TY - CONF A1 - Voss, Heike T1 - Morphology and regularity of high-spatial frequency laser-induced periodic surface structures (HSFL) on titanium materials N2 - Titanium and its alloys are known to allow the straightforward laser‐based manufacturing of ordered surface nanostructures, so‐called high spatial frequency laser‐induced periodic surface structures (HSFL). These structures exhibit sub‐100 nm spatial periods – far below the optical diffraction limit. The resulting surface functionalities are usually enabled by both, topographic and chemical alterations of the nanostructured surfaces. For exploring these effects, HSFL were processed on different titanium materials (bulk, film) upon irradiation with near‐infrared ps‐laser pulses (1030 nm wavelength, ≈ 1 ps pulse duration) under different laser scan processing conditions. Here we extend our previous work on chemical analyses of HSFL on titanium materials towards a more detailed morphological and topographical surface characterization. For that, scanning electron and atomic force microscopic images are subjected to a regularity analysis using our self-developed ReguΛarity software. The regularity of the HSFL is assessed with respect to the influences of sample- and laser-related parameters, as well as the imaging method used. T2 - 13th International LIPSS Workshop CY - Enschede, Netherlands DA - 29.10.2025 KW - Laser-induced periodic surface structures (LIPSS) KW - Titanium KW - Ultrashort laser pulses KW - Laser processing PY - 2025 AN - OPUS4-64631 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Laser Nanotexturierung von Metalloberflächen zur Reduktion von Reibung und Verschleiß N2 - Die Reduktion von Reibung und Verschleiß in technischen Systemen bietet ein großes Potenzial zur Reduktion von CO2-Emissionen. Dieser Beitrag diskutiert die Erzeugung und tribologische Charakterisierung von Ultrakurzpuls-generierten Nanostrukturen auf Metallen (Stahl, Titan). Besonderes Augenmerk wird dabei auf die Rolle der laserinduzierten Oxidschicht im Zusammenspiel mit verschleißreduzierenden Additiven in ölbasierten Schmiermitteln gerichtet. T2 - Internationale Bodensee Fachtagung „Wärmebehandlung und Oberflächentechnik zur Verbesserung von Tribologie und Verschleissbeständigkeit" CY - Feldkirch, Austria DA - 20.03.2025 KW - Additive KW - Laser-induzierte periodische Nanostrukturen KW - Reibungsreduktion KW - Verschleißreduktion PY - 2025 AN - OPUS4-62757 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Generation and characterization of anisotropic nanostructures using ultrashort pulsed lasers N2 - The lecture gives an overview of the generation and characterization of anisotropic nanostructures using ultrashort pulsed laser radiation. Special attention will be paid to the phenomenon of so-called laser-induced periodic surface structures (LIPSS) on various materials. One focus will be on dielectrics and the dynamics of nanostructure formation. Further examples of bulk nanostructures from the literature will be discussed. T2 - 8th UKP-Workshop: Ultrafast Laser Technology CY - Aachen, Germany DA - 08.04.2025 KW - Laser-induced Periodic Surface Structures (LIPSS) KW - Dielectrics KW - Surface Nanostructures KW - Volume Nanostructures PY - 2025 AN - OPUS4-62947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Ultrafast optical probing of laser-induced formation of periodic surface nanostructures N2 - Laser-induced Periodic Surface Structures (LIPSS, ripples) are a universal phenomenon and can be generated in a contactless, single-step process on almost any type of solid upon irradiation with intense laser pulses. They represent a (quasi-)periodic modulation of the surface topography in the form of a linear grating and are typically formed in a “self-ordered” way in the focus of a coherent laser beam. Thus, they are often accompanying laser material processing applications. The structural sizes of LIPSS typically range from several micrometers down to less than 100 nanometers – far beyond the optical diffraction limit – while their orientations exhibit a clear correlation with the local polarization direction of the laser radiation. From a theoretical point of view, a controversial debate has emerged during the last decades, whether LIPSS originate from electromagnetic effects (seeded already during the laser irradiation) – or whether they emerge from matter-reorganization processes (distinctly after the laser irradiation). From a practical point of view, however, LIPSS represent a simple and robust way for the nanostructuring of solids that allows creating a wide range of different surface functionalities featuring applications in optics, tribology, medicine, energy technologies, etc. The presentation provides an overview of current theories on LIPSS and the quest to achieve ever smaller surface nanostructures. The historical development of the fundamental ideas behind LIPSS is presented, together with experimental approaches that make it possible to distinguish between the various LIPSS formation scenarios. Time-resolved experimental methods are required to investigate the dynamics of their formation. The presentation focuses on ultrafast time-resolved optical (pump-probe) techniques that can be used for localized point measurements or microscopic imaging, utilizing the reflection, diffraction, or coherent scattering of the probe radiation at the emerging LIPSS, while simultaneously capturing information about rapid melting, ablation, and solidification phenomena. However, given the sub-micrometric spatial periods of LIPSS, their analysis using optical radiation employed in far-field techniques remained a challenge. Therefore, short wavelengths of the probe beam in the UV range or even below are required to overcome the diffraction limit imposed in the optical spectral range. Fourth-generation light sources, namely short-wavelength (XUV or X-ray) short-pulse free-electron lasers (FELs), offer new and fascinating possibilities for resolving laser-induced structure formation on surfaces in the sub-micrometer to nanometer range and in time domains from picoseconds to several nanoseconds with a resolution in the sub-picosecond regime. On laser-irradiated semiconductor surfaces, this unique spatio-temporal resolution enables the detection of early signs of coherent/plasmonic electromagnetic scattering effects, followed by the excitation of hydrodynamic capillary waves – providing new insights into the above-mentioned debate. Recent experiments at the European XFEL used fs-time-resolved small-angle X-ray scattering (fs-SAXS) and even fs-time-resolved grazing incidence small-angle X-ray scattering (fs-GISAXS), combined with grazing-incidence diffraction (fs-GID), to reveal the dynamics of the formation of nanometric LIPSS on metals. T2 - CINSaT Herbstkolloquium 2025 CY - Kassel, Germany DA - 05.11.2025 KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser pulses KW - Pump-probe measurements KW - Free-electron laser KW - Small angle X-ray scattering (SAXS) PY - 2025 AN - OPUS4-64633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hassenstein, Christian T1 - Robotergestützte Ultraschallprüfung von Objekten mit komplexen Geometrien N2 - Durch den Einsatz moderner digitaler Design- und Fertigungsmethoden wachsen einerseits die Komplexität von Bauteilen, andererseits der Bedarf an Informationen über deren Qualität und Zustand. Damit steigen auch die Anforderungen an die zerstörungsfreie Prüfung, die im Zuge von ZfP 4.0 automatisierte und flexible, innovative Prüfmethoden erfordert. Das gilt insbesondere für Objekte, deren Oberflächengeometrien über plane Flächen und eindimensionale Krümmungen hinausgehen. Um zu zeigen, wie eine Ultraschallprüfung von Objekten mit komplexer Oberflächengeometrie realisiert werden kann, wurde an der BAM eine roboterbasierte Demonstratoranlage entwickelt. Dabei führt ein Roboterarm einen Array-Prüfkopf in Tauchtechnik senkrecht über die Prüffläche. Die dafür erforderliche Prüfbahn kann entweder anhand der CAD-Geometrie oder mithilfe einer Punktewolke der Prüffläche, die vorab mit einem am Roboter angebrachten Laser-Profilometer erfasst wird, ermittelt werden. Zur Erhöhung der Genauigkeit werden der Lasersensor und der Ultraschallprüfkopf automatisiert mit dafür entwickelten Routinen am Roboter eingemessen. Durch bildgebende Verfahren und eine automatische Auswertung der Bilder kann die in Tauchtechnik auftretende Brechung des Schallbündels an der Prüfteiloberfläche berücksichtigt werden, was die ortsrichtige Rekonstruktion von Anzeigen aus dem Prüfteilinneren bzw. der Rückwand ermöglicht. Durch Rückführung der Anzeigen in ein gemeinsames Koordinatensystem entsteht eine 3D-Rekonstruktion des Prüfteils. Der vorliegende Beitrag stellt die Demonstratoranlage und die angewendeten Methoden im Detail vor und nennt Anwendungsbeispiele. T2 - DGZfP Jahrestagung 2025 CY - Berlin, Germany DA - 26.05.2025 KW - Ultraschall KW - Robotik KW - Turbinenschaufel KW - Wanddicke KW - Defekterkennung PY - 2025 AN - OPUS4-63417 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Voss, Heike T1 - ReguΛarity - A free software for the objective quantification of the regularity of periodic surface structures generated by femtosecond laser irradiation N2 - The precise laser-based surface structuring on the micro- and nanoscale allows to create functional properties for innovative applications, e.g., in medicine, optics and biology. Among the various types of surface structures, laser-induced periodic surface structures (LIPSS) are characterized by their versatility and the relatively simple manufacturing process. However, the fabrication of highly regular LIPSS patterns remains challenging. The systematic investigation of LIPSS formation, as well as of the resulting functional properties requires a precise evaluation of the surface morphology, especially with regard to periodicity and regularity. Existing quantification methods such as Fast Fourier Transformation (FFT) tend to lack automation and objectivity, especially when dealing with large data sets and multi-scale structures. Although automated approaches exist with the Gini coefficient and the P³S method, their limited availability restricts a broader scientific use. We therefore introduce ReguΛarity as an innovative open-source software solution for objective, rapid and reproducible evaluation of structured surfaces concerning their regularity. In order to provide comprehensive surface morphological analysis, our software uses advanced image-processing techniques and integrates the already developed tools such as P³S method, Gini coefficient, FFT analysis, and the calculation of DLOA (Dispersion of LIPSS Orientation Angle). The software allows to evaluate any relevant image format as provided, e.g., by standard scanning electron micrographs. An intuitive PyQt5-based interface, enhanced by multi-threading capabilities, facilitates efficient data processing. Interactive features such as region-of-interest selection and plotting provide flexible adaptation to diverse applications. ReguΛarity offers a robust analysis tool that will contribute to the further development of precise laser-based surface structuring and to the optimization of the desired functional properties in both research and industry. T2 - 13th International Conference on Photoexcited Processes and Applications, ICPEPA-13 CY - Lecce, Italy DA - 14.09.2025 KW - Laser-induced periodic surface structures (LIPSS) KW - Laser processing KW - Fourier transformation KW - Regularity PY - 2025 AN - OPUS4-64176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rahner, E. T1 - From nightmare to numbers - A novel software tool for objective regularity analysis of LIPSS N2 - The precise laser-based surface structuring on the micro- and nanoscale allows for the creation of functional properties for innovative applications, e.g., in medicine, optics and biology. Among the various types of surface structures, laser-induced periodic surface structures (LIPSS) are distinguished by their versatility and the comparatively simple manufacturing process. Nevertheless, the fabrication of highly regular LIPSS patterns remains challenging. The systematic investigation of LIPSS formation, as well as of the resulting functional properties demands accurate and objective evaluation of surface morphology, especially regarding periodicity and regularity. Existing quantification methods such as Fast Fourier Transformation (FFT) tend to lack automation and objectivity, especially when dealing with large data sets and multi-scale structures. Although automated approaches, such as those based on the Gini coefficient or the P³S method, have been proposed, their limited availability hinders a broader scientific use. To overcome these limitations, we introduce ReguΛarity, a novel, freely available Python-based software tool featuring a graphical user interface for automated and quantitative assessment of regularity in period and (quasi-)periodic surface patterns including LIPSS. The software processes microscopic images obtained from optical, scanning electron microscopy (SEM), or atomic force microscopy (AFM), combining image segmentation with one- and two-dimensional Fourier analyses (1D-FT, 2D-FT), phase evaluation, and gradient-based orientation determination to facilitate a comprehensive regularity analysis of (quasi-)periodic surface patterns with spatial periods Λ. Regularity is quantified by the newly proposed five-dimensional regularity tuple R comprising the normalized spread of spatial periods from 2D-FT, the normalized local variation of the dominant spatial period from 1D-FT, the Gini coefficient G, the Dispersion of the LIPSS Orientation Angle (DLOA), and the mean phase deviation. The demonstration of the software’s capabilities is achieved by comparing idealized sinusoidal test patterns with SEM micrographs of fs-laser-generated LIPSS on stainless steel (AISI 316L) and aluminum alloy (AlMg5). This comparison highlights ReguΛarity’s objective differentiation between varying levels of structural regularity. The software facilitates high-throughput analysis and data-driven optimization in laser surface engineering processes. T2 - 13th International LIPSS Workshop CY - Enschede, Netherlands DA - 29.10.2025 KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - Fourier transform KW - Gini coefficient PY - 2025 AN - OPUS4-65047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gräf, S. T1 - Ion marker implantation as key to understand the formation of femtosecond LIPSS on steel N2 - Ultrashort laser (fs-laser) pulses can be used to generate laser-induced periodic surface structures (LIPSS, ripples) on different types of materials. A variety of potential applications of these grating-like LIPSS have already been demonstrated in the field of surface functionalization. Examples include structural colours (e.g. for optical effects or safety features), beneficial friction and wear reduction, modification of the wetting behaviour of surfaces, and antibacterial or cell adhesion promoting properties for medical implants. Despite decades of research, however, some aspects regarding the formation mechanism are still unclear and the subject of controversial debate. This involves the two main models of coherent electromagnetic scattering and matter reorganization, which are used for explaining aspects of LIPSS formation and phenomenology. One major issue is to quantify the actual amount of material removal during the fs-laser processing due to the lack of an independent depth reference and to visualize the so-called heat-affected zone accompanying intense fs-laser irradiation. In the present study, near-surface implantation of Mn and N ions into different material depth of Mn-free austenitic stainless steel alloy FeCrNiMo18-12-2 was used to create reference layers of a defined thickness containing the respective elements. LIPSS (type low-spatial frequency LIPSS, LSFL) were fabricated on the polished substrate surfaces in an air environment by fs-laser irradiation (λ = 1025 nm, τ = 300 fs, frep = 100 kHz, F = 1.5 J/cm2). The implanted layers subsequently served as a kind of coordinate system to assess the material removal during the formation process via cross-sectional Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Spectroscopy (EDXS). Using both analysis methods enabled in particular to determine the position of peaks and valleys of the LIPSS topography in relation to the initial surface before fs-laser irradiation. This confirmed the selective ablation in the LIPSS valleys. Moreover, linking changes in the material’s microstructure, e.g., the crystallinity and near surface elemental composition before and after fs-laser treatment, gave additional insights regarding the transient cooling rates, as recently shown for NiTi alloys. T2 - 13th International LIPSS Workshop CY - Enschede, Netherlands DA - 29.10.2015 KW - Energy dispersive X-ray analysis (EDX) KW - Ion implantation KW - Laser-induced periodic surface structures (LIPSS) KW - Steel KW - Transmission electron microscopy (TEM) PY - 2025 AN - OPUS4-64900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Bacterial adhesion on ultrashort pulse laser processed surfaces ― more than size matters! N2 - Bacterial biofilms are aggregates of bacterial cells, often attached to a surface, and enclosed by a self-produced extracellular matrix which confers increased stress tolerance and resistance to cleaning. Biofilm formation leads to biofouling which gives rise to high costs in numerous technical settings due to biocorrosion and biodegradation. However, biofilms can also be attractive for industrial settings such as wastewater treatment systems or for soil bioremediation processes. Hence, the control of bacterial adhesion to a surface is of major concern. Surface topography strongly influences bacterial adhesion. Therefore, one promising way to achieve bacteria-guiding surfaces lies in the contactless and aseptic large-area laser processing of technical surfaces. We used short and ultrashort pulsed laser systems to generate different surface textures, mainly high-spatial-frequency and low-spatial-frequency laser-induced periodic surface structures, LIPSS (HFSL and LFSL), on Ti, Ti-alloy, steel, and polymers (PET and PE). Pristine (polished) and laser processed samples were subjected to bacterial adhesion experiments with two different Escherichia coli strains and Staphylococcus aureus as test organisms. The bacterial strains differed in their cell wall structure (grampositive vs. gramnegative strains), in size, shape, the occurrence of cell appendages, and in their biofilm forming capabilities. Adhesion patterns were analyzed microscopically and compared regarding the respective test strain and surface topography. Our results revealed that adhesion behavior strongly depends not only on the material’s topography and chemistry, but also on the specific bacterial strain, the presence of cell appendages, and ambient growth conditions. T2 - 13th International LIPSS Workshop CY - Enschede, Netherlands DA - 29.10.2025 KW - Bacterial adhesion KW - Biofilm KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser pulses PY - 2025 AN - OPUS4-64632 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Voss, Heike T1 - Morphology and regularity of high-spatial frequency laser-induced periodic surface structures (HSFL) on titanium materials N2 - Titanium and its alloys are known to enable the straightforward laser‐based manufacturing of ordered surface nanostructures, so‐called high-spatial frequency laser‐induced periodic surface structures (HSFL). These structures exhibit sub‐100 nm spatial periods – far below the optical diffraction limit. The resulting surface functionalities are usually enabled by both, topographic and chemical alterations of the nanostructured surfaces. For exploring these effects, HSFL were processed on different titanium materials (bulk, film) upon irradiation with near‐infrared ps‐laser pulses (1030 nm wavelength, ≈1 ps pulse duration) under different laser scan processing conditions in normal air atmosphere. Here, we extend our previous work on chemical analyses of HSFL on titanium materials towards a more detailed large-area morphological and topographical surface characterization. For this purpose, scanning electron or atomic force microscopic images are subjected to a regularity analysis using our ReguΛarity software. The results are assessed with respect to the influences of sample- or laser-related parameters on the regularity of the HSFL. T2 - 13th International Conference on Photoexcited Processes and Applications, ICPEPA-13 CY - Lecce, Italy DA - 14.09.2025 KW - Laser-induced periodic surface structures (LIPSS) KW - Laser processing KW - Ulltrashort laser pulses KW - Titanium PY - 2025 AN - OPUS4-64173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gräf, S. T1 - Ion marker implantation for tracing the formation of femtosecond LIPSS on steel N2 - An ion marker experiment is conducted to investigate the formation of low spatial frequency laser-induced periodic surface structures (LIPSS) on stainless steel surfaces upon scan-processing with femtosecond laser pulses (300 fs, 1025 nm, 100 kHz) focussed to a spot diameter of ~20 µm. Defined concentration depth profiles of 14N^+- and 55Mn^+-ions were implanted below the polished surface of a cast Mn- and Si-free stainless steel AISI 316L using an acceleration energy of 380 keV. This generated two distinct “depth-tracer-layers” ~135 nm (55Mn) and ~340 nm (14N) below the sample surface. The