacterial KW - Antifouling KW - Osteogenesis PY - 2021 DO - https://doi.org/10.1016/j.jmst.2020.08.011 SN - 1005-0302 VL - 68 SP - 160 EP - 171 PB - Elsevier Ltd. AN - OPUS4-51519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Krüger, Jörg ED - Sugioka, K. T1 - Laser-induced periodic surface structures (LIPSS) N2 - Laser-induced periodic surface structures (LIPSS) are a universal phenomenon and can be generated on almost any material by irradiation with linearly polarized radiation. This chapter reviews the current state in the field of LIPSS, which are formed in a “self-ordered” way and are often accompanying materials processing applications. LIPSS can be produced in a single-stage process and enable surface nanostructuring and, in turn, adaption of optical, mechanical, and chemical surface properties. Typically, they feature a structural size ranging from several micrometers down to less than 100 nm and show a clear correlation with the polarization direction of the light used for their generation. Various types of LIPSS are classified, relevant control parameters are identified, and their material-specific formation mechanisms are analyzed for different types of inorganic solids, i.e., metals, semiconductors, and dielectrics. Finally, technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed. KW - Femtosecond laser KW - Laser ablation KW - Laser-induced periodic surface structures (LIPSS) KW - Microstructures KW - Nanostructures PY - 2021 SN - 978-3-319-69537-2 DO - https://doi.org/10.1007/978-3-319-69537-2_17-2 SP - 1 EP - 59 PB - Springer Nature CY - Cham, Switzerland ET - 2 AN - OPUS4-51493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mezera, Marek A1 - Mirabella, Francesca A1 - Wasmuth, Karsten A1 - Richter, Anja A1 - Schwibbert, Karin A1 - Bennet, Francesca A1 - Krüger, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Bonse, Jörn T1 - Influence of the pulse repetition rate on the chemical and morphological properties of laser generated surface structures N2 - Inter-pulse accumulation of heat could affect the chemical and morphological properties of the laser processed material surface. Hence, the laser pulse repetition rate may restrict the processing parameters for specific laser-induced surface structures. In this study, the evolution of various types of laser-induced micro- and nanostructures at various laser fluence levels, effective number of pulses and at different pulse repetition rates (1 – 400 kHz) are studied for common metals/alloys (e.g. steel or titanium alloy) irradiated by near-infrared ultrashort laser pulses (925 fs, 1030 nm) in air environment. The processed surfaces were characterized by optical and scanning electron microscopy (OM, SEM), energy dispersive X-ray spectroscopy (EDX) as well as time of flight secondary ion mass spectrometry (TOF-SIMS). The results show that not only the surface morphology could change at different laser pulse repetition rates and comparable laser fluence levels and effective number of pulses, but also the surface chemistry is altered. Consequences for medical applications are outlined. T2 - European Materials Research Society Spring 2021 Meeting CY - Online meeting DA - 31.05.2021 KW - Laser-induced pariodic surface structures KW - LIPSS PY - 2021 AN - OPUS4-52778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ihlenburg, R. B. J. A1 - Mai, T. A1 - Thünemann, Andreas A1 - Baerenwald, R. A1 - Saalwächter, K. A1 - Koetz, J. A1 - Taubert, A. T1 - Sulfobetaine Hydrogels with a Complex Multilength-Scale Hierarchical Structure N2 - Hydrogels with a hierarchical structure were prepared from a new highly water-soluble crosslinker N,N,N′,N′-tetramethyl-N,N′-bis(2-ethylmethacrylate)-propyl-1,3-diammonium dibromide and from the sulfobetaine monomer 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate. The free radical polymerization of the two compounds is rapid and yields near-transparent hydrogels with sizes up to 5 cm in diameter. Rheology shows a clear correlation between the monomer-to-crosslinker ratio and the storage and loss moduli of the hydrogels. Cryo-scanning electron microscopy, low-field nuclear magnetic resonance (NMR) spectroscopy, and small-angle X-ray scattering show that the gels have a hierarchical structure with features spanning the nanometer to the sub-millimeter scale. The NMR study is challenged by the marked inhomogeneity of the gels and the complex chemical structure of the sulfobetaine monomer. NMR spectroscopy shows how these complications can be addressed via a novel fitting approach that considers the mobility gradient along the side chain of methacrylate-based monomers. KW - Small-angle X-ray scattering KW - SAXS KW - Gel PY - 2021 DO - https://doi.org/10.1021/acs.jpcb.0c10601 SN - 1520-6106 VL - 125 IS - 13 SP - 3398 EP - 3408 PB - American Chemical Society AN - OPUS4-52403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Omar, Hassan A1 - Smales, Glen Jacob A1 - Henning, S. A1 - Li, Z. A1 - Wang, D.-Y. A1 - Schönhals, Andreas A1 - Szymoniak, Paulina T1 - Calorimetric and Dielectric Investigations of Epoxy-Based Nanocomposites with Halloysite Nanotubes as Nanofillers N2 - Epoxy nanocomposites are promising materials for industrial applications (i.e., aerospace, marine and automotive industry) due to their extraordinary mechanical and thermal properties. Here, the effect of hollow halloysite nanotubes (HNT) on an epoxy matrix (Ep) was the focus of the study. The structure and molecular mobility of the nanocomposites were investigated using a combination of X-ray scattering, calorimetry (differential (DSC) and fast scanning calorimetry (FSC)) and dielectric spectroscopy. Additionally, the effect of surface modification of HNT (polydopamine (PDA) and Fe(OH)3 nanodots) was considered. For Ep/HNT, the glass transition temperature (Tg) is was de-creased due to a nanoparticle-related decrease of the crosslinking density. For the modified system, Ep/m-HNT, the surface modification resulted in enhanced filler–matrix interactions leading to higher Tg values than the pure epoxy in some cases. For Ep/m-HNT, the amount of interface formed between the nanoparticles and the matrix ranged from 5% to 15%. Through BDS measurements, localized fluctuations were detected as a β- and γ-relaxation, related to rotational fluctuations of phenyl rings and local reorientations of unreacted components. A combination of calorimetry and BDS dielectric spectroscopy revealed a dynamic and structural heterogeneity of the matrix, as confirmed by two glassy dynamics in both systems, related to regions with different crosslinking densities. KW - Rigid amorphous fraction KW - Epoxy nanocomposites KW - Halloysite nanotubes KW - X-ray scattering KW - Differential scanning calorimetry KW - Broadband dielectric spectroscopy KW - Flash DSC PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-526668 DO - https://doi.org/10.3390/polym13101634 VL - 13 IS - 10 SP - 1634 PB - MDPI AN - OPUS4-52666 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hildebrand, G. A1 - Sänger, Johanna Christiane A1 - Schirmer, U. A1 - Mantei, W. A1 - Dupuis, Y. A1 - Houbertz, R. A1 - Liefeith, K. T1 - Process Development for Additive Manufacturing of Alumina Toughened Zirconia for 3D Structures by Means of Two-Photon Absorption Technique N2 - Additive manufacturing is well established for plastics and metals, and it gets more and more implemented in a variety of industrial processes. Beside these well-established material platforms, additive manufacturing processes are highly interesting for ceramics, especially regarding resource conservation and for the production of complex three-dimensional shapes and structures with specific feature sizes in the µm and mm range with high accuracy. The usage of ceramics in 3D printing is, however, just at the beginning of a technical implementation in a continuously and fast rising field of research and development. The flexible fabrication of highly complex and precise 3D structures by means of light-induced photopolymerization that are difficult to realize using traditional ceramic fabrication methods such as casting and machining is of high importance. Generally, slurry-based ceramic 3D printing technologies involve liquid or semi-liquid polymeric systems dispersed with ceramic particles as feedstock (inks or pastes), depending on the solid loading and viscosity of the system. This paper includes all types of photo-curable polymer-ceramic-mixtures (feedstock), while demonstrating our own work on 3D printed alumina toughened zirconia based ceramic slurries with light induced polymerization on the basis of two-photon absorption (TPA) for the first time. As a proven exemplary on cuboids with varying edge length and double pyramids in the µm-range we state that real 3D micro-stereolithographic fabrication of ceramic products will be generally possible in the near future by means of TPA. This technology enables the fabrication of 3D structures with high accuracy in comparison to ceramic technologies that apply single-photon excitation. In sum, our work is intended to contribute to the fundamental development of this technology for the representation of oxide-ceramic components (proof-of-principle) and helps to exploit the high potential of additive processes in the field of bio-ceramics in the medium to long-term future. KW - Additive manufacturing KW - Ceramics 3D printing KW - Two-photon adsorption KW - Polymer-ceramic mixtures KW - Bio-ceramic engineering PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-526672 DO - https://doi.org/10.3390/ceramics4020017 VL - 4 IS - 2 SP - 224 EP - 239 PB - MDPI CY - Basel AN - OPUS4-52667 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marcoulaki, E. A1 - M. López de Ipina, J. A1 - Vercauteren, S. A1 - Bouillard, J. A1 - Himly, M. A1 - Lynch, I. A1 - Witters, H. A1 - Shandilya, N. A1 - van Duuren-Stuurman, B. A1 - Kunz, Valentin A1 - Unger, Wolfgang A1 - Hodoroaba, Vasile-Dan A1 - Bard, D. A1 - Evans, G. A1 - Jensen, K. A. A1 - Pilou, M. A1 - Viitanen, A.-K. A1 - Bochon, A. A1 - Duschl, A. A1 - Geppert, M. A1 - Persson, K. A1 - Votgreave, I. A1 - Niga, P. A1 - Gini, M. A1 - Eleftheriadis, K. A1 - Scalbi, S. A1 - Caillard, B. A1 - Arevalillo, A. A1 - Frejafon, E. A1 - Aguerre-Chariol, O. A1 - Dulio, V. T1 - Blueprint for a self-sustained European Centre for service provision in safe and sustainable innovation for nanotechnology N2 - The coming years are expected to bring rapid changes in the nanotechnology regulatory landscape, with the establishment of a new framework for nano-risk governance, in silico approaches for characterisation and Risk assessment of nanomaterials, and novel procedures for the early identification and management of nanomaterial risks. In this context, Safe(r)-by-Design (SbD) emerges as a powerful preventive approach to support the development of safe and sustainable (SSbD) nanotechnology-based products and processes throughout the life cycle. This paper summarises the work undertaken to develop a blueprint for the deployment and operation of a permanent European Centre of collaborating laboratories and research organisations supporting safe Innovation in nanotechnologies. The proposed entity, referred to as “the Centre”, will establish a ‘one-stop shop’ for nanosafety-related services and a central contact point for addressing stakeholder questions about nanosafety. Its operation will rely on significant business, legal and market knowledge, as well as other tools developed and acquired through the EU-funded EC4SafeNano project and subsequent ongoing activities. The proposed blueprint adopts a demand-driven service update scheme to allow the necessary vigilance and flexibility to identify opportunities and adjust its activities and services in the rapidly evolving regulatory and nano risk governance landscape. The proposed Centre will play a major role as a conduit to transfer scientific knowledge between the Research and commercial laboratories or consultants able to provide high quality nanosafety services, and the end-users of such services (e.g., industry, SMEs, consultancy firms, and regulatory authorities). The Centre will harmonise service provision, and bring novel risk assessment and management approaches, e.g. in silico methodologies, closer to practice, notably through SbD/SSbD, and decisively support safe and sustainable innovation of industrial production in the nanotechnology industry according to the European Chemicals Strategy for Sustainability. KW - Nanotechnology KW - European Centre KW - Nano-safety KW - Nanomaterials KW - analytical service PY - 2021 DO - https://doi.org/10.1016/j.impact.2021.100337 VL - 23 SP - 100337 PB - Elsevier B.V. AN - OPUS4-52942 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - López de Ipina, J.-M. A1 - Arevalillo, A. A1 - Martín, A. A1 - Caillard, B. A1 - Marcoulaki, E. A1 - Aguerre- Charol, O. A1 - van Duuren-Stuurman, B. A1 - Hodoroaba, Vasile-Dan A1 - Viitanen, A.-K. A1 - Witters, H. A1 - Vercauteren, S. A1 - Persson, K. A1 - Bard, D. A1 - Evans, G. A1 - Jensen, K.A. A1 - Himly, M. A1 - Scalbi, S. A1 - Papin, A. A1 - Le Bihan, O. A1 - Kanerva, T. A1 - Tirez, K. A1 - Frijns, E. A1 - Niga, P. A1 - Eleftheriadis, K. A1 - Travlos, A. A1 - Geppert, M. A1 - Himly, M. A1 - Radnik, Jörg A1 - Kuchenbecker, Petra A1 - Resch-Genger, Ute A1 - Fraboulet, I. A1 - Bressot, C. A1 - Rissler, J. A1 - Gaucher, R. A1 - Binotto, G. A1 - Krietsch, Arne A1 - Braun, A. A1 - Abenet, S. A1 - Catalan, J. A1 - Verstraelen, S. A1 - Manier, N. A1 - Manzo, S. A1 - Fransman, S. A1 - Queron, J. A1 - Charpentier, D. A1 - Taxell, D. A1 - Säämänen, A. A1 - Brignon, J.-M. A1 - Jovanovic, A. A1 - Bisson, M A1 - Neofytou, P. T1 - EC4Safenano - Catalogue of Services N2 - The publicly available document encapsulates the first version of the Catalogue of Services of the future EC4Safenano Centre (CoS 2019). The CoS 2019 is structured in 12 Service Categories and 27 Service Topics, for each of the 12 categories considered. This architecture configures a 12 x 27 matrix that allows ordering the potential EC4Safenano offer in 324 types of services/groups of services. Each type of service/group of services is described, in a simple and friendly way, by means of a specific service sheet: the EC4Safenano - Service Data Sheet (EC4-SDS). These EC4-SDSs allow structuring and summarizing the information of each service, providing the customer with a concise view of characteristics of the service and also the contact details with the service provider. The CoS 2019 deploys a map of services consisting of a set of 100 EC4-SDSs, covering 7 of the 12 Service Categories and 17 of the 27 Service Topics. The harmonization of services is visualized as a future necessary step in EC4Safenano, in order to strengthen the offer and provide added value to customers with a growing offer of harmonized services in future versions of the CoS. The information contained in this document is structured in 3 main sections, as follows: • Catalogue structure. This section describes in short the main characteristics of the CoS 2019. • Catalogue content. This section represents the core part of the document and encapsulates the set of 100 SDSs displaying the offer proposed by the CoS 2019. • Online Catalogue. This section describes the resources implemented by EC4Safenano to facilitate the on-line consultation of the CoS 2019 by customers and other interested parties. KW - Nano-safety KW - Analytical services KW - Nanomaterials KW - Catalogue of services KW - EC4SafeNano KW - European Centre PY - 2021 UR - https://ec4safenano.eu-vri.eu/Public/Guidance SP - 1 EP - 72 PB - EU-VRi – European Virtual Institute for Integrated Risk Management CY - Stuttgart, Germany AN - OPUS4-52943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Drobne, D. A1 - Novak, S. A1 - Kranjc, E. A1 - Bohmer, N. A1 - Hodoroaba, Vasile-Dan T1 - Data quality for Nanorisk Governance N2 - Nanomaterials bring various benefits and have become a part of our daily lives. However, the risks emerging from nanotechnology need to be minimized and controlled at the regulatory level and therefore, there is a need for nanorisk governance. One of the prerequisites for successful nanorisk governance is the availability of high-quality data on nanomaterials and their impact with the human body and the environment. In recent decades, a countless number of publications and studies on nanomaterials and their properties have been produced due to the fast development of nanotechnology. Despite such a vast amount of data and information, there are certain knowledge gaps hindering an efficient nanorisk governance process. Knowing the state of the available data and information is an important requirement for any decision maker in dealing with risks. In the specific case of nanotechnology, where most of the risks are complex, ambiguous, and uncertain in nature, it is essential to obtain complete data and metadata, to fill knowledge gaps, and to transform the available knowledge into functional knowledge. This can become possible using a novel approach developed within the NANORIGO project (Grant agreement No. 814530) – the Knowledge Readiness Level (KaRL). In analogy to NASA’s Technology Readiness Levels (TRLs), we define KaRLs as a categorization system of data, information, and knowledge which enables transformation of data and information into functional knowledge for nanorisk governance. Our approach goes beyond the technical curation of data and metadata and involves quality and completeness filters, regulatory compliance requirements, nanorisk-related tools, and most importantly, human input (inclusion of all stakeholder groups). With the KaRL approach we also address key issues in nanotechnology such as societal and ethical concerns, circular economies and sustainability, the Green Deal, and the traceability of data, knowledge, and decisions. The KaRL approach could be used for nanorisk governance by a nanorisk governance council (NRGC), which is currently under development by three EU projects (NANORIGO, GOV4NANO, and RISKGONE). T2 - Nanosafety Training School: From Basic Science To Risk Governance CY - Online meeting DA - 20.06.2021 KW - Data KW - Knowledge KW - Risk Governance KW - Knowledge Readiness Level PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529255 AN - OPUS4-52925 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Drobne, D. A1 - Novak, S. A1 - Kranjc, E. A1 - Bohmer, N. A1 - Hodoroaba, Vasile-Dan T1 - Knowledge Readiness for Nanorisk Governance N2 - Nanomaterials bring various benefits and have become a part of our daily lives. However, the risks emerging from nanotechnology need to be minimized and controlled at the regulatory level and therefore, there is a need for nanorisk governance. One of the prerequisites for successful nanorisk governance is the availability of high-quality data on nanomaterials and their impact with the human body and the environment. In recent decades, a countless number of publications and studies on nanomaterials and their properties have been produced due to the fast development of nanotechnology. Despite such a vast amount of data and information, there are certain knowledge gaps hindering an efficient nanorisk governance process. Knowing the state of the available data and information is an important requirement for any decision maker in dealing with risks. In the specific case of nanotechnology, where most of the risks are complex, ambiguous, and uncertain in nature, it is essential to obtain complete data and metadata, to fill knowledge gaps, and to transform the available knowledge into functional knowledge. This can become possible using a novel approach developed within the NANORIGO project (Grant agreement No. 814530) – the Knowledge Readiness Level (KaRL). In analogy to NASA’s Technology Readiness Levels (TRLs), we define KaRLs as a categorization system of data, information, and knowledge which enables transformation of data and information into functional knowledge for nanorisk governance. Our approach goes beyond the technical curation of data and metadata and involves quality and completeness filters, regulatory compliance requirements, nanorisk-related tools, and most importantly, human input (inclusion of all stakeholder groups). With the KaRL approach we also address key issues in nanotechnology such as societal and ethical concerns, circular economies and sustainability, the Green Deal, and the traceability of data, knowledge, and decisions. The KaRL approach could be used for nanorisk governance by a nanorisk governance council (NRGC), which is currently under development by three EU projects (NANORIGO, GOV4NANO, and RISKGONE). T2 - Gov4Nano: data management core group CY - Online meeting DA - 05.07.2021 KW - Data Management KW - Knowledge Readiness Level KW - Nanorisk Governance KW - Participatory Approach KW - Sustainability PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529264 AN - OPUS4-52926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Pflüger, Mika A1 - Velasco-Vélez, Juan-Jesús A1 - Sahre, Mario A1 - Radnik, Jörg A1 - Bernicke, Michael A1 - Bernsmeier, Denis A1 - Hodoroaba, Vasile-Dan A1 - Krumrey, Michael A1 - Strasser, Peter A1 - Hertwig, Andreas A1 - Kraehnert, Ralph T1 - Operando electrochemical spectroscopic ellipsometry: Material properties of highly active mesoporous IrO IrOxfilms revealed under realistic OER conditions N2 - Rising energy demand and the impending climate change require the development of a sustainable, fossil-free fuel and chemical production on a global scale. Hydrogen production via water electrolysis will be a fundamental cornerstone in this endeavor. The activity and stability of respective electrode coatings strongly depends on the coating's properties, i.e. phase composition, crystallinity, electrical conductivity, accessible surface, wettability and many other factors. The key to the development of improved catalysts is a better understanding of the relations between their performance, stability and physicochemical properties. However, those relations can be complex, and are strongly influenced also by the reaction environment. Hence, operando analysis of the catalyst material during catalysis at realistic potentials and current densities is highly desirable. Yet, many analytical techniques cannot be applied in liquid environments at realistic potentials and current densities. We propose environmental ellipsometric analysis in a dedicated electrochemical flow cell as a new method to evaluate gas evolution reactions operando under realistic working conditions. Figure 1 illustrates schematically the developed technique. Key factors to success are highly active model-type catalysts with template-controlled porosity, a suitable sample environment, a deep understanding of the spectroscopic method and respective model development, as well as concise cross validation with numerous other analytical techniques. The method was developed and validated by analyzing a calcination series (300 - 600°C) of mesoporous templated IrOx films ex-situ and operando under oxygen evolution reaction (OER) conditions. The employed environmental electrochemical spectroscopic ellipsometric analysis (ECSE) revealed during OER the change of optical and electronic properties, i.e. the dielectric functions (real ε1 and imaginary part ε2), electrical and electronic properties such as resistivity (ρ) and band-to-band transitions (p-d band transitions). Film thickness and porosity were validated by means of scanning electron microscopy (SEM), X-ray reflectometry (XRR) or ellipsometric porosimetry (EP), electrical and electronic properties by means of conductivity measurements, X-ray photoelectron spectroscopy (XPS) or UV-Vis-NIR absorption spectroscopy. The electronic structures of the catalysts from valence electron energy loss spectra (VEELS) derived from the real (ε1) and imaginary part (ε2) of the dielectric function from SE measurements reveal a direct correlation with electrochemical activities in OER. In the presentation reversible and irreversible potential-dependent changes of the catalyst properties during operation will be discussed along with the dynamics of gas formation, transport and dissolution at different potentials. T2 - 54. Jahrestreffen deutscher Katalytiker CY - Online meeting DA - 16.03.2021 KW - Spectroscopic ellipsometry KW - Electrocatalysis KW - Oxygen evolution reaction KW - Mesoporous iridium oxide films KW - Non-destructive operando analysis PY - 2021 AN - OPUS4-52928 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Pflüger, Mika A1 - Velasco-Vélez, Juan-Jesús A1 - Sahre, Mario A1 - Radnik, Jörg A1 - Bernicke, Michael A1 - Bernsmeier, Denis A1 - Hodoroaba, Vasile-Dan A1 - Krumrey, Michael A1 - Strasser, Peter A1 - Hertwig, Andreas A1 - Kraehnert, Ralph T1 - Operando electrochemical spectroscopic ellipsometry: Material properties of highly active mesoporous IrO IrOxfilms revealed under realistic OER conditions N2 - Rising energy demand and the impending climate change require the development of a sustainable, fossil-free fuel and chemical production on a global scale. Hydrogen production via water electrolysis will be a fundamental cornerstone in this endeavor. The activity and stability of respective electrode coatings strongly depends on the coating's properties, i.e. phase composition, crystallinity, electrical conductivity, accessible surface, wettability and many other factors. The key to the development of improved catalysts is a better understanding of the relations between their performance, stability and physicochemical properties. However, those relations can be complex, and are strongly influenced also by the reaction environment. Hence, operando analysis of the catalyst material during catalysis at realistic potentials and current densities is highly desirable. Yet, many analytical techniques cannot be applied in liquid environments at realistic potentials and current densities. We propose environmental ellipsometric analysis in a dedicated electrochemical flow cell as a new method to evaluate gas evolution reactions operando under realistic working conditions. Figure 1 illustrates schematically the developed technique. Key factors to success are highly active model-type catalysts with template-controlled porosity, a suitable sample environment, a deep understanding of the spectroscopic method and respective model development, as well as concise cross validation with numerous other analytical techniques. The method was developed and validated by analyzing a calcination series (300 - 600°C) of mesoporous templated IrOx films ex-situ and operando under oxygen evolution reaction (OER) conditions. The employed environmental electrochemical spectroscopic ellipsometric analysis (ECSE) revealed during OER the change of optical and electronic properties, i.e. the dielectric functions (real ε1 and imaginary part ε2), electrical and electronic properties such as resistivity (ρ) and band-to-band transitions (p-d band transitions). Film thickness and porosity were validated by means of scanning electron microscopy (SEM), X-ray reflectometry (XRR) or ellipsometric porosimetry (EP), electrical and electronic properties by means of conductivity measurements, X-ray photoelectron spectroscopy (XPS) or UV-Vis-NIR absorption spectroscopy. The electronic structures of the catalysts from valence electron energy loss spectra (VEELS) derived from the real (ε1) and imaginary part (ε2) of the dielectric function from SE measurements reveal a direct correlation with electrochemical activities in OER. In the presentation reversible and irreversible potential-dependent changes of the catalyst properties during operation will be discussed along with the dynamics of gas formation, transport and dissolution T2 - E MRS 2021 SPRING MEETING CY - Online meeting DA - 31.05.2021 KW - Spectroscopic ellipsometry KW - Ectrocatalysis KW - Oxygen evolution reaction KW - Mesoporous iridium oxide films KW - Non-destructive operando analysis PY - 2021 AN - OPUS4-52929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bhatia, S. A1 - Donskyi, Ievgen A1 - Block, S. A1 - Nie, C. A1 - Burdinski, A. A1 - Lauster, D. A1 - Radnik, Jörg A1 - Herrmann, A. A1 - Haag, R. A1 - Ludwig, K. A1 - Adeli, M. T1 - Wrapping and Blocking of Influenza A Viruses by Sialylated 2D Nanoplatforms N2 - Inhibition of respiratory viruses is one of the most urgent topics as underlined by different pandemics in the last two decades. This impels the development of new materials for binding and incapacitation of the viruses. In this work, we have demonstrated that an optimal deployment of influenza A virus (IAV) targeting ligand sialic acid (SA) on a flexible 2D platform enables its binding and wrapping around IAV particles. A series of 2D sialylated platforms consisting graphene and polyglycerol are prepared with different degrees of SA functionalization around 10%, 30%, and 90% named as G-PG-SAL, G-PG-SAM, and G-PG-SAH, respectively. The cryo-electron tomography (Cryo-ET) analysis has proved wrapping of IAV particles by G-PG-SAM. A confocal-based colocalization assay established for these materials has offered the comparison of binding potential of sialylated and non-sialylated nanoplatforms for IAV. With this method, we have estimated the binding potential of the G-PG-SAM and G-PG-SAH sheets for IAV particles around 50 and 20 times higher than the control sheets, respectively, whereas the low functionalized G-PG-SAL have not shown any significant colocalization value. Moreover, optimized G-PG-SAM exhibits high potency to block IAV from binding with the MDCK cells. KW - 2D Materials KW - Graphhene KW - Influenza A virus KW - Sialic acid KW - wrapping PY - 2021 DO - https://doi.org/10.1002/admi.202100285 VL - 8 IS - 12 SP - 285 PB - Wiley VCH AN - OPUS4-52715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Elucidating core shell nanostructures with surface analytics N2 - XPS is a versatile tool for elucidating core shell structures. XPS can obtain information for organic compounds (polymer particle, organic coating ) which are hardly or not detectable with other Methods. XPS is an important tool for the risk assessement of nanoparticles T2 - Kratos German User Meeting CY - Online meeting DA - 26.05.2021 KW - Core-shell nanoparticles KW - X-ray photoelectron spectroscopy KW - Complementary methods PY - 2021 AN - OPUS4-52717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Keshmiri, Hamid A1 - Armin, F. A1 - Elsayad, K. A1 - Schreiber, Frank A1 - Moreno, M. T1 - Leaky and waveguide modes in biperiodic holograms N2 - This study details a theoretical analysis of leaky and waveguide modes in biperiodic all-dielectric holograms. By tuning diffraction orders and subsequently confining local density of optical states at two distinct resonance wavelengths, we present a new class of highly sensitive refractive index biosensing platforms that are capable of resolving 35.5 to 41.3 nm/RIU of spectral shift for two separate biological analytes. KW - Antimicrobial resistance KW - Bacteria KW - Photonics KW - Diffractive gratings PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527632 DO - https://doi.org/10.1038/s41598-021-89971-1 SN - 2045-2322 (online) VL - 11 IS - 1 SP - 10991 PB - Springer Nature AN - OPUS4-52763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Hörenz, Christoph A1 - Mansfeld, Ulrich A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Taché, O. A1 - Bartczak, D. A1 - Nunez, S. A1 - Abad Alvaro, I. A1 - Goenaga-Infante, H. T1 - Other than spherical/monodisperse Towards real world NPs as candidate reference materials for traceable size measurements N2 - By far most of the current nanoparticle (NP) research is dealing with (quasi-) spherical and/or monodisperse particles. However, many NPs used in industrial applications are rather aspherical and polydisperse. This inhomogeneity considerably hampers their characterization and, particularly, the accurate determination of the nanoparticle size. In order to overcome this problem and to promote the availability of standardized size measurement methods, it is crucial to develop and establish (candidate) reference materials with inhomogeneous size (distribution), aspherical shape as well as agglomerated or aggregated particles. Therefore, a new set of NPs including Au-, SiO2 , and TiO2-particles is investigated. The range of properties comprises polydisperse spherical, bimodal spherical, rod-like, acicular, bipyramidal, sheet-like as well as cubic NPs. With respect to a good traceability of the measurements, size and size distributions of the candidate reference materials are determined using microscopic methods like scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning electron microscopy in transmission mode (STEM-in-SEM), atomic force microscopy (AFM) as well as small angle X-ray scattering (SAXS) as an ensemble technique. The development of protocols for sample preparation is of particular importance to obtain a homogeneous dispersion of the NPs on a substrate. Further, approaches for signal modelling for all the methods above are being developed. The initiation of two VAMAS (www.vamas.org/twa34/index.html) inter-laboratory comparisons on bipyramidal titania and bimodal silica with different modal concentration ratios will be also highlighted. T2 - E-MRS Spring Meeting 2021 CY - Online meeting DA - 31.05.2021 KW - Nanoparticles KW - Particle size distribution KW - Imaging KW - Traceability KW - Reference material PY - 2021 AN - OPUS4-52764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Omar, Hassan A1 - Schönhals, Andreas T1 - Spatial Inhomogeneity, Interfaces and Complex Vitrification Behavior of Epoxy-based Materials N2 - This work deals with an in-depth comparative investigation of the structure, molecular mobility and vitrification kinetics of three bisphenol A diglycidyl ether (DGEBA)-based materials with different nanofillers: taurine-modified layered double hydroxide (T-LDH) and halloysite nanotubes (HNTs). The chosen methodology comprises I) small – and wide – angle X-ray scattering (SAXS/WAXS) II) calorimetry in the forms of a) conventional DSC and b) static fast scanning calorimetry (FSC), III) broadband dielectric spectroscopy (BDS), as well as IV) specific heat spectroscopy in the forms of a) temperature modulated DSC, and b) temperature modulated FSC. T2 - Abteilungsseminar 6. - FB 6.6 CY - Online meeting DA - 06.05.2021 KW - Broadband dielectric spectroscopy KW - Epoxy nanocomposites KW - Halloysite nanotubes KW - X-ray scattering KW - Differential scanning calorimetry KW - Rigid amorphous fraction KW - Flash DSC PY - 2021 AN - OPUS4-52697 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Szymoniak, Paulina A1 - Qu, Xintong A1 - Schönhals, Andreas A1 - Sturm, Heinz ED - Sinapius, M. ED - Ziegmann, G. T1 - Characterization of Polymer Nanocomposites N2 - The complex effect of nanoparticles on an epoxy-based and anhydride cured DGEBA/Boehmite nanocomposite with different particle concentrations is considered in this chapter. A combination of X-ray scattering, calorimetry (fast scanning and temperature modulated calorimetry) and dielectric spectroscopy was employed to characterize the structure, vitrification kinetics and the molecular dynamics of the nanocomposites. Firstly, the unfilled polymer was found to be intrinsically heterogeneous, showing regions with different crosslinking density, indicated by two separate dynamic glass transitions. Moreover, the glass transition temperature decreases with increasing nanoparticle concentration, as a result of changes in the crosslinking density. In addition, it was shown that the incorporation of nanoparticles can result in simultaneous increase in the number of mobile segments for low nanoparticle concentrations and on the other hand, for higher loading degrees the number of mobile segments decreases, due to the formation of an immobilized interphase. KW - Rigid amorphous fraction KW - Epoxy nanocomposites KW - X-ray scattering KW - Differential scanning calorimetry KW - Broadband dielectric spectroscopy KW - Flash DSC PY - 2021 DO - https://doi.org/10.1007/978-3-030-68523-2_4 SP - 55 EP - 77 PB - Springer Nature AN - OPUS4-52698 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Kersting, R. A1 - Hagenhoff, B. A1 - Bennett, Francesca A1 - Ciornii, Dmitri A1 - Hodoroaba, Vasile-Dan T1 - Comprehensive characterization of Al-coated titania nanoparticles with electron microscopy and surface chemical analytics N2 - The wide use of nanoforms with at least one dimension below 100 nm in our daily life requires a detailed knowledge of their physicochemical properties which are needed for risk assessment or quality control. Therefore, a comprehensive characterization of these properties was considered as relevant including: chemical composition, crystallinity, particle size, particle shape, surface chemistry, and specific surface area (SSA). We want to discuss, how Scanning Electron Microscopy (SEM), Electron Probe Microanalysis (EPMA) in the version with energy dispersive X-ray spectroscopy (EDS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Photoelectron Spectroscopy (XPS) can contribute to gain comprehensive insights into the nature of the nanoparticles. SEM results provide the particle size and shape (distribution). A quick identification of the main chemical elements present in the sample can be obtained with EDS, whereas XPS allows a more detailed chemical identification of the small nanoparticles below 20 nm or of the near-surface region of larger particles. ToF-SIMS