sample morphology and microstructure were evaluated before and after LIPSS-processing using scanning and transmission electron microscopy techniques in top-view and cross-sectional geometry. Energy-dispersive X-ray spectroscopy (EDXS) allowed to visualize the depth distribution of the marker elements, the steel constituents, and of oxygen involved through the laser processing in ambient air. These experiments revealed that the LIPSS on this metal are predominantly formed by material removal through locally varying ablation and, to a lesser extent, by local melt displacement effects prior to the re-solidification. Moreover, the processing in air leads to the formation of a less than 10 nm thick laser-induced oxide layer covering the steel surface. Our new tracer ion approach contributes to the ongoing debate on the relevance of electromagnetic or hydrodynamic effects during the formation of LIPSS. T2 - E-MRS Spring Meeting 2025 CY - Strasbourg, France DA - 26.05.2026 KW - Laser-induced periodic surface structures (LIPSS) KW - Steel KW - Ion implantation KW - Transmission electron microscopy (TEM) KW - Energy dispersive X-ray analysis (EDX) PY - 2025 AN - OPUS4-63274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Obenlüneschloß, Jorit A1 - Boysen, Nils A1 - Rönnby, Karl A1 - Muriqi, Arbresha A1 - Hoffmann, Volker A1 - Abad Andrade, Carlos Enrique A1 - Rogalla, Detlef A1 - Brokmann, Ulrike A1 - Rädlein, Edda A1 - Nolan, Michael A1 - Devi, Anjana T1 - Ein seltener mononuklearer Lithium‐Carben‐Komplex für die Atomlagenabscheidung von lithiumhaltigen Dünnschichten N2 - KurzfassungLithium ist das zentrale Element moderner Batterietechnologien, und die Herstellung von lithiumhaltigen Materialien mittels Atomlagenabscheidung (engl. Atomic Layer Deposition, ALD) bietet erhebliche Vorteile bei der Kontrolle der Schichtdicke und ‐zusammensetzung. In dieser Studie wird ein neuer mononuklearer, durch ein N‐heterocyclisches Carben (NHC) stabilisierter Lithiumkomplex, [Li(tBuNHC)(hmds)], als vielversprechender Präkursor für die ALD von lithiumhaltigen Dünnschichten vorgestellt. Die strukturelle Charakterisierung erfolgt durch den Vergleich von Dichtefunktionaltheorie (DFT) und Einkristall‐Röntgenbeugung (engl. Single‐Crystal X‐ray Diffraction, SC‐XRD), wobei die seltene mononukleare Struktur bestätigt wird. Thermogravimetrische Analysen (TGA) zeigen vorteilhafte thermische Eigenschaften für ALD‐Anwendungen. Die Verbindung weist einen niedrigen Schmelzpunkt, saubere Verdampfung und ermutigende Volatilitätsparameter im Vergleich zu anderen Lithium‐Präkursoren auf. ALD‐Experimente mit [Li(tBuNHC)(hmds)] und Ozon zeigen dessen Effektivität bei der Abscheidung von LiSixOy‐Filmen. Der ALD‐Prozess zeigt ein gesättigtes Wachstum pro Zyklus (engl. Growth per Cycle, GPC) von 0,95 Å. Die Zusammensetzung, analysiert mittels Rutherford‐Rückstreu‐Spektrometrie/Kernreaktionsanalyse (engl. Rutherford Backscattering Spectrometry/Nuclear Reaction Analysis, RBS/NRA), Röntgenphotoelektronenspektroskopie (engl. X‐ray Photoelectron Spectroscopy, XPS) und Glimmentladungsspektroskopie (engl. Glow Discharge Optical Emission Spectrometry, GD‐OES), bestätigt das Vorhandensein von Lithium und Silizium in den erwarteten Verhältnissen. Diese Arbeit stellt nicht nur einen neuen ALD‐Präkursor vor, sondern trägt auch zum Verständnis der Lithiumchemie bei und bietet Einblicke in die faszinierende Koordinationschemie und das thermische Verhalten von durch NHC‐Liganden stabilisierten Lithiumkomplexen. KW - Atomlagenabscheidung KW - N-heterozyklischer-Carben-(NHC)-stabilisierter Lithium-Präkursor KW - Mononuklearer Li–Carben-Komplex KW - Lithiumsilicat-Dünnfilme KW - Filmanalytik/-Charakterisierung PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-644045 DO - https://doi.org/10.1002/ange.202513066 SN - 0044-8249 N1 - Es gibt eine parallele Sprachausgabe (englisch), ein Link befindet sich im Feld zugehöriger Identifikator - There is a parallel language edition (English), a link is in the field related identifier SP - 1 EP - 12 PB - Wiley-VCH CY - Weinheim AN - OPUS4-64404 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Obenlüneschloß, Jorit A1 - Boysen, Nils A1 - Rönnby, Karl A1 - Muriqi, Arbresha A1 - Hoffmann, Volker A1 - Abad Andrade, Carlos Enrique A1 - Rogalla, Detlef A1 - Brokmann, Ulrike A1 - Rädlein, Edda A1 - Nolan, Michael A1 - Devi, Anjana T1 - Rare Mononuclear Lithium-Carbene Complex for Atomic Layer Deposition of Lithium Containing Thin Films N2 - Lithium is the core material of modern battery technologies and fabricating the lithium‐containing materials with atomic layer deposition (ALD) confers significant benefits in control of film composition and thickness. In this work, a new mononuclear N‐heterocyclic carbene (NHC) stabilized lithium complex, [Li(tBuNHC)(hmds)], is introduced as a promising precursor for ALD of lithium‐containing thin films. Structural characterization is performed, comparing density functional theory (DFT) and single‐crystal X‐ray diffraction (SC‐XRD), confirming a rare mononuclear structure. Favorable thermal properties for ALD applications are evidenced by thermogravimetric analysis (TGA). The compound exhibits a low melting point, clean evaporation, and its volatility parameters are encouraging compared to other lithium precursors. ALD trials using [Li(tBuNHC)(hmds)] with ozone demonstrate its effectiveness in depositing LiSixOy films. The ALD process exhibits a saturated growth per cycle (GPC) of 0.95 Å. Compositional analysis using Rutherford backscattering spectrometry/nuclear reaction analysis (RBS/NRA), X‐ray photoelectron spectrometry (XPS), and glow discharge optical emission spectrometry (GD‐OES), confirms the presence of lithium and silicon in the expected ratios. This work not only presents a new ALD precursor but also contributes to the understanding of lithium chemistry, offering insights into the intriguing coordination chemistry and thermal behavior of lithium complexes stabilized by NHC ligands. KW - Atomic layer deposition (ALD) KW - N-heterocyclic carbene (NHC) ligands KW - Lithium ALD precursor chemistry KW - Mononuclear Li–carbene complex [Li(tBuNHC)(hmds)] KW - Li-silicate thin films (LiSixOy) KW - Thermal properties & TGA/volatility KW - Compositional analysis (RBS/NRA, XPS, GD-OES) PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-643790 DO - https://doi.org/10.1002/anie.202513066 SN - 1433-7851 N1 - Es gibt eine parallele Sprachausgabe (deutsch), ein Link befindet sich im Feld zugehöriger Identifikator - There is a parallel language edition (German), a link is in the field related identifier SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim AN - OPUS4-64379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Campos de Oliveira, Paula T1 - Advancing microstructural characterisation of ceramic cores for aerospace: from state-of-the-art to in-situ synchrotron X-ray computed tomography N2 - Ceramic cores are crucial for manufacturing turbine blades in aircraft engines, creating intricate cooling channels that improve engine efficiency and reduce emissions. During high-temperature casting, the cores undergo significant microstructural changes, including