is even much more surface-sensitive and leads to a deeper understanding of the surface chemistry of the nanoparticles. As exemplary samples, two Al-coated TiO2 samples in nanopowder form were chosen from the JRC repository, capped either with a hydrophilic or a hydrophobic organic shell. A focus of our case study was to show, how reliable, reproducible and traceable data can be obtained. Therefore, each step in the workflow of sample investigation must be described in detail. For the most of these steps, well-established standards are available. Usually, the conditions of the particular measurements with each analysis method are saved as meta-data in the common file formats. But other factors like sample preparation and data reduction approaches may influence the result of the investigations in a significant manner and must be described often in a separate file (as a protocol) together with the data file. For sensitive materials like nanoobjects, the preparation of the sample influences the results crucially, e.g. measured as suspension or as powders. Furthermore, data reduction like selection of relevant peaks in spectra or particles in images, background subtraction, peak deconvolution, models for the quantification of the spectra must be considered in the interpretation of the results ideally with associated individual measurement uncertainties. Only a detailed description of all these factors allows to obtain a comprehensive characterization with reliable, reproduceable and traceable data. Examples of standardized procedures of measurement or on data reduction will be highlighted. We thank for the funding from the European Unions’s Horizon 2020 for the project NanoSolveIt (grant agreement No. 814572) and for the project NANORIGO (grant agreement No. 814530). T2 - E-MRS Spring Meeting CY - Online meeting DA - 31.05.2021 KW - Scanning Electron Microscopy KW - Energy dispersive X-ray spectroscopy KW - Time-of-Flight Secondary Ion Mass Spectrometry KW - X-ray Photoelectron Spectroscopy KW - Titania nanoparticles PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527486 AN - OPUS4-52748 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Florian, Camilo A1 - Wonneberger, R. A1 - Undisz, A. A1 - Kirner, Sabrina V. A1 - Wasmuth, Karsten A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Surface oxidation accompanying the formation of various types of femtosecond laser-generated surface structures on titanium alloy N2 - Different types of laser-generated surface structures, i.e., Laser-induced Periodic Surface Structures (LIPSS, ripples), Grooves, and Spikes are generated on titanium and Ti6Al4V surfaces by means of femtosecond (fs) laser scan processing (790 nm, 30 fs, 1 kHz) in ambient air. Morphological, chemical and structural properties of the different surface structures are characterized by various surface analytical techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), Glow discharge optical emission spectroscopy (GD-OES), and depth-profiling Auger electron spectroscopy (AES). It is revealed that the formation of near-wavelength sized LIPSS is accompanied by the formation of a graded oxide extending several tens to a few hundreds of nanometers into depth. GD-OES performed on other superficial fs-laser generated structures produced at higher fluences and effective number of pulses per spot area such as periodic Grooves and irregular Spikes indicate even thicker graded oxide layers. These graded layers may be suitable for applications in prosthetics or tribology. T2 - E-MRS Spring Meeting 2021 CY - Online meeting DA - 31.05.2021 KW - Laser-induced periodic surface structures (LIPSS) KW - Titanium alloy KW - Oxidation KW - Glow-discharge optical emission spectroscopy PY - 2021 AN - OPUS4-52749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waniek, Tassilo A1 - Braun, U. A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - The impact of water released from boehmite nanoparticles during curing in epoxy-based nanocomposites N2 - The enhancing effect on mechanical properties of boehmite (γ-AlOOH) nanoparticles (BNP) in epoxy-based nanocomposites on the macroscopic scale encouraged recent research to investigate the micro- and nanoscopic properties. Several studies presented different aspects relatable to an alteration of the epoxy polymer network formation by the BNP with need for further experiments to identify the mode of action. With FTIR-spectroscopic methods this study identifies interactions of the BNP with the epoxy polymer matrix during the curing process as well as in the cured nanocomposite. The data reveals that not the BNP themselves, but the water released from them strongly influences the curing process by hydrolysis of the anhydride hardener or protonation of the amine accelerator. The changes of the curing processes are discussed in detail. The changes of the curing processes enable new explanation for the changed material properties by BNP discussed in recent research like a lowered glass transition temperature region (Tg) and an interphase formation. KW - Spectroscopy KW - Aluminium oxide hydroxide KW - Glass transition temperature KW - Material chemistry KW - Nanocomposites KW - Structure-property relationship PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527202 DO - https://doi.org/10.1002/app.51006 VL - 138 IS - 39 SP - 51006 PB - Wiley Periodicals LLC CY - Hoboken AN - OPUS4-52720 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Rudenko, A. A1 - Déziel, J.-L. A1 - Florian, Camilo A1 - Krüger, Jörg A1 - Siegel, J. A1 - Colombier, J.-P. T1 - The role of electromagnetic scattering in the formation of laser-induced periodic surface structures N2 - Laser-induced periodic surface structures (LIPSS) are a universal phenomenon that is accompanying laser materials processing. These surface nanostructures pave a simple way for surface functionalization with numerous applications in optics, fluidics, tribology, medicine, etc. During the last decade remarkable experimental and theoretical improvements in understanding of their formation mechanisms were obtained - all pointing toward polarization-dependent energy deposition by absorption of optical radiation that is scattered at the surface roughness and interfering with the laser beam. This contribution reviews the current state-of-the-art on the role of electromagnetic scattering in the formation of LIPSS by ultrashort laser pulses. Special attention is drawn to recent finite-difference time-domain (FDTD) calculations that allow to visualize the radiation patterns formed in the vicinity of the sample surface and to the impact of a thin superficial laser-induced oxidation layer. T2 - E-MRS Spring Meeting 2021 CY - Online meeting DA - 31.05.2021 KW - Laser-induced periodic surface structures (LIPSS) KW - Optical scattering KW - Oxidation KW - Femtosecond laser PY - 2021 AN - OPUS4-52729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Angurel, L.A. A1 - Cubero, A. A1 - Martínez, E. A1 - de la Fuente, G.F. A1 - Navarro, R. A1 - Legall, Herbert A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Effects of laser surface processing under different atmospheres on the superconducting properties of pure niobium N2 - Niobium metal is the pure element with the highest superconducting critical temperature (T_c = 9.2 K), which is present in many applications. Particularly, in superconducting radio frequency (SRF) cavities of particle accelerators, the control of the surface characteristics of pure Nb is crucial, as the presence of defects may generate magnetic flux pinning that can increase by more than two orders of magnitude the surface critical current, ic. Several procedures such as chemical- or electro-polishing have been used aiming at cleaning surface contamination and decreasing its roughness. Sub-nanosecond lasers can be applied to generate a broad range of micro and nanostructures (e.g. Laser-Induced Periodic Surface Structures, LIPSS) that strongly modify the materials properties - as wettability, color, oxidation resistance or antibacterial behavior. In this work, we analyze a variety of surface structures generated on pure Nb sheets with different laser systems (UV, Vis and n-IR, fs and ps) by exploring a range of processing parameters. These include pulse overlap, irradiance or the effective number of pulses, under different atmospheres (air, N2, Ar, vacuum). The effects on Tc, critical currents and critical fields (Bc1, Bc2 and Bc3) have been obtained from magnetization, ac susceptibility and heat capacity measurements, revealing their dependence with the different surface nanostructures and the chemical changes generated with these laser treatments. T2 - E-MRS Spring Meeting 2021 CY - Online meeting DA - 31.05.2021 KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Niobium KW - Superconductivity PY - 2021 AN - OPUS4-52730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Anja A1 - Mezera, Marek A1 - Thiele, Dorothea A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Schwibbert, Karin T1 - Bacterial adhesion on ultrashort laser processed surfaces N2 - Bacterial biofilms are multicellular communities adhering to surfaces and embedded in a self-produced extracellular matrix. Due to physiological adaptations and the protective biofilm matrix itself, biofilm cells show enhanced resistance towards antimicrobial treatment. In medical and industrial settings, biofilms on e.g. for implants or for surfaces in food-processing industry can be a fertile source of bacterial pathogens and are repeatedly associated with persisting, nosocomial and foodborne infections. As extensive usage of antibiotics and biocides can lead to the emergence of resistances, various strategies are currently developed, tested and improved to realize anti-bacterial surface properties through surface functionalization steps avoiding antibiotics. In this study, contact-less and aseptic large-area ultrashort laser scan processing is employed to generate different surface structures in the nanometer- to micrometer-scale on technical materials, i.e. titanium-alloy, steel, and polymer. The processed surfaces were characterized by optical and scanning electron microscopy and subjected to bacterial colonization studies with Escherichia coli test strains. For each material, biofilm results of the fs-laser treated surfaces are compared to that obtained on polished (non-irradiated) surfaces as a reference. Depending on the investigated surfaces, different bacterial adhesion patterns were found, suggesting an influence of geometrical size, shape and cell appendages of the bacteria and – above all – the laser-processed nanostructure of the surface itself. T2 - European Materials Research Society Spring Meeting 2021 CY - Online Meeting DA - 31.05.2021 KW - Bacterial adhesion KW - Biofilm formation KW - Ultrashort laser processing KW - Laser-induced periodic surface structures (LIPSS) PY - 2021 UR - https://www.european-mrs.com/laser-material-processing-fundamental-interactions-innovative-applications-emrs AN - OPUS4-52765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohammadifar, E. A1 - Ahmadi, V. A1 - Gholami, M.F. A1 - Oehrl, A. A1 - Kolyvushko, O. A1 - Nie, C. A1 - Donskyi, Ievgen A1 - Herziger, S. A1 - Radnik, Jörg A1 - Ludwig, K. A1 - Böttcher, C. A1 - Rabe, J.P. A1 - Osterrieder, K. A1 - Azab, W. A1 - Haag, R. A1 - Adeli, M. T1 - Graphene-Assisted Synthesis of 2D Polyglycerols as Innovative Platforms for Multivalent Virus Interactions N2 - 2D nanomaterials have garnered widespread attention in biomedicine and bioengineering due to their unique physicochemical properties. However, poor functionality, low solubility, intrinsic toxicity, and nonspecific interactions at biointerfaces have hampered their application in vivo. Here, biocompatible polyglycerol units are crosslinked in two dimensions using a graphene-assisted strategy leading to highly functional and water-soluble polyglycerols nanosheets with 263 ± 53 nm and 2.7 ± 0.2 nm average lateral size and thickness, respectively. A single-layer hyperbranched polyglycerol containing azide functional groups is covalently conjugated to the surface of a functional graphene template through pH-sensitive linkers. Then, lateral crosslinking of polyglycerol units is carried out by loading tripropargylamine on the surface of graphene followed by lifting off this reagent for an on-face click reaction. Subsequently, the polyglycerol nanosheets are detached from the surface of graphene by slight acidification and centrifugation and is sulfated to mimic heparin sulfate proteoglycans. To highlight the impact of the two-dimensionality of the synthesized polyglycerol sulfate nanosheets at nanobiointerfaces, their efficiency with respect to herpes Simplex virus type 1 and severe acute respiratory syndrome corona virus 2 inhibition is compared to their 3D nanogel analogs. Four times stronger in virus Inhibition suggests that 2D polyglycerols are superior to their current 3D counterparts.2D nanomaterials have garnered widespread attention in biomedicine and bioengineering due to their unique physicochemical properties. However, poor functionality, low solubility, intrinsic toxicity, and nonspecific interactions at biointerfaces have hampered their application in vivo. Here, biocompatible polyglycerol units are crosslinked in two dimensions using a graphene-assisted strategy leading to highly functional and water-soluble polyglycerols nanosheets with 263 ± 53 nm and 2.7 ± 0.2 nm average lateral size and thickness, respectively. A single-layer hyperbranched polyglycerol containing azide functional groups is covalently conjugated to the surface of a functional graphene template through pH-sensitive linkers. Then, lateral crosslinking of polyglycerol units is carried out by loading tripropargylamine on the surface of graphene followed by lifting off this reagent for an on-face click reaction. Subsequently, the polyglycerol nanosheets are detached from the surface of graphene by slight acidification and centrifugation and is sulfated to mimic heparin sulfate proteoglycans. To highlight the impact of the two-dimensionality of the synthesized polyglycerol sulfate nanosheets at nanobiointerfaces, their efficiency with respect to herpes Simplex virus type 1 and severe acute respiratory syndrome corona virus 2 inhibition is compared to their 3D nanogel analogs. Four times stronger in virus Inhibition suggests that 2D polyglycerols are superior to their current 3D counterparts. KW - 2D Materials KW - Graphene template KW - Multivalency KW - Polyglycerol KW - Virus inhibition PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527726 DO - https://doi.org/10.1002/adfm.202009003 VL - 31 IS - 32 SP - 2009003 PB - Wiley VCH AN - OPUS4-52772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abram, Sarah-Luise A1 - Mrkwitschka, Paul A1 - Prinz, Carsten A1 - Rühle, Bastian A1 - Haase, Oskar A1 - Kuchenbecker, Petra A1 - Löhmann, Oliver A1 - Hodoroaba, Vasile-Dan A1 - Bresch, Harald A1 - Resch-Genger, Ute T1 - Iron oxide nanoparticles as a reference material candidate for particle size measurements N2 - This poster presentation covers the development of iron oxide nanoparticles as reference material candidate in the context of the project "Nanoplattform". T2 - EMRS Spring Meeting CY - Online meeting DA - 31.05.2021 KW - Iron oxide nanoparticles KW - Reference material KW - Particle size KW - Transmission electron microscopy KW - Small angle x-ray scattering PY - 2021 AN - OPUS4-52773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Radnik, Jörg T1 - BAM reference data - XPS raw data of Al-coated titania nanoparticles (JRCNM62001a and JRCNM62002a) N2 - XPS raw data of Al-coated titania nanoparticles (JRCNM62001 and JRCNM62002a) provided by the JRC repository are provided. KW - XPS KW - Titania nanoparticles KW - BAM reference data PY - 2021 DO - https://doi.org/10.5281/zenodo.4986068 PB - Zenodo CY - Geneva AN - OPUS4-52880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Florian, Camilo A1 - Déziel, J.-L. A1 - Kirner, Sabrina V. A1 - Siegel, J. A1 - Bonse, Jörn T1 - Femtosecond laser-induced oxidation in the formation of periodic surface structures N2 - Laser-induced oxide graded layers may contribute to the formation of a new type of embedded low-spatial frequency LIPSS with an anomalous orientation parallel to the laser polarization. In this contribution, we explore this effect experimentally with femtosecond laser pulses and numerically by finite-difference time-domain (FDTD) calculations. T2 - 2021 Conference on Lasers and Electro-Optics/Europe – European Quantum Electronics Virtual Conferences CY - Online meeting DA - 21.06.2021 KW - Laser-induced periodic surface structures (LIPSS) KW - Surface oxidation KW - Femtosecond laser ablation KW - Finite-difference time-domain calculations PY - 2021 AN - OPUS4-52859 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard T1 - The MOUSE project - A meticulous approach for obtaining traceable, wide-range X-ray scattering information N2 - Herein, we provide a "systems architecture"-like overview and detailed discussions of the methodological and instrumental components that, together, comprise the "MOUSE" project (Methodology Optimization for UltrafineStructure Exploration). The MOUSE project provides scattering information on a wide variety of samples, with traceable dimensions for both the scattering vector (q) and the absolute scattering cross-section (I). The measurable scattering vector-range of 0.012≤ q (nm-1) ≤ 92, allows information across a hierarchy of structures with dimensions ranging from ca. 0.1 to 400 nm. In addition to details that comprise the MOUSE project, such as the organisation and traceable aspects, several representative examples are provided to demonstrate its flexibility. These include measurements on alumina membranes, the tobacco mosaic virus, and dual-source information that overcomes fluorescence limitations on ZIF-8 and iron-oxide-containing carbon catalyst materials. KW - X-ray scattering KW - MOUSE KW - Instrumentation KW - SAXS KW - Methodology KW - Traceability KW - Wide-range KW - Data curation KW - FAIR KW - Uncertainties KW - Nanomaterials KW - Nanometrology PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528669 DO - https://doi.org/10.1088/1748-0221/16/06/P06034 VL - 16 IS - 6 SP - 1 EP - 50 PB - IOP CY - Bristol, UK AN - OPUS4-52866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bennet, Francesca A1 - Hodoroaba, Vasile-Dan T1 - BAM reference data - SEM raw data for the particles size distribution of Al-coated titania nanoparticles (JRCNM62001a and JRCNM62002a) N2 - SEM raw images of Al-coated titania nanoparticles (JRCNM62001 and JRCNM62002a) provided by the JRC repository are provided together with the particle size distribution of the minimum Feret Diameter extracted from the given images. KW - SEM KW - Titania nanoparticles KW - Particle size distribution KW - BAM reference data PY - 2021 DO - https://doi.org/10.5281/zenodo.5007367 PB - Zenodo CY - Geneva AN - OPUS4-52836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bennet, Francesca A1 - Burr, L. A1 - Schmid, D. A1 - Hodoroaba, Vasile-Dan T1 - Towards a method for quantitative evaluation of nanoparticle from suspensions via microarray printing and SEM analysis N2 - As part of the development of a library of accurate and efficient methods for measurement of nanoparticle properties, we develop and optimize a method for the efficient analysis of nanoparticle size distribution from suspensions via microprinting and digital analysis of electron microscopy (SEM and TEM) images, with the ultimate aim of automated quantitative concentration analysis (calculated from drop volume). A series of different nanoparticle suspensions (gold, latex, and SiO2 in varying sizes and concentrations) were printed onto TEM grids in a 4 x 4 array in the concentration range 7x10^8 to 1x10^11 nanoparticles/mL and imaged with SEM. Concentrations and printing conditions (temperature, relative humidity) were varied in order to minimize the coffee-ring effect. KW - Nanoparticles KW - Particle size distribution KW - Electron microscopy KW - Microarray printing KW - Sample preparation KW - Nanoparticle concentration PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528455 DO - https://doi.org/10.1088/1742-6596/1953/1/012002 VL - 1953 SP - 012002 PB - IOP Publishing AN - OPUS4-52845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cano Murillo, Natalia A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Emamverdi, Farnaz A1 - Cacua, K. A1 - Hodoroaba, Vasile-Dan A1 - Sturm, Heinz T1 - Carrier Fibers for the Safe Dosage of Nanoparticles in Nanocomposites: Nanomechanical and Thermomechanical Study on Polycarbonate/Boehmite Electrospun Fibers Embedded in Epoxy Resin N2 - The reinforcing effect of boehmite nanoparticles (BNP) in epoxy resins for fiber composite lightweight construction is related to the formation of a soft but bound interphase between filler and polymer. The interphase is able to dissipate crack propagation energy and consequently increases the fracture toughness of the epoxy resin. Usually, the nanoparticles are dispersed in the resin and then mixed with the hardener to form an applicable mixture to impregnate the fibers. If one wishes to locally increase the fracture toughness at particularly stressed positions of the fiber-reinforced polymer composites (FRPC), this could be done by spraying nanoparticles from a suspension. However, this would entail high costs for removing the nanoparticles from the ambient air. We propose that a fiber fleece containing bound nanoparticles be inserted at exposed locations. For the present proof-of-concept study, an electrospun polycarbonate nonwoven and taurine modified BNP are proposed. After fabrication of suitable PC/EP/BNP composites, the thermomechanical properties were tested by dynamic mechanical analysis (DMA). Comparatively, the local nanomechanical properties such as stiffness and elastic modulus were determined by atomic force microscopy (AFM). An additional investigation of the distribution of the nanoparticles in the epoxy matrix, which is a prerequisite for an effective nanocomposite, is carried out by scanning electron microscopy in transmission mode (TSEM). From the results it can be concluded that the concept of carrier fibers for nanoparticles is viable. KW - Advanced materials KW - Electrospun nanocomposite fiber KW - Nanomechanical charecteisation KW - Nanosafety KW - Epoxy nanocomposites PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528265 DO - https://doi.org/10.3390/nano11061591 VL - 11 IS - 6 SP - 1591 PB - MDPI CY - CH - 4020 Basel, Switzerland AN - OPUS4-52826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan T1 - BAM reference data - EDS raw data of Al-coated titania nanoparticles (JRCNM62001a and JRCNM62002a) N2 - EDS spectra of Al-coated titania nanoparticles (JRCNM62001 and JRCNM62002a) provided by the JRC repository are provided. KW - EDS KW - Titania nanoparticles KW - BAM reference data PY - 2021 DO - https://doi.org/10.5281/zenodo.4986420 PB - Zenodo CY - Geneva AN - OPUS4-52833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Schmitt, M. T1 - EMPIR nPSize - Improved Traceability Chain of Nanoparticle Size Measurement; What nPSize can offer to CEN/TC 352? N2 - The main outcomes of the EMPIR project nPSize are presented and the suitability of the new capabilities (e.g. reference materials, measurement procedures, inter-laboratory comparisons) as pertinent contributions to normative projects within CEN/TC 352 Nanotechnologies are discussed. E.g. the first technical report of nPSize on full algorithm sequences for nanoparticle detection and size measurement as developed on both a physical basis (SEM, TSEM, AFM and SAXS) and by machine learning is put at disposal. T2 - 29th Meeting of CEN/TC 352 Nanotechnologies CY - Online meeting DA - 25.03.2021 KW - Nanoparticles KW - Electron microscopy KW - CEN/TC 352 Nanotechnologies KW - Particle size distribution KW - Modelling KW - Machine learning PY - 2021 AN - OPUS4-52464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Sample Preparation of Nano-Powders for Particle Size Determination N2 - The use of increasingly finer starting powders up to nanopowders can also be observed in the field of ceramics. Their advantages consist, for example, in their lower activation energy, an increase in strength or unique optical properties. However, handling and characterization of the powders are much more difficult. The main reason for this is the very high adhesive forces between the particles and between particles and other surfaces, too. Therefore, submicron and even more so nanoparticles tend to agglomerate and their separation into primary particles during sample preparation prior to particle sizing is of particular challenge. A representative measurement sample is only obtained when it no longer contains agglomerates. The evaluation of the dispersion process and a decision on whether it was successful thus increases in importance for the reliability of the measurement results of particle sizing. The presentation uses examples to show possible approaches and provides information on possible sources of error. It is shown that successful granulometric characterisation of fine powders requires both an improved dispersion technique and very often an effective combination of two or more measurement methods. T2 - 96. Jahrestagung der Deutschen Keramischen Gesellschaft CY - Online Meeting DA - 19.04.2021 KW - Agglomerates KW - Nano-powder KW - Dispersion process PY - 2021 AN - OPUS4-52503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kuchenbecker, Petra T1 - Granulometry of Nano Powders - a Challenge Especially for the Dispersion Process N2 - The use of increasingly finer starting powders up to nanopowders can also be observed in the field of ceramics. Their advantages consist, for example, in their lower activation energy, an increase in strength or unique optical properties. However, handling and characterization of the powders are much more difficult. The main reason for this is the very high adhesive forces between the particles and between particles and other surfaces, too. Therefore, submicron and even more so nanoparticles tend to agglomerate and their separation into primary particles during sample preparation prior to particle sizing is of particular challenge. A representative measurement sample is only obtained when it no longer contains agglomerates. The evaluation of the dispersion process and a decision on whether it was successful thus increases in importance for the reliability of the measurement results of particle sizing. The presentation uses examples to show possible approaches and provides information on possible sources of error. It is shown that successful granulometric characterisation of fine powders requires both an improved dispersion technique and very often an effective combination of two or more measurement methods. KW - Agglomerates KW - Nano-powder KW - Dispersion process PY - 2021 SN - 0173-9913 VL - 98 IS - 2 SP - 47 EP - 54 PB - Göller Verlag GmbH CY - Baden-Baden AN - OPUS4-52504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Drobne, D. A1 - Novak, S. A1 - Kranjc, E. A1 - Bohmer, N. A1 - Hodoroaba, Vasile-Dan A1 - Reuther, R. T1 - Knowledge, Information and Data Readiness Levels (KaRL) approach for Nanorisk Governance N2 - Nanomaterials may have brought many beneficial innovations with them in our daily lives and and have become indispensable for the society. However, one needs to be concerned of the risks which are still unknown and not sufficietly studied and therefore there is a need for a nanorisk governance. At the core of nanorisk governance is gathering, processing and analysing reliable data which will be used for decision making. The challenge is to assure data reliability and transform it into knowledge. To address this challenge, we used analogy to technology readiness level (TRL) approach (developed by NASA), and elaborated knowledge readiness level (KaRL). KaRL is a nine-scale system to categorize data and knowledge (documents) into levels of readiness for particular purposes and to enhance readiness level by using quality and completeness filters, compliance requirements, nanorisk-related tools, stakeholders’ input. By our approach we addressed key issues in nanotechnology such as societal and ethical concerns, circular economy and sustainability, traceability of data, knowledge and decisions. T2 - EC - HORIZON EUROPE NMBP-13 Joint Conference Risk Governance of nanotechnology CY - Online meeting DA - 12.04.2021 KW - Knowledge Readiness Level KW - Nanorisk KW - Nanomaterials KW - Data PY - 2021 AN - OPUS4-52471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Drobne, D. A1 - Novak, S. A1 - Kranjc, E. A1 - Bohmer, N. A1 - Hodoroaba, Vasile-Dan T1 - Knowledge Readiness Level (KaRL) approach for nanorisk governance and beyond N2 - Regulatory decisions require reliable data and knowledge derived from this. Among stakeholders in nanotechnology, however, there is often uncertainty about the quality of data for regulatory purposes. In addition, the general public often finds itself excluded from nanoregulation and policy decisions. This creates uncertainty in the nanotechnology field and also in other branches of technology and leads to concerns among the society. To address these issues, NANORIGO elaborates a framework to support decision making as well as data, information and knowledge sharing and use. We refer to “reliability” of data and knowledge as a degree of readiness or maturity. According to these criteria we worked out a 9-level scale in analogy to TRL (technology readiness level), the KaRL system (Knowledge, Data and Information Readiness Level). KaRL allows assessment of knowledge readiness for decision making by applying defined quality criteria for each level. It also provides guidance on how to enhance the readiness level by the help of available tools and procedures. KaRL addresses SEIN[1] principles, circular economy and thus involves the public concerns in regulation. A specialized nanorisk governance council (being under development in NANORIGO) is suggested to perform quality check of an actionable document, thus, aiding in consensus on the reliability (maturity) of knowledge for decision making. Moreover, KaRL facilitates traceability of knowledge before its use in decision making. This enables the transparency demanded by all stakeholders. T2 - EuroNanoForum 2021 CY - Online meeting DA - 05.05.2021 KW - Knowledge Readiness Level KW - Nanorisk KW - Nanomaterials KW - Data PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524725 AN - OPUS4-52472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frenzel, Florian A1 - Würth, Christian A1 - Dukhno, O. A1 - Przybilla, F. A1 - Wiesholler, L. M. A1 - Muhr, V. A1 - Horsch, T. A1 - Mély, Y. A1 - Resch-Genger, Ute T1 - Multiband emission from single β-NaYF4(Yb,Er) nanoparticles at high excitation power densities and comparison to ensemble studies N2 - Ensemble and single particle studies of the excitation power density (P)-dependent upconversion luminescence (UCL) of core and core–shell β-NaYF4:Yb,Er upconversion nanoparticles (UCNPs) doped with 20% Yb3+ and 1% or 3% Er3+ performed over a P regime of 6 orders of magnitude reveal an increasing contribution of the emission from high energy Er3+ levels at P > 1 kW/cm2. This changes the overall emission color from initially green over yellow to white. While initially the green and with increasing P the red emission dominate in ensemble measurements at P < 1 kW/cm2, the increasing population of higher Er3+ energy levels by multiphotonic processes at higher P in single particle studies results in a multitude of emission bands in the ultraviolet/visible/near infrared (UV/vis/NIR) accompanied by a decreased contribution of the red luminescence. Based upon a thorough analysis of the P-dependence of UCL, the emission bands activated at high P were grouped and assigned to 2–3, 3–4, and 4 photonic processes involving energy transfer (ET), excited-state absorption (ESA), cross-relaxation (CR), back energy transfer (BET), and non-radiative relaxation processes (nRP). This underlines the P-tunability of UCNP brightness and color and highlights the potential of P-dependent measurements for mechanistic studies required to manifest the population pathways of the different Er3+ levels. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Llifetime KW - Sensor KW - Excitation power density KW - Single particle KW - Brightness KW - NIR KW - Mechanism KW - Color tuning PY - 2021 DO - https://doi.org/10.1007/s12274-021-3350-y SN - 1998-0124 VL - 14 IS - 11 SP - 4107 EP - 4115 PB - Nano Research AN - OPUS4-52364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maisuls, I. A1 - Wang, Cui A1 - Gutierrez Suburu, M. E. A1 - Wilde, S. A1 - Daniliuc, C.-G. A1 - Brunink, D. A1 - Doltsinis, N. L. A1 - Ostendorp, S. A1 - Kösters, J. A1 - Resch-Genger, Ute A1 - Strassert, C. A. T1 - Ligand-controlled and nanoconfinement-boosted luminescence employing Pt(II) and Pd(II) complexes: from color-tunable aggregation-enhanced dual emitters towards self-referenced oxygen reporters N2 - In this work, we describe the synthesis, structural and photophysical characterization of four novel Pd(II) and Pt(II) complexes bearing tetradentate luminophoric ligands with high photoluminescence quantum yields (FL) and long excited state lifetimes (s) at room temperature, where the results were interpreted by means of DFT calculations. Incorporation of fluorine atoms into the tetradentate ligand favors aggregation and thereby, a shortened average distance between the metal centers, which provides accessibility to metal–metal-to-ligand charge-transfer (3MMLCT) excimers acting as red-shifted Energy traps if compared with the monomeric entities. This supramolecular approach provides an elegant way to enable room-temperature phosphorescence from Pd(II) complexes, which are otherwise quenched by a thermal population of dissociative states due to a lower ligand field splitting. Encapsulation of These complexes in 100 nm-sized aminated polystyrene nanoparticles enables concentration-controlled aggregation-enhanced dual emission. This phenomenon facilitates the tunability of the absorption and emission colors while providing a rigidified environment supporting an enhanced FL up to about 80% and extended s exceeding 100 ms. Additionally, these nanoarrays constitute rare examples for selfreferenced oxygen reporters, since the phosphorescence of the aggregates is insensitive to external influences, whereas the monomeric species drop in luminescence lifetime and intensity with increasing triplet molecular dioxygen concentrations (diffusion-controlled quenching). KW - Fluorescence KW - Multiplexing KW - Lifetime KW - Bead KW - Particle KW - Dye KW - Barcoding KW - Encoding KW - Quantum yield KW - Label KW - Reporter KW - Pd(II) KW - Pt(II) KW - Complex KW - NMR KW - X-ray KW - Sythesis KW - Aggregation KW - Monomer KW - Color PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525288 DO - https://doi.org/10.1039/d0sc06126c VL - 12 IS - 9 SP - 3270 EP - 3281 PB - Royal Society of Chemistry AN - OPUS4-52528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Battig, Alexander A1 - Abdou-Rahaman Fadul, Naïssa A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Schartel, Bernhard T1 - Multifunctional graphene nanofiller in flame retarded polybutadiene/chloroprene/carbon black composites N2 - To curtail flammability risks and improve material properties, flame retardants (FRs) and fillers are mixed into rubbers. High loadings of aluminum trihydroxide (ATH) and carbon black (CB) are the most used FRs and reinforcing additive, respectively, in rubbers. To reduce loading without losing mechanical properties, partial substitution of ATH as well as CB by low amounts of multilayer graphene (MLG) nanoparticles is investigated. The high aspect ratio MLG is made of ten graphene sheets. In polybutadiene/chloroprene (BR/CR) nanocomposites 3 phr MLG replaced 15 phr CB and/or 3 phr ATH. Material and mechanical properties as well as fire behavior of the nanocomposites are compared to BR/CR with 20 phr CB both with and without 50 phr ATH. MLG appears as a promising nanofiller to improve the functional properties: replacement of CB improved rheological, curing, and mechanical properties; substitution of ATH improved nanocomposite properties without affecting flame retardancy. KW - Nanocomposites KW - Rubber KW - Multilayer graphene KW - Carbon black KW - Polybutadiene/chloroprene KW - Graphene PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523468 DO - https://doi.org/10.1515/epoly-2021-0026 SN - 1618-7229 VL - 21 IS - 1 SP - 244 EP - 262 PB - De Gruyter AN - OPUS4-52346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Keller, Lisa-Marie A1 - Scholz, Lena A1 - Weigert, Florian A1 - Radnik, Jörg A1 - Rühle, Bastian A1 - Bresch, Harald T1 - Nanocarriers – Challenges Imposed by Material Characterization N2 - A brief perspective of BAM on nanocarriers is presented including examples with special emphasis on the characterization of such materials and underlying challenges. In this respect, also ongoing activities at BAM on different types of core/shell nanomaterials and related systems are briefly summarized. T2 - Kolloquium BfR CY - Online meeting DA - 18.03.2021 KW - Nanomaterial KW - Nanocarrier KW - Size KW - Surface chemistry KW - Release kinetics KW - Chemical composition KW - Core/shell