phase transitions, particle rearrangements, and porosity transformations, which can affect their properties and must be carefully controlled. State-of-the-art characterisation techniques for ceramic cores mostly rely on 2D methods, such as scanning and transmission electron microscopy. While valuable, these methods are limited in capturing the 3D complexity of the material. Advances in X-ray computed tomography (XCT) offer a more comprehensive perspective on 3D microstructures, but conventional XCT often lacks the resolution and in-situ capabilities to study microstructural evolution under casting conditions. Synchrotron XCT (SXCT) addresses these limitations, offering high spatial and temporal resolution with features down to 1 µm, enabling in-situ investigations. This study highlights the potential of SXCT, revealing previously unseen 3D microstructural features in ceramic cores, such as agglomeration, porosity evolution, surface reactions, microcracking, and particle orientation. These findings provide a more realistic view of dynamic changes during casting, advancing the understanding of core behaviour. Despite its advantages, SXCT is still rarely used in the field due to challenges such as limited access to synchrotron facilities and sample movement artifacts. Future developments, including high-temperature and vacuum compatible CT setups, could enhance this technique, leading to a better optimisation of ceramics performance. T2 - XIXth Conference of the European Ceramic Society (ECERS 2025) CY - Dresden, Germany DA - 31.08.2025 KW - Synchrotron KW - X-ray Computed Tomography KW - Ceramic core KW - Aerospace KW - Microstructure PY - 2025 AN - OPUS4-64050 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Habibimarkani, Heydar A1 - Prinz, Carsten A1 - Sahre, Mario A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - CV, TEM, XRD and XPS/HAXPES datasets of FeNi-based nanoparticles for the oxygen evolution reaction N2 - The datasets from Cyclic Voltammetry, Transmision Electron Microscopy, X-ray Diffraction, and (Hard Energy) X-ray Photoelectron Spectroscopy are related to the publication H. Habibimarkani, S.-L. Abram, A. Guilherme Buzanich, C. Prinz, M. Sahre, V.-D. Hodoroaba and J. Radnik "In-depth analysis of FeNi-based nanoparticles for the oxygen evolution reaction" Scientific Reports (2025), https://doi.org/10.1038/s41598-025-92720-3 Details of the materials and the experimental procedures are described in this publications. KW - Oxygen evolution reaction KW - Fe-Ni nanopartices KW - Comprehensive analysis PY - 2025 DO - https://doi.org/10.5281/zenodo.14975964 PB - Zenodo CY - Geneva AN - OPUS4-63335 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul T1 - Morphological Analysis of Graphene Oxide by SEM and Correlative Field-Flow Fractionation Coupled with Multi-Angle Light Scattering N2 - Since the first free-standing monolayer graphene sheet was successfully prepared in 2004 [1], graphene and graphene oxide materials achieved the necessary technical readiness level to be considered for use in commercial products. Moreover, the focus has shifted from fundamental research towards expanding the applicability of graphene-related 2D materials (GR2M) and to improve their competitiveness with established materials [2]. Significant advances have been made especially in applications regarding optoelectronics, energy storage materials, chemical additives, sensor applications etc. [3]. Composite products containing graphene and functionalized graphene such as inks and dyes have shown enhanced performance regarding longevity, wettability, and can be tailored for specific purposes through dedicated functionalization. For accurate physico-chemical characterization, GR2M products in their raw form or as part of composites present challenges in terms of sample preparation, choice of analytical method and evaluation of data. For instance, in the context of imaging, these challenges encompass: (a) the selection of images magnifications being representative for all the flakes ranging in size from hundreds of nanometers to micrometers; (b) the selection of representative flakes for adequate statistics, which may involve the separation of overlapping/agglomerating flakes by segmentation; and (c) the classification of diverse morphologies such as irregularly shaped/crumpled flakes, porous flakes and particulate features present in the sample. The complexity of the analytical task has needed the introduction of specific ontology for 2D materials to identify the proper descriptors characterizing confidently the morphological features of interest. Regarding light scattering techniques such as Dynamic Light Scattering (DLS) and Multi-Angle Light Scattering (MALS) commonly used for process control in industry as a first measure, an alternative approach would be necessary. This is in part due to the use of the standard sphere-model for 2D materials as appearing to be inappropriate, whilst a disc-shape model potentially yields more suitable results. Standardization efforts are underway to establish a baseline for accurate characterization of aimed measurands with sufficient statistics. To date, the measurement methods recommended by standardization bodies for the morphological-structural characterization of GR2M’s are AFM, Raman Spectroscopy and SEM and/or TEM. The acquisition of statistically relevant numbers of flakes for a thorough characterization using TEM and AFM is particularly time-consuming. The size distribution of graphene oxide- and graphene-containing inks was investigated by using a correlative approach coupling Centrifugal Field-Flow Fractionation (CF3) [4] with MALS. Up to now, promising results for Field-Flow Fractionation have been achieved only with respect to the separation into size classes of GO samples as well as of graphene oxide mixed with graphene by Asymmetrical Field-Flow Fractionation (AF4) [5], [6]. Besides the online characterization by MALS, the eluting size fractions obtained by CF3 were also collected and subsequently measured by SEM. Successful separation into size fractions allows us to apply ensemble techniques such as MALS to samples that were previously not measurable according to best-practices. In this study, the following material sub-classes have been observed with SEM: (i) nano-graphite mixed with graphene flakes, (ii) graphene oxide few- and multi-layer flakes with diverse and highly complex morphology, and (iii) graphene oxide of well-defined size and shape with >95% single- and bilayer content were investigated. Data on the class size ranges was obtained by MALS after separation with CF3 and consideration of a disc-shape model. Significant effort was invested into the sample preparation for CF3 measurements to achieve a recovery rate of >80%, well above the recommended 70% by ISO/TS 21362:2018 for validation purposes. The material fractions collected after the CF3 measurement were separately deposited on a silicon wafer and the size results of the SEM analysis were correlated with the corresponding mean sizes obtained with MALS. T2 - Microscopy and Microanalysis 2025 CY - Salt Lake City, UTAH, USA DA - 27.07.2025 KW - Advanced Material KW - CF3 KW - SEM KW - Morphology PY - 2025 AN - OPUS4-64084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Correlative chemical imaging to reveal the nature of different commercial graphene materials N2 - Different synthesis techniques were developed which led to other graphene-related materials such as graphene oxide (GO) or elemental-doped graphene. Further chemical functionalization can enhance but also alter or reduce specific properties of the graphene. To reveal the nature of these materials a proper physico‑chemical characterization with different analytical techniques is crucial. Single-layer GO flakes provided by Graphenea (Spain) were prepared for systematic image analysis. These flakes were disposed on an alignment-marked SiO2 substrate and correlatively imaged by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and Raman spectroscopy. The high lateral resolution and/ or extreme surface sensitivity of the mentioned techniques is necessary to explore monolayers. The ToF-SIMS images match well with the SEM and AFM images and provide information about the chemistry. With 2D Raman spectroscopy it is possible to differentiate between the number of stacked single-layer flakes. This is visualized in a 3D image. Well-defined GO flakes could be used as a reference material for imaging of graphene-like structures but also of other types of 2D materials. In addition to these monolayer GO flakes, commercial graphene-containing inks (Haydale) with a more complex morphology were also correlatively imaged. ToF-SIMS and SEM images were merged to identify the origin of different chemical fragments. The findings correlate closely with the expectation that the specific functionalizations (with fluorine and nitrogen as marker elements) are present only on the graphene flakes as presumed from the SEM images. Energy-dispersive X-ray spectroscopy (EDX) supports these results, yet with a much lower sensitivity compared to ToF-SIMS. T2 - Joint Regulatory Risk Assessors Summit – Advancing Safety & Sustainability Assessments of Advanced Materials CY - Paris, France DA - 19.06.2025 KW - ToF-SIMS KW - Imaging KW - Graphene-related 2D materials KW - SEM/EDX KW - Auger electron spectroscopy KW - Raman spectroscopy PY - 2025 UR - https://macrame-project.eu/macrame-meetings-workshops/jointrras/#Agenda AN - OPUS4-63656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Reliable analysis of the elemental composition of graphene oxide flakes with energy dispersive spectroscopy (SEM/EDS) and x-ray photoelectron spectroscopy (XPS) N2 - Suspensions of graphene-related 2D materials (GR2M) are broadly used for further applications like printable electronics. The reliable quantification of the composition of graphene-related 2D materials as liquid suspensions is still a challenging task, which can hinder the commercialisation of the products. Specific parameters to be measured are defined, e.g. the oxygen-to-carbon (O/C) concentration ratio, the trace metal impurities, or the functional groups present [1], but reference protocols are still missing. One of the central methods for the quantification is X-ray photoelectron spectroscopy (XPS) as a rather expensive method. Therefore, the development of cheaper alternatives is highly desired. One attractive alternative of XPS is energy-dispersive spectroscopy (EDS) which is usually coupled with scanning electron microscopy (SEM). This combination is one of the most widely used methods in analytical laboratories. In this contribution the results of a systematic study on the capability of SEM/EDS to reliably quantify the O/C ratio in a well-defined and well-characterized graphene oxide material [2] are presented. The robustness of the SEM/EDS results obtained at various measurement conditions (various excitation energies) is tested by comparing the results to the established XPS analysis [3], which has been carried out on the same samples. It is demonstrated that for samples prepared by drop-casting on a substrate, both surface-sensitive XPS analysis and bulk-characterising EDS result in very similar elemental composition of oxygen and carbon for thick spots. Further, the effect of untight deposited material enabling co-analysis of the (silicon) substrate, is evaluated for both methods, XPS and EDS. The last results clearly show the influence of the substrate on the analysis of the results and stressed out the importance of the sample preparation. T2 - E-MRS Spring Meeting CY - Strasbourg, France DA - 26.05.2025 KW - Graphene oxide KW - Reliable Analysis KW - Ionic Liquid KW - Reference Material PY - 2025 AN - OPUS4-63336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Liaison report from VAMAS/TWA 37 Quantitative Microstructural Analysis to ISO/TC 202 Microbeam Analysis N2 - The liaison between VAMAS/TWA 37 Quantitative Microstructural Analysis and other TWAs to ISO/TC 202 Microbeam Analysis since the last Annual Meeting of ISO/TC 202 is reported. The VAMAS/TWA 37 projects initiated in the last year and the new ones in the planing phase are highlighted with technical and organisational details. Also need for more participants in 2 projects is discussed. T2 - 32nd Plenary Meeting of ISO/TC 202 Microbeam Analysis CY - London, United Kingdom DA - 28.10.2025 KW - VAMAS KW - Quantitative microstructural analysis KW - ISO KW - Standardisation KW - Interlaboratory comparisons PY - 2025 AN - OPUS4-64552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Knowledge Infrastructure supporting image-based characterisation of 2D graphene materials N2 - To better understand the relationship between image features and biological effects such as toxicity,we have developed a method combining image thresholding and pixel-wise segmentation to create annotated datasets. These datasets are used to train machine learning models and establish human–AI learning loops for material classification and structure detection. We employ deep learning architectures such as ResNet, EfficientNet, and U-Net to automate the classification and segmentation of SEM/TEM images of 2D nanomaterials, with targeted manual annotation focusing on key structures (graphene flakes, agglomerates, contaminants, etc.). This approach ensures reproducible, large-scale analysis, which is essential for studying the links between structure and biological response. Finally, our methodology aligns with OECD requirements and contributes to the Safe and Sustainable by Design (SSbD) framework, aiming to enhance product reliability and sustainability. T2 - Joint Regulatory Risk Assessors Summit – Advancing Safety & Sustainability Assessments of Advanced Materials CY - Paris, France DA - 19.06.2025 KW - Graphene KW - 2D materials KW - Knowledge infrastructure KW - Imaging KW - Machine learning PY - 2025 UR - https://macrame-project.eu/macrame-meetings-workshops/jointrras/#Agenda AN - OPUS4-63682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - In depth analysis of commercial functionalized graphene nanoplateles towards structure-activity relationships N2 - The analysis of commercial graphene related products from the raw material to inks is discussed and the input to structure-activity relationships. Different approaches to obtain