nanoparticle KW - Quantum dot KW - Spectroscopy KW - Fluorescence PY - 2021 AN - OPUS4-52412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hewel, M. A1 - Siemann, U. A1 - Smarsly, B. A1 - Stribeck, A. A1 - Thünemann, Andreas T1 - Nachruf auf Wilhelm Ruland N2 - Mit Prof. Dr. Wilhelm Ruland starb am 3. Februar 2021 einer der letzten großen Wissenschaftler, welche die Streutheorie nach dem Zweiten Weltkrieg vorangetrieben haben. Sein zentrales Thema war die Streuung an weicher Materie. Hier lieferte er bis ins hohe Alter grundlegende Beiträge, die den Stellenwert seines Leitspruchs demonstrieren: Nichts ist praktischer als eine gute Theorie. KW - SAXS PY - 2021 VL - 20 IS - 4 SP - 50 EP - 50 PB - Wiley AN - OPUS4-52413 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cano Murillo, Natalia A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Hahn, Marc Benjamin A1 - Hodoroaba, Vasile-Dan A1 - Sturm, Heinz T1 - Nanomechanical study of polycarbonate/boehmite nanoparticles/epoxy ternary composite and their interphases N2 - Thermoplastic modified thermosets are of great interest especially due to their improved fracture toughness. Comparable enhancements have been achieved by adding different nanofillers including inorganic particles such as nanosized boehmite. Here, we present a nanomechanical study of two composite systems, the first comprising a polycarbonate (PC) layer in contact with epoxy resin (EP) and the second consisting of a PC layer containing boehmite nanoparticles (BNP) which is also in contact with an EP layer. The interaction between PC and EP monomer is tested by in situ Fourier transformed infrared (FT-IR) analysis, from which a reaction induced phase separation of the PC phase is inferred. Both systems are explored by atomic force microscopy (AFM) force spectroscopy. AFM force-distance curves (FDC) show no alteration of the mechanical properties of EP at the interface to PC. However, when a PC phase loaded with BNP is put in contact with an epoxy system during curing, a considerable mechanical improvement exceeding the rule of mixture was detected. The trend of BNP to agglomerate preferentially around EP dominated regions and the stiffening effect of BNP on EP shown by spatial resolved measurements of Young's modulus, suggest the effective presence of BNP within the EP phase. KW - Composites KW - Mechanical properties KW - Nanoparticles KW - Thermoplastics KW - Thermosets PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515965 DO - https://doi.org/10.1002/app.50231 SN - 0021-8995 SN - 1097-4628 VL - 138 IS - 12 SP - 1 EP - 11 PB - Wiley CY - New York, NY AN - OPUS4-51596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan A1 - Fagan, J. T1 - Contributors invited for two studies on concentration of bimodal silica nanoparticle and bipyramidal titania N2 - International standardisation network VAMAS is calling for participants in two studies on the measurement of (relative) number concentration of bimodal silica nanoparticles including deposition from liquid suspension and the measurement of particle size and shape distribution of bipyramidal titania including deposition from liquid suspension. KW - Nanoparticles KW - VAMAS KW - Inter-laboratory comparison KW - TiO2 KW - SiO2 PY - 2021 UR - https://www.iom3.org/resource/contributors-invited-for-two-studies-on-concentration-of-bimodal-silica-nanoparticle-and-bipyramidal-titania.html SP - 1 EP - 2 PB - Institute of Materials, Minerals and Mining (IOM3) CY - London, UK AN - OPUS4-54410 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Crouzier, L. A1 - Feltin, N. A1 - Delvallée, A. A1 - Pellegrino, Francesco A1 - Maurino, V. A1 - Cios, Grzegorz A1 - Tokarski, T. A1 - Salzmann, Christoph A1 - Deumer, J. A1 - Gollwitzer, C. A1 - Hodoroaba, Vasile-Dan T1 - Correlative analysis of the dimensional properties of bipyramidal titania nanoparticles by complementing electron microscopy with other methods N2 - In this paper, the accurate determination of the size and size distribution of bipyramidal anatase nanoparticles (NPs) after deposition as single particles on a silicon substrate by correlative Scanning Electron Microscopy (SEM) with Atomic Force Microscopy (AFM) analysis is described as a new measurement procedure for metrological purposes. The knowledge of the exact orientation of the NPs is a crucial step in extracting the real 3D dimensions of the particles. Two approaches are proposed to determine the geometrical orientation of individual nano‐bipyramides: (i) AFM profiling along the long bipyramid axis and (ii) stage tilting followed by SEM imaging. Furthermore, a recently developed method, Transmission Kikuchi Diffraction (TKD), which needs preparation of the crystalline NPs on electron‐transparent substrates such as TEM grids, has been tested with respect to its capability of identifying the geometrical orientation of the individual NPs. With the NPs prepared homogeneously on a TEM grid, the transmission mode in a SEM, i.e., STEM‐in‐SEM (or T‐SEM), can be also applied to extract accurate projection dimensions of the nanoparticles from the same sample area as that analysed by SEM, TKD and possibly AFM. Finally, Small Angle X‐ray Scattering (SAXS) can be used as an ensemble technique able to measure the NPs in liquid suspension and, with ab‐initio knowledge of the NP shape from the descriptive imaging techniques, to provide traceable NP size distribution and particle concentration. KW - Nanoparticles KW - Complex-shape KW - Bipyramid KW - Electron microscopy KW - AFM KW - Size measurements KW - TKD KW - STEM-in-SEM KW - SAXS KW - Nanoparticle concentration KW - Correlative analysis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539888 DO - https://doi.org/10.3390/nano11123359 SN - 2079-4991 VL - 11 IS - 12 SP - 1 EP - 19 PB - MDPI CY - Basel AN - OPUS4-53988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Schmidt, Alexandra A1 - Bresch, Harald A1 - Kämpf, K. A1 - Bachmann, V. A1 - Peters, T. A1 - Kuhlbusch, T. T1 - Development of a specific OECD Test Guideline on Particle Size and Particle Size Distribution of Nanomaterials N2 - In this research project, a new OECD Test Guideline (TG) for the determination of “Particle Size and Particle Size Distributions of Nanomaterials” was developed as the existing OECD TG 110 is considered to be outdated in terms of applicable size range (not covering sizes <200 nm) and methods. By its scope with an applicable size range from 1 to 1000 nm the new Test Guideline (TG PSD) covers the whole nanoscale. The TG PSD is applicable for particulate and fibrous nanomaterials. The prescribed, pairwise measurement of fibre diameter and length in the TG PSD allows for the first time to differen-tiate fibres with regard to their size-dependent hazard properties. Measurement instructions for each included method were validated within two separated interlaboratory comparisons, as a distinction between near spherical particles and fibres when applying the methods has to be made. Besides information on content and structure of the TG PSD, this final report outlines essential steps, considerations and organisational aspects during the development of the TG. Insights into the selec-tion, preparation and prevalidation of test materials used in the interlaboratory comparison are given. Finally, main results of the interlaboratory comparisons and their impacts on the TG PSD are pre-sented. N2 - Im Rahmen des Forschungsprojekts wurde eine neue OECD-Prüfrichtlinie (TG) für die Bestimmung von Partikelgrößen und Partikelgrößenverteilungen von Nanomaterialien entwickelt, da die existie-rende OECD TG 110 zur Bestimmung von Partikelgrößen in Bezug auf den anwendbaren Größenbe-reich und die gegebenen Methoden veraltet ist bzw. den Nanometerbereich < 200 nm nicht abdeckt. Mit ihrem Anwendungsbereich von 1 bis 1000 nm deckt die neue Prüfrichtlinie (TG PSD) die gesamte Nanoskala ab. Die TG PSD ist für partikel- und faserförmige Nanomaterialien anwendbar. Durch die, in der TG PSD vorgeschriebene, paarweise Messung von Faserdurchmesser und -länge ermöglicht diese TG zum ersten Mal Fasern hinsichtlich ihrer größenabhängigen Gefahrstoffeigenschaften zu unter-scheiden. Die Messanweisungen aller enthaltenen Methoden wurden im Rahmen von zwei getrennten Ringversuchen validiert, da bei der Anwendung der Methoden eine Unterscheidung zwischen Parti-keln und Fasern gemacht werden muss. Neben Angaben zum Inhalt und Struktur der TG PSD, befasst sich der vorliegende Abschlussbericht mit den wesentlichen Schritten, Überlegungen und organisatorischen Aspekten bei der Entwicklung der Prüfrichtlinie. Darüber hinaus werden Einblicke in die Auswahl, Vorbereitung und Prävalidierung der im Ringversuch verwendeten Testmaterialien gegeben. Schließlich werden die wichtigsten Ergeb-nisse aus den Ringversuchen und ihre Auswirkungen auf die TG PSD vorgestellt. KW - Nano KW - OECD KW - Particle size distribution KW - Testguideline KW - Nanoparticle PY - 2021 VL - 2021 SP - 1 EP - 47 PB - German Environment Agency CY - Dessau AN - OPUS4-54021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Advanced Characterization of the Surface Morphology and Chemistry within nano@BAM N2 - Both essential aspects of the surface of solid matter, its morphology and chemistry, are studied traditionally at BAM starting in the 60’s with different cyclical research focus areas, mostly related either to applicative research or method development. In the recent years, the focus has shifted almost exclusively to the nano-analytics of advanced materials such as complex nanoparticles, (ultra)thin films/coatings, nanocomposites, 2D materials, energy materials, etc. This is also the reason why BAM has established recently the new Competence Center nano@BAM (www.bam.de/Navigation/DE/Themen/Material/Nanotechnologie/sichere-nanomaterialien.html) with the five sub-fields nanoCharacterisation, nanoMaterial, nanoSafety, nanoData and nanoTechnology. The link to the BAM central guidelines to the safety in technology and chemistry is given by the development of reference products such as reference measurement procedures, reference (nano)materials, and newly reference data sets. Thus, an internationally well-networked group in surface analysis has been established @BAM, with regular contributions to integral analytical characterization with metrological and standardization background. Examples of newly developed methodical approaches will be given with an emphasis on correlative nano-analysis of morphology and chemistry of nanomaterials. Correlative imaging by STEM-in-SEM with high-resolution SEM and EDX, and further with AFM or the new technique TKD (Transmission Kikuchi Diffraction) will be explained on various examples of nanostructures, both as starting materials and embedded/functionalized nanoparticles in products. The unique analytical benefits of the Auger electron probe as a veritable nano-tool for surface chemistry will be highlighted. The panoply of advanced surface characterization methods @BAM is completed by discussing examples of hybrid analysis of the bulk of nanomaterials by X-ray Spectroscopy with the highest surface-sensitive methods X-ray Photoelectron Spectroscopy (XPS) and Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). Particularly for the analysis of the surface chemistry of nanostructures, such as the completeness of the shells of core-shell nanoparticles or in-depth and lateral gradients of chemistry within mesoporous thin layers, the latter methods are inherent. Other special developments like approaches for the quantitative determination of the roughness of particle surface by electron microscopy or for the quantitative determination of the porosity of thin mesoporous layers by electron probe microanalysis (EPMA) with SEM will be presented in conjunction with the corresponding advanced materials studied. Current research projects, promising ideas, including ongoing (pre-)standardization activities in the field of the challenging nano/surface analysis will be touched systematically, with the open goal of identifying future bilateral cooperation possibilities between EMPA and BAM. T2 - EMPA-Kolloquium CY - Online meeting DA - 01.12.2021 KW - Nanoparticles KW - Nano@BAM KW - Nanomaterials KW - Surface morphology and chemistry KW - Correlative analysis PY - 2021 AN - OPUS4-54039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dudziak, Mateusz A1 - Topolniak, Ievgeniia A1 - Silbernagl, Dorothee A1 - Altmann, Korinna A1 - Sturm, Heinz T1 - Long-time behavior of surface properties of microstructures fabricated by multiphoton lithography N2 - The multiphoton lithography (MPL) technique represents the future of 3D microprinting, enabling the production of complex microscale objects with high precision. Although the MPL fabrication parameters are widely evaluated and discussed, not much attention has been given to the microscopic properties of 3D objects with respect to their surface properties and time-dependent stability. These properties are of crucial importance when it comes to the safe and durable use of these structures in biomedical applications. In this work, we investigate the surface properties of the MPL-produced SZ2080 polymeric microstructures with regard to the physical aging processes during the post-production stage. The influence of aging on the polymeric microstructures was investigated by means of Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS). As a result, a time-dependent change in Young’s Modulus, plastic deformation, and adhesion and their correlation to the development in chemical composition of the surface of MPL-microstructures are evaluated. The results presented here are valuable for the application of MPL-fabricated 3D objects in general, but especially in medical technology as they give detailed information of the physical and chemical time-dependent dynamic behavior of MPL-printed surfaces and thus their suitability and performance in biological systems. KW - Multiphoton lithography KW - Additive manufacturing KW - Microfabrication KW - SZ2080 negative photo-resist KW - Young´s modulus KW - Aging KW - Surface properties KW - X-ray photoelectron spectroscopy KW - Atomic force microscopy KW - Force-distance-curve PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542166 DO - https://doi.org/10.3390/nano11123285 SN - 2079-4991 VL - 11 IS - 12 SP - 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-54216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahiboz, D. A1 - Andresen, Elina A1 - Manley, P. A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Becker, C. T1 - Metasurface-Enhanced Photon Upconversion upon 1550 nm Excitation N2 - Photon upconversion upon 1550 nm excitation is of high relevance for applications in the third biological excitation window, for photovoltaics beyond current limitations, and enables appealing options in the field of glass Fiber telecommunications. Trivalent doped erbium ions (Er3+) are the material of choice for 1550 nm excited upconversion, however, they suffer from a low absorption cross-section and a low brightness. Therefore, the ability of Silicon metasurfaces to provide greatly enhanced electrical near-fields is employed to enable efficient photon upconversion even at low external Illumination conditions. Hexagonally shaped β-NaYF4:Er3+ nanoparticles are placed on large-area silicon metasurfaces designed to convert near-infrared (1550 nm) to visible light. More than 2400-fold enhanced photon upconversion luminescence is achieved by using this metasurface instead of a planar substrate. With the aid of optical simulations based on the finite-element method, this result is attributed to the coupling of the excitation source with metasurface resonances at appropriate incident angles. Analysis of the excitation power density dependence of upconversion luminescence and red-to-green-emission ratios enables the estimation of nanoscale near-field enhancement on the metasurface. The findings permit the significant reduction of required external excitation intensities for photon upconversion of 1550 nm light, opening perspectives in biophotonics, telecommunication, and photovoltaics. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Excitation power density KW - Single particle KW - Brightness KW - NIR KW - Mechanism KW - Single enhancement KW - SWIR KW - Method PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537193 DO - https://doi.org/10.1002/adom.202101285. SN - 2195-1071 VL - 9 IS - 24 SP - 2101285 PB - Wiley-VCH-GmbH AN - OPUS4-53719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Frenzel, Florian A1 - Weigert, Florian A1 - Andresen, Elina A1 - Grauel, Bettina A1 - Wegner, Karl David T1 - Semiconductor (SCNC) & Upconversion Nanocrystals (UCNC) – Optical Properties, Applications & Challenges N2 - Inorganic nanocrystals with linear and nonlinear luminescence in the ultraviolet, visible, near infrared and shortwave infrared like semiconductor quantum dots and spectrally shifting lanthanide-based nanophosphors have meanwhile found applications in the life and material sciences ranging from optical reporters for bioimaging and sensing over security barcodes to solid state lighting and photovoltaics. These nanomaterials commonly have increasingly sophisticated core/shell particle architectures with shells of different chemical composition and thickness to minimize radiationless deactivation at the particle surface that is usually the main energy loss mechanism [1]. For lanthanide-based spectral shifters, particularly for very small nanoparticles, also surface coatings are needed which protect near-surface lanthanide ions from luminescence quenching by high energy vibrators like O-H groups and prevent the disintegration of these nanoparticles under high dilution conditions. [2,3,4]. The identification of optimum particle structures requires quantitative spectroscopic studies focusing on the key performance parameter photoluminescence quantum yield [5,6], ideally flanked by single particle studies to assess spectroscopic inhomogeneities on a particle-to-particle level for typical preparation methods [7], Moreover, in the case of upconversion nanoparticles with a multi-photonic and hence, excitation power density (P)-dependent luminescence, quantitative luminescence studies over a broad P range are required to identify particle architectures that are best suited for applications in fluorescence assays up to fluorescence microscopy. Here, we present methods to quantify the photoluminescence of these different types of emitters in the vis/NIR/SWIR and as function of Pand demonstrate the importance of such measurements for a profound mechanistic understanding of the nonradiative deactivation pathways in semiconductor and upconversion nanocrystals of different size and particle architecture in different environments. T2 - 27th Annual Meeting of the Slovenian Chemical Society CY - Portoroz-Portorose, Slovenia DA - 21.09.2021 KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Surface chemistry KW - Single particle KW - Brightness KW - NIR KW - Synthesis KW - Semiconductur KW - Quantum dot KW - Nanocrystal KW - SWIR PY - 2021 AN - OPUS4-53723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Zarinwall, A. A1 - Waniek, Tassilo A1 - Finke, B. A1 - Sadaat, R. A1 - Sturm, Heinz A1 - Garnweitner, G. ED - Sinapius, M. ED - Ziegmann, G. T1 - Particle Surface Modification N2 - Whilst a decisive role of the particle-matrix interphase on the mechanical properties of nanoparticle-filled polymers has been demonstrated in the last years, the arbitrary design of this interphase remains a very challenging goal. In principle, this could be realized via an appropriate surfacemodification of the nanofiller prior to its incorporation in the polymer. For most systems, such as for boehmite nanofillers, however, the interaction of organic modifiers with the particle surface has not been studied in detail, and only single studies are known rather than systematic investiga- tions on the effects of different chemical functions anchored on the particle surface. In this chapter, we present an extensive study on the binding of APTES, a common silane surface modifier, with boehmite, and show that thermogravimetric analysis (TGA) coupled with mass spectrometry (MS) is a convenient and highly suitable method to elucidate the ligand binding in detail. Furthermore, a two-step coupling strategy is presented, demonstrating that based on APTES anchored to the parti- cle surface, the condensation of various carboxylic acids can be utilized to enable highly diverse chemical properties of the nanofillers, which leads to very different particle-matrix interactions in the nanocomposites. KW - APTES KW - Boehmite KW - Nanoparticle KW - TGA-MS PY - 2021 SN - 978-3-030-68522-5 SN - 978-3-030-68523-2 DO - https://doi.org/10.1007/978-3-030-68523-2 SN - 2194-8240 SN - 2194-8259 SP - 119 EP - 142 PB - Springer Nature Switzerland AG CY - Cham AN - OPUS4-53727 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Krüger, Jörg ED - Sugioka, K. T1 - Laser-Induced Periodic Surface Structures (LIPSS) N2 - Laser-induced periodic surface structures (LIPSS) are a universal phenomenon and can be generated on almost any material by irradiation with linearly polarized radiation. This chapter reviews the current state in the field of LIPSS, which are formed in a “self-ordered” way and are often accompanying materials processing applications. LIPSS can be produced in a single-stage process and enable surface nanostructuring and, in turn, adaption of optical, mechanical, and chemical surface properties. Typically, they feature a structural size ranging from several micrometers down to less than 100 nm and show a clear correlation with the polarization direction of the light used for their generation. Various types of LIPSS are classified, relevant control parameters are identified, and their material-specific formation mechanisms are analyzed for different types of inorganic solids, i.e., metals, semiconductors, and dielectrics. Finally, technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser KW - Laser ablation KW - Microstructures KW - Nanostrcutures PY - 2021 SN - 978-3-030-63646-3 (Print) SN - 978-3-030-63647-0 (Online) DO - https://doi.org/10.1007/978-3-030-63647-0_17 SP - 879 EP - 936 PB - Springer-Nature Switzerland AG CY - Cham ET - 1 AN - OPUS4-53728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Anja A1 - Buchberger, G. A1 - Stifter, D. A1 - Duchoslav, J. A1 - Hertwig, Andreas A1 - Bonse, Jörn A1 - Heitz, J. A1 - Schwibbert, Karin T1 - Spatial Period of Laser-Induced Surface Nanoripples on PET Determines Escherichia coli Repellence N2 - Bacterial adhesion and biofilm formation on surfaces are associated with persistent microbial contamination, biofouling, and the emergence of resistance, thus, calling for new strategies to impede bacterial surface colonization. Using ns-UV laser treatment (wavelength 248 nm and a pulse duration of 20 ns), laser-induced periodic surface structures (LIPSS) featuring different submicrometric periods ranging from ~210 to ~610 nm were processed on commercial poly(ethylene terephthalate) (PET) foils. Bacterial adhesion tests revealed that these nanorippled surfaces exhibit a repellence for E. coli that decisively depends on the spatial periods of the LIPSS with the strongest reduction (~91%) in cell adhesion observed for LIPSS periods of 214 nm. Although chemical and structural analyses indicated a moderate laser-induced surface oxidation, a significant influence on the bacterial adhesion was ruled out. Scanning electron microscopy and additional biofilm studies using a pili-deficient E. coli TG1 strain revealed the role of extracellular appendages in the bacterial repellence observed here. KW - Laser-induced periodic surface structures (LIPSS) KW - Laser processing KW - Polyethylene terephthalate KW - Biofilm formation KW - Cell appendages KW - Biomimetic KW - F pili PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537431 DO - https://doi.org/10.3390/nano11113000 VL - 11 IS - 11 SP - 3000 PB - MDPI AN - OPUS4-53743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolmangadi, Mohamed Aejaz A1 - Schönhals, Andreas T1 - ILC Meeting N2 - We summarized our recent findings about the molecular dynamics investigation of bulk and finite ionic liquid crystals. We investigate the molecular dynamics and electrical conductivity for a homologous series of linear shaped guanidinium based cyclic ILCs that vary in alkyl chain length, CLCRs (R = 8, 10, 12, 14, 16) by employing broadband dielectric spectroscopy (BDS), and calorimetry comprised of Fast Scanning Calorimetry (FSC) and temperature modulated FSC (TMFSC). Besides conductivity at high temperatures, the dielectric dispersion reveals two relaxation modes: the fast γ and the slow α1 relaxation. The former is assigned to the localized fluctuations while the latter is due to segmental dynamics of the alkyl chains. The γ mode slows down for long chain length CLCs (12,14,16) compared to their shorter analogues. Calorimetric investigation reveals one process, the α2 process, for CLC12,14 and 16 and two processes, α2 and α3, for CLC8 and 10. The α2 process of all CLCRs has a similar temperature dependence as the dielectric α1 relaxation, which indicates both BDS and FSC probe the segmental dynamics of alkyl side chains, as observed for the bent shaped cyclic ILCs. We interpret the α3 process of CLC8 and 10 as the segmental dynamics of the cation core. For all CLCRs, the absolute values of DC conductivity increase by 4 orders of magnitude at the transition from the plastic crystalline to hexagonal columnar phase. This increase is due to the change in the underlying conduction mechanism from delocalized electron hopping in the crystalline phase to one dimensional ion mobility in the columnar phase. The glassy dynamics shifts to higher temperatures with increasing alkyl chain length. Conversely, the DC conductivity drops by 3 orders of magnitude from CLC8 to CLC16. T2 - ILC Project Meeting CY - Berlin, Germany DA - 14.09.2021 KW - Ionic Liquid crystals KW - Nanoconfinement KW - Conductivity PY - 2021 AN - OPUS4-53675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritzsche, Sven A1 - Topolniak, Ievgeniia A1 - Weise, Matthias A1 - Sturm, Heinz T1 - Shape deviations of DLW microstructures in dependency of fabrication parameters N2 - Deep understanding of the effects associated with fabrication parameters and their influence on the resulting structures shape is essential for the further development of direct laser writing (DLW). In particular, it is critical for development of reference materials, where structure parameters are precisely fabricated and should be reproduced with use of DLW technology. In this study we investigated the effect of various fabrication and preparation parameters on the structural precision of interest for reference materials. A well-studied photo-curable system, SZ2080 negative photo-resist with 1 wt.% Michler's ketone (Bis) photo-initiator, was investigated in this work. The correlation between applied laser power, laser velocity, fabrication direction on the deviations in the structure shape were observed by means of white light interferometry microscopy. Moreover, influence of slicing and hatching distances as well as prebake time were studied as function of sample shape. Deviations in the structure form between the theoretically expected and the one detected after DLW fabrication were observed in the range up to 15%. The observed shape discrepancies show the essential importance of fine-tuning the fabrication parameter for reference structure production. KW - Direct laser writing KW - Fabrication parameters KW - Structural precision KW - SZ2080 negative photo-resist KW - White light interferometry microscopy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535906 DO - https://doi.org/10.1088/1361-6439/ac2a14 VL - 31 IS - 12 SP - 1 EP - 8 PB - IOP Science AN - OPUS4-53590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Report ISO/TC202/WG4 X-Ray Spectroscopy, Liaisons with VAMAS and ISO/TC229 Nanotechnologies N2 - The presentation is structured in the following three parts: i) Report of the Working Group 4 X-Ray Spectroscopy including the publication of ISO 15632:2021 Microbeam analysis — Selected instrumental performance parameters for the specification and checking of energy-dispersive X-ray spectrometers for use in electron probe microanalysis, ii) Liaison activities between ISO/TC202 Microbeam Anaylsis and VAMAS/TWA34 Quantitative Microstructural Analysis, and iii) Liaison activities from ISO/TC202 Microbeam Analysis for ISO/TC229 Nanotechnologies. Most relevant projects are highlighted for information and further discussions. New initiatives and better promotion of strategic projects are addressed. T2 - Annual Meeting of ISO/TC 202 Microbeam Analysis CY - Online meeting DA - 25.10.2021 KW - Microbeam Analysis KW - VAMAS KW - ISO/TC 202 KW - ISO/TC 229 KW - electron microscopy KW - X-Ray Spectroscopy KW - EBSD KW - FIB PY - 2021 AN - OPUS4-53625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Broichert, C. A1 - Klingenhof, M. A1 - Frisch, M. A1 - Dresp, S. A1 - Kubo, N.M. A1 - Artz, J. A1 - Radnik, Jörg A1 - Palkovits, S. A1 - Beine, A.K. A1 - Strasser, P. A1 - Palkovits, R. T1 - Particle size-controlled synthesis of highperformance MnCo-based materials for alkaline OER at fluctuating potentials N2 - For the large-scale generation of hydrogen via water electrolysis the design of long term stable and active catalysts for the oxygen evolution reaction (OER) remains a key challenge. Most catalysts suffer from severe structural corrosion that becomes even more pronounced at fluctuating potentials. Herein, MnCo based cubic particles were prepared via a hydrothermal approach, in which the edge length of the micron-sized particles can be controlled by changing the pH value of the precursor solution. The cubes are composed of varying amounts of MnCo2O4, CoCO3 and a mixed (Mn/Co)CO3 phase. Structure–activity relationships were deduced revealing a volcano-type behavior for the intrinsic OER activity and fraction of spinel oxide phase. A low overpotential of 0.37 V at 10 mA cm−2 and a stability of more than 25 h was achieved in 1.0 M KOH using a rotating disc electrode (RDE) setup. The best performing catalyst material was successfully tested under dynamic process conditions for 9.5 h and shows a superior catalytic activity as anode for the Overall water splitting in an electrolyser setup in 1.0 M KOH at 333 K compared to a reference NiCo-spinel catalyst. KW - Water electrolysis KW - Oxygen evolution reaction KW - Structure activity relationships PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536050 DO - https://doi.org/10.1039/d1cy00905b SN - 2044-4753 VL - 11 IS - 12 SP - 7278 EP - 7286 PB - Royal Society of Chemistry AN - OPUS4-53605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz A1 - Van Driessche, A. E. S. T1 - Scattering is a powerful tool to follow nucleation and growth of minerals from solutions N2 - In recent years, we have come to appreciate the astounding intricacy of the formation process of minerals from ions in aqueous solutions. The original ‘textbook’ image of these phenomena, stemming from the adaptation of classical nucleation and growth theories, has increased in complexity due to the discovery of a variety of precursor and intermediate species [e.g. 1], including solute clusters (e.g. prenucleation clusters, PNCs), liquid(-like) phases, as well as amorphous and nanocrystalline solids etc. In general, these precursor or intermediate species constitute different, often short-lived, points along the pathway from dissolved ions to the final solids (typically crystals in this context). In this regard synchrotron-based scattering (SAXS/WAXS/HEXD) appears to be the perfect tool to follow in situ and in a time-resolved manner the crystallization pathways because of the temporal and spatial length scales that can be directly accessed with these techniques. Here, we show how we used scattering to probe the crystallization mechanisms of calcium sulfate. CaSO4 minerals (i.e. gypsum, anhydrite and bassanite) are widespread in natural and industrial environments. During the last several years, a number of studies have revealed indeed that nucleation in the CaSO4-H2O system is non-classical. Our SAXS data demonstrate that gypsum precipitation, involves formation and aggregation of sub-3 nm primary species. These species constitute building blocks of an amorphous precursor phase [2]. Further, we show how in situ high-energy X-ray diffraction experiments and molecular dynamics (MD) simulations can be combined to derive the atomic structure of the primary CaSO4 clusters seen at small-angles [3]. We fitted several plausible structures to the derived pair distribution functions and explored their dynamic properties using unbiased MD simulations based on polarizable force fields. Finally, based on combined SAXS/WAXS, broad-q-range measurements, we show that the process of formation of bassanite, a less hydrated form of CaSO4, is very similar to the formation of gypsum: it also involves the aggregation of small primary species into larger disordered aggregates [4]. Based on these recent insights we formulated a tentative general model for calcium sulfate precipitation from solution. This model involves primary species that are formed through the assembly of multiple Ca2+ and SO42- ions into nanoclusters. These nanoclusters assemble into poorly ordered (i.e. amorphous) hydrated aggregates, which in turn undergo ordering into coherent crystalline units of either gypsum or bassanite (and possibly anhydrite). Determination of the structure and (meta)stability of the primary species is important from both a fundamental, e.g. establishing a general non-classical nucleation model, and applied perspective; e.g. allow for an improved design of additives for greater control of the nucleation pathway. T2 - Annual Meeting of German Crystallographic Society (29. Jahrestagung der Deutschen Gesellschaft für Kristallographie - DGK CY - Online meeting DA - 15.03.2021 KW - Scattering KW - Calcium sulfate KW - SAXS/WAXS PY - 2021 AN - OPUS4-53619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Monavari, M. A1 - Homaeigohar, S. A1 - Fuentes-Chandía, M. A1 - Nawaz, Q. A1 - Monavari, Mehran A1 - Venkatraman, A. A1 - Boccaccini, A. T1 - 3D printing of alginate dialdehyde-gelatin (ADA-GEL) hydrogels incorporating phytotherapeutic icariin loaded mesoporous SiO2-CaO nanoparticles for bone tissue engineering N2 - 3D printing enables a better control over the microstructure of bone restoring constructs, addresses the challenges seen in the preparation of patient-specific bone scaffolds, and overcomes the bottlenecks that can appear in delivering drugs/growth factors promoting bone regeneration. Here, 3D printing is employed for the fabrication of an osteogenic construct made of hydrogel nanocomposites. Alginate dialdehyde-gelatin (ADA-GEL) hydrogel is reinforced by the incorporation of bioactive glass nanoparticles, i.e. mesoporous silica-calcia nanoparticles (MSNs), in two types of drug (icariin) loading. The composites hydrogel is printed as superhydrated composite constructs in a grid structure. The MSNs not only improve the mechanical stiffness of the constructs but also induce formation of an apatite layer when the construct is immersed in simulated body fluid (SBF), thereby promoting cell adhesion and proliferation. The nanocomposite constructs can hold and deliver icariin efficiently, regardless of its incorporation mode, either as loaded into the MSNs or freely distributed within the hydrogel. Biocompatibility tests showed that the hydrogel nanocomposites assure enhanced osteoblast proliferation, adhesion, and differentiation. Such optimum biological properties stem from the superior biocompatibility of ADA-GEL, the bioactivity of the MSNs, and the supportive effect of icariin in relation to cell Proliferation and differentiation. Taken together, given the achieved structural and biological properties and effective drug delivery capability, the hydrogel nanocomposites show promising potential for bone tissue engineering. KW - 3D printed hydrogel KW - ADA-GEL KW - Drug delivery KW - Mesoporous SiO2-CaO nanoparticles KW - Bone tissue engineering PY - 2021 DO - https://doi.org/10.1016/j.msec.2021.112470 VL - 131 SP - 1 EP - 11 PB - Elsevier B.V. AN - OPUS4-53848 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - How to manage a modern X-ray scattering lab – a modest example N2 - Introduction A good laboratory organization can help address the reproducibility crisis in science, and easily multiply the scientific output of a laboratory, while greatly elevating the quality of the measurements. We have demonstrated this for small- and wide-angle X-ray scattering in the MOUSE project (Methodology Optimization for Ultrafine Structure Exploration). In the MOUSE, we have combined: a) a comprehensive laboratory workflow with b) a heavily modified, highly automated X-ray scattering instrument. This combination allows us to collect fully traceable scattering data, with a well-documented data flow (akin to what is found at the more automated beamlines). With two full-time researchers, the lab collects and interprets thousands of datasets, on hundreds of samples for dozens of projects per year, supporting many users along the entire process from sample selection and preparation, to the analysis of the resulting data. While these numbers do not light a candle to those achieved by our hardworking compatriots at the synchrotron beamlines, the laboratory approach does allow us to continually modify and fine-tune the integral methodology. So for the last three years, we have incorporated e.g. FAIR principles, traceability, automated processing, data curation strategies, as well as a host of good scattering practices into the MOUSE system. We have concomitantly expanded our purview as specialists to include an increased responsibility for the entire scattering aspect of the resultant publications. This ensures full exploitation of the data quality, whilst avoiding common pitfalls. Talk scope This talk will present the MOUSE project as implemented to date, and will introduce foreseeable upgrades and changes. These upgrades include better pre-experiment sample scattering predictions to filter projects on the basis of their suitability, exploitation of the measurement database for detecting long-term changes and automated flagging of datasets, extending the measurement range through an Ultra-SAXS module, and enhancing MC fitting with sample scattering simulations for better matching of odd-shaped scatterers. T2 - 2021 joint virtual meeting of the African Light Source (AfLS), the African Physical Society (AfPS), and Pan African Conference on Crystallography (ePCCr) CY - Online meeting DA - 15.11.2021 KW - X-ray scattering KW - MOUSE KW - Instrumentation KW - SAXS KW - Methodology KW - Laboratory management KW - Databases KW - Data management KW - Data catalog KW - Scicat PY - 2021 UR - https://events.saip.org.za/event/170/contributions/7619/ AN - OPUS4-53811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kunc, F. A1 - Nirmalananthan-Budau, Nithiya A1 - Rühle, Bastian A1 - Sung, Y. A1 - Johnston, L.J. A1 - Resch-Genger, Ute T1 - Interlaboratory Comparison on the Quantification of Total and Accessible Amine Groups on Silica Nanoparticles with qNMR and Optical Assays N2 - Risk assessment of nanomaterials requires not only standardized toxicity studies but also validated methods for nanomaterial surface characterization with known uncertainties. In this context, a first bilateral interlaboratory comparison on Surface group quantification of nanomaterials is presented that assesses different reporter-free and labeling methods for the quantification of the total and accessible number of amine functionalities on commercially available silica nanoparticles that are widely used in the life sciences. The overall goal of this comparison is the identification of optimum methods as well as achievable measurement uncertainties and the comparability of the results across laboratories. We also examined the robustness and ease of implementation of the applied analytical methods and discussed method-inherent limitations. In summary, this comparison presents a first step toward the eventually required standardization of methods for surface group quantification. KW - Nano KW - Nanomaterial KW - Surface KW - Method KW - QNMR KW - Quantification KW - Comparison KW - Quality assurance KW - Optical probe KW - Sensor KW - Interlabority comparison KW - Standardization KW - Optical assay KW - Functional group analysis KW - Silica KW - Particle KW - Safety KW - Environment PY - 2021 DO - https://doi.org/10.1021/acs.analchem.1c02162 SN - 1520-6882 VL - 93 IS - 46 SP - 15271 EP - 15278 PB - ASC Publications AN - OPUS4-53818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stawski, Tomasz A1 - Smales, Glen Jacob A1 - Scoppola, E. A1 - Jha, D. A1 - Morales, L. F. G. A1 - Moya, A. A1 - Wirth, R. A1 - Pauw, Brian Richard A1 - Emmerling, Franziska A1 - Van Driessche, A. E. S. T1 - Seeds of imperfection rule the mesocrystalline disorder in natural anhydrite single crystals N2 - In recent years, we have come to appreciate the astounding intricacies associated with the formation of minerals from ions in aqueous solutions. In this context, a number of studies have revealed that the nucleation of calcium sulfate systems occurs nonclassically, involving the aggregation and reorganization of nanosized prenucleation species. In recent work, we have shown that this particle-mediated nucleation pathway is actually imprinted in the resultant micrometer-sized CaSO4 crystals. This property of CaSO4 minerals provides us with the unique opportunity to search for evidence of nonclassical nucleation pathways in geological environments. In particular, we focused on large anhydrite Crystals extracted from the Naica Mine in Mexico. We were able to shed light on this mineral's growth history by mapping defects at different length scales. Based on this, we argue that the nanoscale misalignment of the structural subunits, observed in the initial calcium sulfate crystal seeds, propagates through different length scales both in morphological, as well as in strictly crystallographic aspects, eventually causing the formation of large mesostructured single crystals of anhydrite. Hence, the nonclassical nucleation mechanism introduces a “seed of imperfection,” which leads to a macroscopic “single” crystal whose fragments do not fit together at different length scales in a self-similar manner. Consequently, anisotropic voids of various sizes are formed with very welldefined walls/edges. However, at the same time, the material retains in part its single crystal nature. KW - Calcium sulfate KW - Anhydrite KW - Mesocrystal KW - Nucleation KW - Naica PY - 2021 DO - https://doi.org/10.1073/pnas.2111213118 SN - 0027-8424 VL - 118 IS - 48 SP - 1 EP - 11 PB - National Academy of Sciences (USA) CY - Washington AN - OPUS4-53820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cano Murillo, Natalia A1 - Szymoniak, Paulina A1 - Smales, Glen Jacob A1 - Sturm, Heinz A1 - Schönhals, Andreas T1 - Electrospun nanocomposites fibers of polycarbonate and taurine modified boehmite nanoparticles - What can be learned from structural and thermal investigations N2 - Though the reinforcing properties of inorganic particles in thermosetting nanocomposites, has been exploited, the integration of nanoparticles continues to be challenging in terms of their homogeneous distribution and their manipulation which can contribute to occupational hazards. Due to a second encapsulations of nanoparticles, electrospun nanocomposite fibers containing nanoparticles might be an alternative for overcoming these issues, as the fiber nonwovens contains the nanoparticles allowing for safer manipulation. Here, the morphology, and the thermal properties of electrospun polycarbonate fibers containing taurine modified boehmite nanoparticles (BNP) are investigated by means of small and wide-angle X-ray scattering as well as fast scanning and temperature modulated fast scanning calorimetry for the first time. The latter techniques allow the investigation of the thermal properties of single fibers at heating rates up to 10^4 K s^-1 keeping its structure intact. A quantitative analysis of the scattering data reveals a porous structure of the fibers. The porous structure is quantified regarding the pore volume and the pore size. A constant amount of aggregation is found even for the highly BNP loaded fibers. Thermal analysis on the fibers reveals a rigid amorphous fraction (RAF) where it is known that RAF determinates the properties of a nanocomposite to a large extent. For the fibers RAF amounts up to 40 wt%, which is essential higher compared to equally formulated PC/BNP composite cast films. The RAF in the case of the fibers, is not only due to the presence of particles in the polymer but also due to orientation effects induced by the electrospinning process. KW - Nanocomposite fibers KW - Electrospinning KW - X-ray scattering KW - Fast scanning calorimetry KW - Rigid amorphous fraction PY - 2021 DO - https://doi.org/10.1021/acsapm.1c01265 VL - 3 IS - 12 SP - 6572 EP - 6585 PB - ACS AN - OPUS4-53871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - X-ray Scattering for Nanostructure Quantification, and the Quest for the Perfect Experiment N2 - Compared to the clear, real-space images you can get from electron microscopy, X-ray scattering patterns are rather featureless. These patterns, however, contain structural information from all of the material structure illuminated by the X-ray beam. With this technique, you can measure nanoparticle dispersions, catalysts, composites, MOF powders, battery materials, light metal alloys and gels to reveal information on the structural features found within these materials. We have even measured many such materials for several research groups from the University of Birmingham, revealing structure features in the sub-nm to the micrometer range. Measuring an X-ray scattering pattern is relatively easy, but measuring a high-quality, useful pattern requires significant effort and good laboratory organization. Such laboratory organization can help address the reproducibility crisis in science, and easily multiply the scientific output of a laboratory, while greatly elevating the quality of the measurements. We have demonstrated this for small- and wide-angle X-ray scattering in the MOUSE project (Methodology Optimization for Ultrafine Structure Exploration) [1]. With the MOUSE, we have combined: a) a comprehensive and highly automated laboratory workflow with b) a heavily modified X-ray scattering instrument. This combination allows us to collect fully traceable scattering data, within a well-documented, FAIR-compliant data flow (akin to what is found at the more automated synchrotron beamlines). With two full-time researchers, our lab collects and interprets thousands of datasets, on hundreds of samples, for dozens of projects per year, supporting many users along the entire process from sample selection and preparation, to the analysis of the resulting data. T2 - School of Chemistry Seminars CY - Birmingham, UK DA - 10.11.2021 KW - X-ray scattering KW - MOUSE KW - Instrumentation KW - SAXS KW - Methodology KW - Nanostructure PY - 2021 UR - https://www.youtube.com/watch?v=N2kY4wbqeM4 AN - OPUS4-53810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hildebrandt, Jana A1 - Thünemann, Andreas T1 - Preparation of polypropylene and polyethylene nanoplastics in water N2 - Considering the huge amount of plastics, that is produced and thrown away all over the world every day, an increasing part of the society became aware of microplastic and its possible impact on the environment. Polymer particles smaller than 1 µm are called nanoplastic. Due to their small size they form a special group within particulate waste. Their high specific surface makes it easier for them to penetrate tissue and pose potential harm. On the other hand, the size and the chemical structure make it difficult to detect and analyze nanoplastics in nature. Furthermore, the concentrations in environmental samples are very low. Therefore, there is a need for a well-characterized nanoplastic material, that serves as a reference for nanoplastic found in nature. T2 - 101 years of Macromolecular Chemistry CY - Online meeting DA - 13.09.2021 KW - Nanoplastic PY - 2021 AN - OPUS4-53773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - Nanomaterial characterisation - The long way to standardisation N2 - In 1981 the OECD published the Test Guideline on Particle size and size distribution. This TG is still a valid document for the measurement of particles all over the world. When nanomaterials gained importance, ISO set up a technical commitee for Nanotechnologies in 2005 and the OECD followed this step in 2006 with the Working Party on Manufactured Nanomaterials. In the following years ISO and OECD published several documents about nanomaterials and the systematisation developed. In 2017 it was finally clear that nanomaterials need to be adressed in another way than chemicals and in 2020 ECHA revised the REACH-Annexes accordingly and included nanomaterials. Unfortunately there is a little problem with this: Only a few applicable test guidelines exit for the measurement of the nanomaterials. Several test guidelines date from 1981 and do not address nanomaterials. The logical next step for the OECD would be to publish a series of test guidelines which are indeed currently prepared and will be shown in this talk. Finally there is an additional need for the future of NM standardisation: Digitalisation. T2 - Bilateral workshop with Uni Bermingham CY - Online meeting DA - 10.03.2021 KW - Nano KW - Standardisation KW - Test guideline KW - OECD KW - Nanomaterial PY - 2021 AN - OPUS4-53822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald A1 - Schmidt, Alexandra A1 - Kämpf, K. A1 - Bachmann, V. A1 - Peters, T. A1 - Kuhlbusch, T. T1 - Size matters! - Auf dem Weg zu einer neuen OECD Prüfrichtlinie zur Bestimmung der Partikelgröße und Anzahlgrößenverteilung von Nanomaterialien N2 - Vorstellung der Ergebnisse bei der Entwicklung einer neuen OECD Prüfrichtlinie zur Bestimmung der Partikelgröße und Anzahlgrößenverteilung von Nanomaterialien. Ergebnisse: Ideal sphärische Partikel sind gut und verlässlich mit vielen Methoden charakterisierbar. Reale (Nicht ideale) Materialien sind gut charakterisierbar, wenn eine gewisse Homogenität und Stabilität vorliegt. Stark inhomogene und stark agglomerierende Partikel liefern deutlich unterschiedliche Ergebnisse für verschiedene Methoden. Partikel mit geringen Größenunterschieden lassen sich mit allen Methoden gut charakterisieren. Partikel mit sehr deutlichen Größenunterschieden führen häufig zu einer Unterbewertung der kleineren Partikel. Vollautomatische Partikeldetektion bei elektronenmikroskopischen Aufnahmen ist z.Zt. noch stark fehleranfällig und kann daher nicht empfohlen werden. Es hat sich gezeigt, dass alle Methoden zur Bestimmung der Partikelgrößenverteilung Vor- und Nachteile haben. Es ist dringend zu empfehlen Größenverteilungen immer mit mindestens zwei unterschiedlichen Methoden zu bestimmen: Bildgebend und mit gute Anzahlstatistik. Verschiedene Durchmesser wurden in der TG-PSD mit einem Indexsystem versehen, welches zukünftig Verwechslungen zwischen unterschiedlichen Durchmessern vermeiden soll. Wird ein bestimmter Durchmesser benötigt (z.B. hydrodynamisch, aerodynamisch), muss die Methode passend gewählt werden. Eine Umrechnung von einem Durchmesser in einen anderen ist in der Regel fehlerbehaftet. Es wurde ein einheitliches Reporting-System in der TG-PSD eingeführt. T2 - Fachseminar des Umweltbundesamtes CY - Online meeting DA - 14.04.2021 KW - Nano KW - OECD KW - Prüfrichtlinie KW - Nanomaterial KW - BMU PY - 2021 AN - OPUS4-53823 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuhlbusch, T. A1 - Bresch, Harald A1 - Schmidt, Alexandra A1 - Kämpf, K. A1 - Bachmann, V. A1 - Peters, T. T1 - Size matters! - Auf dem Weg zu einer neuen OECD Prüfrichtlinie zur Bestimmung der Partikelgröße und Anzahlgrößenverteilung von Nanomaterialien _ Projektteil BAuA N2 - Vorstellung der Ergebnisse bei der Entwicklung einer neuen OECD Prüfrichtlinie zur Bestimmung der Partikelgröße und Anzahlgrößenverteilung von Nanomaterialien. (Projektteil Fasern.) Ergebnisse: Abweichungen zwischen SEM and TEM insbesondere bei langen Fasern Die Anwendung von TEM auf kurze Fasern < 5 µm beschränkt Für SEM wurde keine signifikante Abhängigkeit der Bestimmung der Faserdurchmesser von der Pixelgröße der Aufnahmen festgestellt Für TEM wurde eine Abhängigkeit der Bestimmung der Faserdurchmesser von der Pixelgröße festgestellt Der Einfluss der Bildauswertenden auf die Varianz der Ergebnisse ist klein im Vergleich zu der gesamten Varianz. Nanofasern können mit TEM und SEM bestimmt werden! T2 - Fachseminar des Umweltbundesamtes CY - Online meeting DA - 14.04.2021 KW - Nano KW - Nanofasern KW - OECD KW - Prüfrichtlinie KW - Nanomaterial PY - 2021 AN - OPUS4-53824 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald A1 - Schmidt, Alexandra A1 - Kämpf, K. A1 - Bachmann, V. A1 - Peters, T. A1 - Kuhlbusch, T. T1 - OECD Prüfrichtlinie zur Bestimmung der Partikelgröße und Anzahlgrößenverteilung von Nanomaterialien N2 - Abschlusspräsentation des Projektes "OECD Prüfrichtlinie zur Bestimmung der Partikelgröße und Anzahlgrößenverteilung von Nanomaterialien" - Projektteil Nanopartikel. Es hat sich gezeigt, dass alle Methoden zur Bestimmung der Partikelgrößenverteilung Vor- und Nachteile haben. Es wird dringend empfohlen Größenverteilungen immer mit mindestens zwei unterschiedlichen Methoden zu bestimmen: Bildgebend und mit gute Anzahlstatistik. Verschiedene Durchmesser wurden in der TG-PSD mit einem Indexsystem versehen, welches zukünftig Verwechslungen zwischen unterschiedlichen Durchmessern vermeiden soll. Wird ein bestimmter Durchmesser benötigt (z.B. hydrodynamisch, aerodynamisch), muss die Methode passend gewählt werden. Eine Umrechnung von einem Durchmesser in einen anderen ist in der Regel fehlerbehaftet. Es wurde ein einheitliches Reporting-System in der TG-PSD eingeführt. T2 - Fachgespräch zur OECD - TG PSD - BMU BMWi BAM BAuA UBA CY - Online meeting DA - 10.09.2021 KW - Nano KW - OECD KW - Nanopartikel KW - Prürfrichtlinie KW - Nanomaterial PY - 2021 AN - OPUS4-53825 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuhlbusch, T. A1 - Bresch, Harald A1 - Schmidt, Alexandra A1 - Kämpf, K. A1 - Bachmann, V. A1 - Peters, T. T1 - OECD Prüfrichtlinie zur Bestimmung der Partikelgröße und Anzahlgrößenverteilung von Nanomaterialien - Projektteil Fasern N2 - Abschlusspräsentation des Projektes "OECD Prüfrichtlinie zur Bestimmung der Partikelgröße und Anzahlgrößenverteilung von Nanomaterialien". (Projektteil Fasern) T2 - Fachgespräch zur OECD - TG PSD - BMU BMWi BAM BAuA UBA CY - Online meeting DA - 10.09.2021 KW - Nano KW - Nanofasern KW - OECD KW - Prüfrichtlinie KW - Nanomaterial PY - 2021 AN - OPUS4-53826 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald A1 - Rühle, Bastian A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute A1 - Kuchenbecker, Petra A1 - Abram, Sarah-Luise A1 - Löhmann, Oliver A1 - Mrkwitschka, Paul T1 - Tour de table - BAM N2 - Kurzübersicht über die neuen Aktivitäten zu Nanomaterialien in 2021. T2 - Nano-Behördenklausur der Bundesoberbehörden 2021 CY - Online meeting DA - 17.11.2021 KW - Nano KW - Nanomaterial KW - Nanopartikel KW - Bundesoberbehörden PY - 2021 AN - OPUS4-53827 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bresch, Harald A1 - Schmidt, Alexandra A1 - Kämpf, K. A1 - Bachmann, V. A1 - Peters, T. A1 - Kuhlbusch, T. T1 - Draft OECD Test Guideline for the Testing of Chemicals - Particle Size and Particle Size Distribution of Nanomaterials N2 - Final Draft of the OECD Test Guideline for Particle Size and Particle Size Distribution of Nanomaterials. The OECD Working Party on Manufactured Nanomaterials (WPMN) has actively worked towards understanding possible safety issues for manufactured nanomaterials and has contributed significantly to resolving these by