structure-activity relationships like operando or using data mining are presented. Challenges and recommendation to obtain structure-activity relationships are given. T2 - Joint Regulator Risk Summit: Advancing Safety & Sustainability Assessments of Advanced Materials CY - Paris, France DA - 19.06.2025 KW - Functionalized graphene KW - Structure activity relationsships KW - Commercialisation PY - 2025 AN - OPUS4-63565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chemello, Giovanni A1 - Despotelis, Konstantinos A1 - Paton, Keith A1 - Clifford, Charles A A1 - Pollard, Andrew A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Approaches for the measurement of lateral dimensions of graphene oxide flakes using scanning electron microscopy N2 - There is a practical need, especially from the industrial community, to accurately measure the size and shape of graphene oxide (GO) flakes of commercial origin, in a reliable, simple, and unambiguous way. The sample preparation is a decisive step to obtain a homogeneous distribution of flakes on a substrate, which is suitable for image analysis. A certain level of inhomogeneity was still found but could be accepted for the purpose of this lateral size measurement study. A measurement procedure for Scanning Electron Microscopy (SEM) including sample preparation, measurement, image analysis and reporting was developed and validated to be applied for the lateral size analysis of “real-world” 2D flakes. Samples were produced for analysis by drop casting GO dispersions onto Si/SiO2 substrates. After SEM imaging, the images were analysed using two approaches to derive size and shape parameters. The influence of different operators has been evaluated. A maximum difference of 10% for the size descriptor and 2% for shape descriptor was found for both image analysis approaches when different samples of the same source material are measured and analysed by the same operator, hence indicating variability caused by sample preparation and analysing different sample areas. When different laboratories/operators perform the image analysis on exactly the same images and same flakes, the deviation found for the size descriptor is 2% and 4.6% corresponding to the two approaches applied, while no difference in the shape descriptor is observed. KW - Graphene oxide KW - SEM KW - Lateral dimension KW - Standardisation KW - Imaging PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-625070 DO - https://doi.org/10.1088/2632-959X/adae28 VL - 6 IS - 1 SP - 1 EP - 11 PB - IOP Publishing AN - OPUS4-62507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madbouly, Loay Akmal A1 - Mrkwitschka, Paul A1 - Stockmann, Jörg Manfred A1 - Jones, Elliot A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Comparative Elemental Analysis of Commercial Functionalized Graphene Nanoplatelets Along the Production Chain With X‐Ray Photoelectron and Energy‐Dispersive X‐Ray Spectroscopy N2 - Graphene has been commercialized for over a decade, primarily in the form of suspensions and inks. In this study, we investigate the properties of graphene nanoplatelets (GNPs) and their functionalized derivatives, incorporating fluorine or nitrogen as functional groups (FG). The analysis was conducted on three forms, that is, powders, suspensions, and inks, using X‐ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) with energy‐dispersive X‐ray spectroscopy (EDX). The objective of this work is to establish a rapid and comprehensive systematic approach for elemental analysis of commercial functionalized graphene, which can be used for quality control. Functionalization is employed to tailor the material's physical and chemical properties. In our study, graphene samples, functionalized with fluorine or ammonia in a plasma reactor, were investigated. Both XPS and EDX were applicable for all three forms and showed, in general, similar trends between the three forms, so that both XPS and EDX can be used for quality control of GNPs along the production chain. KW - Commercial graphene KW - Functionalized graphene KW - Graphene inks KW - SEM/EDS KW - XPS PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-625752 DO - https://doi.org/10.1002/sia.7386 SN - 1096-9918 SP - 1 EP - 7 PB - Wiley AN - OPUS4-62575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Habibimarkani, Heydar A1 - Abram, Sarah-Luise A1 - de Oliveira Guilherme Buzanich, Ana A1 - Prinz, Carsten A1 - Sahre, Mario A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - In-depth analysis of FeNi-based nanoparticles for the oxygen evolution reaction N2 - This study investigates the effect of varying iron-to-nickel ratios on the catalytic performance of Fe-Ni oxide nanoparticles (NPs) for the oxygen evolution reaction (OER). Addressing the issue of high energy wastage due to large overpotentials in OER, we synthesized and characterized different NP catalysts with different Fe: Ni oxide ratios. Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Spectroscopy (EDS), and X-ray Diffraction (XRD) were employed to determine the morphology, elemental and phase composition of the NPs. Furthermore, in-depth profiling with X-ray Photoelectron Spectroscopy (XPS) and Hard X-ray Photoelectron Spectroscopy (HAXPES) revealed that iron predominantly exists as oxide, while nickel exhibits both metallic and oxidic forms depending on the Fe content. XPS indicated an enrichment of iron at the NP surface, whereas HAXPES and EDS data agreed on the bulk stoichiometry. The assessment of the catalytic activity via cyclic voltammetry (CV) showed that the Fe: Ni ratio of 2:3 exhibited superior performance, characterized by lower overpotential and a smaller Tafel slope. KW - Fe-Ni oxide KW - Nanoparticles KW - OER KW - Catalytic performance KW - Cyclic voltammetry PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-626932 UR - https://www.nature.com/articles/s41598-025-92720-3 DO - https://doi.org/10.1038/s41598-025-92720-3 VL - 15 IS - 1 SP - 1 EP - 17 PB - Springer Nature AN - OPUS4-62693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - John, Elisabeth A1 - Weise, Matthias A1 - Radnik, Jörg A1 - Stockmann, Jörg Manfred A1 - Lange, Thorid A1 - Sahre, Mario A1 - Hodoroaba, Vasile-Dan T1 - Towards a New Reference Material—Analytical Challenges in Examining High-Entropy Alloy Thin Films N2 - A new high-entropy alloy (HEA) consisting of titanium, chromium, manganese, iron, and nickel was deposited as a thin-film on silicon substrates using magnetron sputtering from a novel segmented target composed of metal stripes. This material was explored with the goal to create a new reference material for surface analysis and evaluation of complex composite materials. The film's morphology was initially characterized by scanning electron microscopy (SEM), followed by crystallographic analysis using X-ray diffraction (XRD) and selected area electron diffraction (SAED). The two-dimensional compositional homogeneity was assessed using a combination of scanning and transmission electron microscopy (TEM) with energy-dispersive spectroscopy (EDS), X-ray fluorescence (XRF), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and X-ray photoelectron spectroscopy (XPS). The in-depth chemical composition was further analysed using ToF-SIMS and Auger electron spectroscopy (AES). Our findings demonstrate that it is possible to produce thin HEA films with a homogeneous in-depth composition from a segmented target. Notably, despite the fixed composition of the target, we were able to vary the HEA's composition by exploiting inhomogeneities within the magnetrons sputter plasma. Additionally, we successfully created HEA films with significant compositional gradients. T2 - ECASIA CY - Gothenburg, Sweden DA - 10.06.2024 KW - Reference material KW - High-entropy alloy KW - Thin-films PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-625777 DO - https://doi.org/10.1002/sia.7387 SN - 1096-9918 SP - 1 EP - 8 PB - Wiley AN - OPUS4-62577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chahal, Shweta T1 - Sustainable Synthesis of Na+ and Bi3+ - doped Cs₂AgInCl₆ Double Perovskites for Efficient White-Light Emission N2 - Double halide perovskites have emerged as promising, less-toxic alternatives to lead-based perovskites for diverse photochemical applications. Among them, Cs₂AgInCl₆ has attracted significant attention, particularly when doped with various elements, which induce self-trapped exciton (STE) states within the bandgap, resulting in efficient white-light emission and a remarkable enhancement of photoluminescence quantum yield (PL QY). While several solid-state and solution-based methods have been employed for the synthesis of double halide perovskites, many rely on toxic solvents and complex procedures, hindering scalability. In this study, we present two environmentally friendly synthesis approaches for the preparation of Cs₂AgInCl₆ doped with monovalent (Na⁺) and trivalent (Bi³⁺) cations: 1. Green solution-based method: Utilizes mild reagents and entirely replaces harsh chemicals, enabling synthesis at ambient conditions. 2. Mechanochemical approach: Employs high-energy ball milling for 62 minutes at room temperature to obtain the desired crystalline phase. These green methodologies provide sustainable and scalable alternatives to conventional routes, minimizing the environmental footprint. We systematically compare the structural and optical properties of the doped perovskites synthesized via both approaches. The resulting materials exhibit strong UV absorption, broadband white-light emission, high PL QY (up to 85%, Fig. 1), long PL lifetimes, and good thermal and environmental stability (up to 300 °C in air). These results highlight the potential of doped Cs₂AgInCl₆ double perovskites as an eco-friendly material with possible photonic applications as in white-light devices. T2 - eMRS Fall Meeting 2025 CY - Warsaw, Poland DA - 15.09.2025 KW - Fluorescence KW - Advanced material KW - Perovskite KW - Synthesis KW - Characterization KW - Fluorescence quantum yield KW - Absolute KW - Integrating sphere spectroscopy KW - Sustainable synthesis KW - Lifetime KW - Photophysics PY - 2025 AN - OPUS4-64185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dumit, Verónica I. A1 - Furxhi, Irini A1 - Nymark, Penny A1 - Afantitis, Antreas A1 - Ammar, Ammar A1 - Amorim, Monica J. B. A1 - Antunes, Dalila A1 - Avramova, Svetlana A1 - Battistelli, Chiara L. A1 - Basei, Gianpietro A1 - Bossa, Cecilia A1 - Cimpan, Emil A1 - Cimpan, Mihaela Roxana A1 - Ciornii, Dmitri A1 - Costa, Anna A1 - Delpivo, Camilla A1 - Dusinska, Maria A1 - Fonseca, Ana Sofia A1 - Friedrichs, Steffi A1 - Hodoroaba, Vasile-Dan A1 - Hristozov, Danail A1 - Isigonis, Panagiotis A1 - Jeliazkova, Nina A1 - Kochev, Nikolay A1 - Kranjc, Eva A1 - Maier, Dieter A1 - Melagraki, Georgia A1 - Papadiamantis, Anastasios G. A1 - Puzyn, Tomasz A1 - Rauscher, Hubert A1 - Reilly, Katie A1 - Jiménez, Araceli Sánchez A1 - Scott‐Fordsmand, Janeck J. A1 - Shandilya, Neeraj A1 - Shin, Hyun Kil A1 - Tancheva, Gergana A1 - van Rijn, Jeaphianne P. M. A1 - Willighagen, Egon L. A1 - Wyrzykowska, Ewelina A1 - Bakker, Martine I. A1 - Drobne, Damjana A1 - Exner, Thomas E. A1 - Himly, Martin A1 - Lynch, Iseult T1 - Challenges and Future Directions in Assessing the Quality and Completeness of Advanced Materials Safety Data for Re‐Usability: A Position Paper From the Nanosafety Community N2 - Ensuring data quality, completeness, and interoperability is crucial for progressing safety research, Safe‐and‐Sustainable‐by‐Design approaches, and regulatory approval of nanoscale and advanced materials. While the FAIR (Findable, Accessible, Interoperable, and Re‐usable) principles aim to promote data re‐use, they do not address data quality, essential for data re‐use for advancing sustainable and safe innovation. Effective quality assurance procedures require (meta)data to conform to community‐agreed standards. Nanosafety data offer a key reference point for developing best practices in data management for advanced materials, as their large‐scale generation coincided with the emergence of dedicated data quality criteria and concepts such as FAIR data. This work highlights frameworks, methodologies, and tools that address the challenges associated with the multidisciplinary nature of nanomaterial safety data. Existing approaches to evaluating the reliability, relevance, and completeness of data are considered in light of their potential for integration into harmonized standards and adaptation to advance material requirements. The goal here is to emphasize the importance of automated tools to reduce manual labor in making (meta)data FAIR, enabling trusted data re‐use and fostering safer, more sustainable innovation of advanced materials. Awareness and prioritization of these challenges are critical for building robust data infrastructures. KW - Advanced materials KW - Safety data KW - Re-usability KW - Nanosafety KW - SSbD KW - FAIR KW - Standardisation PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652918 DO - https://doi.org/10.1002/adsu.202500567 SN - 2366-7486 SP - 1 EP - 18 PB - Wiley-VCH CY - Weinheim AN - OPUS4-65291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Towards Standardised Procedures for Morphology Measurement of 2D-Materials by Imaging N2 - The industry uptake of graphene-related 2D materials (GR2M) material increases, and international standardization is critical to enable commercialization. Reliable, accurate, and reproducible measurements are important due to the multiple production routes and producers of the material to maintain quality in manufacture. Several standards are under development within ISO/TC 229 ‘Nanotechnologies’, i.e. ISO/AWI TS 23879 “Structural characterization of graphene oxide flakes: thickness and lateral size measurement using AFM and SEM” or ISO DTS 23359 “Chemical characterization of graphene in powders and suspensions”, which focus on determining the dimensional and chemical properties of GR2M. Interlaboratory comparisons are required to develop best practice and understand the associated measurement uncertainties. In this contribution challenges and solutions for the accurate measurement of the lateral size of GR2M will be discussed based on the results of a recently completed interlaboratory comparison organized under the pre-standardisation platform of VAMAS (www.vamas.org/twa41/