developing Test Guidelines, Guidance Documents, Test Reports and other publications with the aim of a safe use of manufactured nanomaterials. The OECD website (www.oecd.org/science/nanosafety) and the referenced publications contain more background information. Among others, the OECD Test Guideline “Particle Size Distribution/Fibre Length and Diameter Distributions” (TG 110, adopted in 1981) was identified to require an update to address the specific needs of manufactured nanomaterials as the TG 110 is currently only valid for particles and fibres with sizes above 250 nm. The WPMN prioritised to either update TG 110 to be applicable also to particles at the nanoscale or draft a new nanomaterial specific Test Guideline (TG). Eventually, it was decided to develop a new TG for particle size and particle size distribution measurements of nanomaterials covering the size range from 1 nm to 1000 nm for further justification. This TG overlaps with TG 110 in the size range from 250 nm to 1000 nm. When measuring particulate or fibrous materials, the appropriate TG should be selected depending on the size range of particles tested. In line with TG 110, the new TG for nanomaterials includes separate parts for particles and fibres. For the part of this TG which addresses particles, several methods applicable to nanomaterials were reviewed and included to take into account developments since 1981 when the TG110 was adopted. This TG includes the following methods: Atomic Force Microscopy (AFM), Centrifugal Liquid Sedimentation (CLS)/Analytical Ultracentrifugation (AUC), Dynamic Light Scattering (DLS), Differential Mobility Analysis System (DMAS), (Nano)Particle Tracking Analysis (PTA/NTA), Small Angle X-Ray Scattering (SAXS), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). For measuring the diameter and length of fibres, analysing images captured with electron microscopy is currently the only method available. This TG includes Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). To test the validity of this TG, an ILC was performed. Test materials were chosen to reflect a broad 68 range of nanomaterial classes, e.g. metals, metal oxides, polymers and carbon materials. Where possible, well-characterised test materials were used. Additionally, the test materials were chosen, so that they reflect a broad range of sizes representing the size range 1 nm to 1000 nm and finally, for fibres only, aspect ratios from length/diameter of 3 to > 50. KW - Nano KW - OECD KW - Test guideline KW - Nanomaterial KW - Nanoparticle PY - 2021 UR - https://www.oecd.org/chemicalsafety/testing/draft-test-guideline-particle-size-distribution-nanomaterials.pdf SP - 1 PB - Organisation for Economic Co-operation and Development CY - Paris AN - OPUS4-53828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Gräf, S. T1 - Ten Open Questions about Laser-Induced Periodic Surface Structures N2 - Laser-induced periodic surface structures (LIPSS) are a simple and robust route for the nanostructuring of solids that can create various surface functionalities featuring applications in optics, medicine, tribology, energy technologies, etc. While the current laser technologies already allow surface processing rates at the level of m2/min, industrial applications of LIPSS are sometimes hampered by the complex interplay between the nanoscale surface topography and the specific surface chemistry, as well as by limitations in controlling the processing of LIPSS and in the long-term stability of the created surface functions. This Perspective article aims to identify some open questions about LIPSS, discusses the pending technological limitations, and sketches the current state of theoretical modelling. Hereby, we intend to stimulate further research and developments in the field of LIPSS for overcoming these limitations and for supporting the transfer of the LIPSS technology into industry. KW - Laser-induced periodic surface structures (LIPSS) KW - Industrial application KW - Functional properties KW - Surface functionalization KW - Modelling PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539503 DO - https://doi.org/10.3390/nano11123326 SN - 2079-4991 VL - 11 IS - 12 SP - 1 EP - 21 PB - MDPI CY - Basel, Switzerland AN - OPUS4-53950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Moor, Maëlle A1 - Kraehnert, Ralph A1 - Hodoroaba, Vasile-Dan A1 - Hertwig, Andreas T1 - Ellipsometry-based approach for the characterization of mesoporous thin films for H2 technologies N2 - Porous thin layer materials are gaining importance in different fields of technology and pose a challenge to the accurate determination of materials properties important for their function. In this work, we demonstrate a hybrid measurement technique using ellipsometry together with other independent methods for validation. Ellipsometry provides information about the porosity of different mesoporous films (PtRuNP/OMC = 45%; IrOx = 46%) as well as about the pore size (pore radius of ca. 5 nm for PtRuNP/OMC). In addition, the electronic structure of a material, such as intraband transitions of a mesoporous IrOx film, can be identified, which can be used to better understand the mechanisms of chemical processes. In addition, we show that ellipsometry can be used as a scalable imaging and visualization method for quality assurance in production. These require accurate and traceable measurements, with reference materials playing an important role that include porosity and other related properties. We show that our novel analytical methods are useful for improving analytical work in this entire field. KW - Porous materials KW - Electrolysis KW - Spectroscopic ellipsometry KW - Hybrid metrology measurement KW - Electron microscopy PY - 2021 DO - https://doi.org/10.1002/adem.202101320 SP - 1 EP - 17 PB - Wiley-VCH AN - OPUS4-53960 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tache, O. A1 - Durand, B. A1 - Barruet, E. A1 - Gobeaux, F. A1 - Pauw, Brian Richard A1 - Thill, A. T1 - Synthesis of SiO2 Nanoparticles as reference materials: Metrological measurements and in-situ kinetics in lab with Small Angle X-Ray Scattering N2 - The unambiguous correlation of possible health and sustainability risks to nanoparticle size must be enabled by reliable measurement of nanoparticle size, to ensure comparability and compatibility between results measured under different methods. The NPSIZE project funded by European Metrology Program (EMPIR) develop methods, reference materials and modelling to improve the traceability chain, comparability and compatibility of nanoparticle size measurements. In this work, we present how spherical silica nanoparticles are synthetized with controlled monomodal or bimodal dispersion to be use as reference materials and international round-robin. Improving the fabrication requires a fine understanding of synthesis (1), coupled with an expertise of in-situ or ex-situ analysis methods. This is a new challenge for the analysis : determining not only average characteristics (size, chemical composition and shape ...) but also the concentration and the distribution over the population studied (2). Small-Angle X-ray Scattering (3) allows very precise measurements of the nanoparticles size and concentration that can be directly link to the metric system (4) (metrological traceability) . We developed a SAXS laboratory instrument dedicated to the in-situ characterization of nanoparticles, which enable fast measurements, and the monitoring of the synthesis parameters. Measurement protocols and software processing chain (5) (i.e. size distribution) are also combined & optimized. T2 - CNANO2021 CY - Toulouse, France DA - 25.11.2021 KW - X-ray scattering KW - Silica particles KW - Synthesis KW - Reference materials PY - 2021 DO - https://doi.org/10.5281/zenodo.5749256 AN - OPUS4-53931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Pflüger, Mika A1 - Velasco-Vélez, Juan-Jesús A1 - Sahre, Mario A1 - Radnik, Jörg A1 - Bernicke, Michael A1 - Bernsmeier, Denis A1 - Hodoroaba, Vasile-Dan A1 - Krumrey, Michael A1 - Strasser, Peter A1 - Kraehnert, Ralph A1 - Hertwig, Andreas T1 - Operando electrochemical spectroscopic ellipsometry: Material properties of highly active mesoporous IrOx films revealed under realistic OER conditions N2 - Hydrogen production via water electrolysis will be an essential cornerstone in development of sustainable, fossil-free fuel and chemical production on a global scale. The activity and stability of each catalyst is highly dependent on the properties of the coating, i.e., phase composition, crystallinity, accessible surface area, and many other factors. The key to developing improved catalysts is a better understanding of the relationships between their performance, stability, and physicochemical properties. However, these relationships can be complex and are also strongly influenced by the reaction environment. Therefore, operando analysis of the catalyst material during catalysis at realistic potentials and current densities is highly desirable. However, many analytical techniques cannot be applied in liquid environments at realistic potentials and current densities. We propose environmental ellipsometric analysis in a dedicated electrochemical flow cell as a method to evaluate gas evolution reactions operando under realistic working conditions. Figure 1 illustrates schematically the developed technique. Key factors to success are highly active model-type catalysts, a suitable sample environment, and a deep understanding of the appropriate model development, as well as concise cross validation with numerous other analytical techniques. The method was developed and validated by analyzing a calcination series (300 – 600 °C) of mesoporous templated IrOx films ex-situ and operando under oxygen evolution reaction (OER) conditions. The employed environmental electrochemical spectroscopic ellipsometric (ECSE) analysis revealed during OER the change of optical and electronic properties, i.e. the dielectric functions, resistivity and band-to-band transitions (p-d band transitions). Film thickness and porosity were validated by means of scanning electron microscopy (SEM), X-ray reflectometry (XRR) or ellipsometric porosimetry (EP), electrical and electronic properties by means of conductivity measurements, X-ray photoelectron spectroscopy (XPS) or UV-Vis-NIR absorption spectroscopy. The electronic structures of the catalysts from valence electron energy loss spectra (VEELS) derived from ε1 and ε2 from SE measurements reveal a direct correlation with electrochemical activities in OER. In the presentation reversible and irreversible potential-dependent changes of the catalyst properties during operation will be discussed along with the dynamics of gas formation, transport and dissolution at different potentials. T2 - 11th Workshop Ellipsometry (WSE 11) CY - Steyr, Austria DA - 06.09.2021 KW - Ectrocatalysis KW - Mesoporous iridium oxide films KW - Non-destructive operando analysis KW - Oxygen evolution reaction KW - Spectroscopic ellipsometry PY - 2021 AN - OPUS4-53915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - EMPIR nPSize - Improved Traceability Chain of Nanoparticle Size Measurement N2 - In order to assess new nanomaterials and nanoparticles for potential risks to health and the environment, they need to be well-characterised. The measurement of constituent nanoparticle size, shape, and size distribution are important factors for the risk evaluation process. EMPIR project Improved traceability chain of nanoparticle size measurements (17NRM04, nPSize) is working to assess a range of traceable nanoparticle measurement approaches, including Electron Microscopy (SEM, TEM, STEM-in-SEM), Atomic Force Microscopy and Small Angle X-ray Scattering, and deliver improved calibration methods to users. For the techniques under investigation, physical models of their response to a range of nanoparticle types are developed. Validated reference materials are also used for inter-comparisons of measurement systems, with an evaluation of the associated measurement uncertainty. With project contributions to standards development work, manufacturers will be better placed to assess the human and environmental risks posed by nanomaterials across a whole range of products. T2 - EMPIR nPSize Training Course "Traceable Characterization of Nanoparticles by SAXS" CY - Online meeting DA - 01.02.2021 KW - Nanoparticles KW - Particle size distribution KW - Traceability KW - nPSize KW - SAXS PY - 2021 AN - OPUS4-53883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pellegrino, Francesco A1 - Ortel, Erik A1 - Mielke, Johannes A1 - Schmidt, R. A1 - Maurino, V. A1 - Hodoroaba, Vasile-Dan T1 - Customizing New Titanium Dioxide Nanoparticles with Controlled Particle Size and Shape Distribution: A Feasibility Study Toward Reference Materials for Quality Assurance of Nonspherical Nanoparticle Characterization N2 - An overview is given on the synthesis of TiO2 nanoparticles with well-defined nonspherical shapes (platelet like, bipyramidal, and elongated), with the focus on controlled, reproducible synthesis, as a key requirement for the production of reference materials with homogeneous and stable properties. Particularly with regard to the nanoparticle shapes, there is a high need of certified materials, solely one material of this type being commercially available since a few months (elongated TiO2). Further, measurement approaches with electron microscopy as the golden method to tackle the nanoparticle shape are developed to determine accurately the size and shape distribution for such nonspherical particles. A prerequisite for accurate and easy (i.e., automated) image analysis is the sample preparation, which ideally must ensure a deposition of the nanoparticles from liquid suspension onto a substrate such that the particles do not overlap, are solvent-free, and have a high deposition density. Challenges in the Synthesis of perfectly monodispersed and solvent-free TiO2 nanoparticles of platelet and acicular shapes are highlighted as well as successful measurement approaches on how to extract from 2D projection electron micrographs the most accurate spatial information, that is, true 3D size, for example, of the bipyramidal nanoparticles with different geometrical orientations on a substrate. KW - Nanoparticles KW - Titanium dioxide KW - Reference materials KW - Standardisation KW - Particle size and shape distribution PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538849 DO - https://doi.org/10.1002/adem.202101347 VL - 24 IS - 6 SP - 1 EP - 10 PB - Wiley-VCH AN - OPUS4-53884 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahiboz, D. A1 - Andresen, Elina A1 - Manley, P. A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Becker, C. T1 - Enhanced photon upconversion using erbium-doped nanoparticles interacting with silicon metasurfaces N2 - Photon upconversion (UC) using trivalent erbium (Er+3) doped crystals is a promising concept to harness near infrared photons of the solar spectrum which cannot be directly absorbed by silicon solar cells. However, their UC efficiency at low-intensity 1 sun illumination is not relevant on device level so far. Exploiting giant near-field enhancement effects on metasurfaces is an appealing approach to enable efficient UC at low irradiance conditions. Here, we report on more than 1000-fold enhanced photon UC of NaYF4:Er+3 nanoparticles interacting with the near-fields supported by a silicon metasurface under 1550 nm excitation. T2 - 48th Photovoltaic Specialists Conference (PVSC) CY - Online meeting DA - 20.06.2021 KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Excitation power density KW - Brightness KW - NIR KW - Mechanism KW - Modeling KW - Simulation KW - Energy transfer KW - Photonic crystal KW - Enhancement strategy PY - 2021 DO - https://doi.org/10.1109/pvsc43889.2021.9518495 SP - 1 EP - 3 PB - IEEE CY - Berlin AN - OPUS4-53786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hildebrandt, Jana A1 - Thünemann, Andreas T1 - PP and PE nanoplastics in water N2 - Plastic debris in micron and nanometer scale pollutes the nature all over the world. The potential dangers of these pollutants remain unpredictable. While risk assessment studies on microplastics are already popular, nanoplastic has not yet reached the same focus of investigation. The reason for this difference is simple: There is a "methodological gap" in the analytics of plastic particles with a diameter smaller than 1 μm. Submicron and nanoplastic particles are currently not detectable in environmental matrices. Therefore, it is important for researchers to have a well-characterized nanoplastic material, that serves as a reference for nanoplastics found in nature. Our aim was to synthesize nanoplastics made from the most common used plastics such as polypropylene (PP) and polyethylene (PE). We found an easy way to form nanoparticles consisting of PP and PE (nano-PP/PE). Herein, nano-PP/PE was formed via a top-down method where the polymer was dispersed to acetone and then transferred to water. No surfactant is needed to obtain a dispersion which is stable for more than 35 weeks. The success of forming nanoplastics and their size was detected via scattering methods, predominantly dynamic light scattering. The chemical analysis of the nanoplastics was performed via Fourier Transform Infrared spectroscopy. Furthermore, electron microscopy was used to complement the results. To examine the good stability of the nanoparticles, zeta potential measurements were performed, which revealed zeta potentials of -30 to -40 mV. T2 - IUPAC-MACRO2020+ CY - Online meeting DA - 17.05.2021 KW - Nanoplastic PY - 2021 AN - OPUS4-53774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hildebrandt, Jana A1 - Thünemann, Andreas T1 - Polypropylene and polyethylene nanoplastics in water N2 - Considering the huge amount of plastics, that is produced and thrown away all over the world every day, an increasing part of the society became aware of microplastic and its possible impact on the environment. Polymer particles smaller than 1 µm are called nanoplastic. Due to their small size they form a special group within particulate waste. Their high specific surface makes it easier for them to penetrate tissue and pose potential harm. On the other hand, the size and the chemical structure make it difficult to detect and analyze nanoplastics in nature. Furthermore, the concentrations in environmental samples are very low. Therefore, there is a need for a well-characterized nanoplastic material, that serves as a reference for nanoplastic found in nature. T2 - Tag der Chemie 2021 Uni Potsdam CY - Online meeting DA - 06.07.2021 KW - Nanoplastic PY - 2021 AN - OPUS4-53775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -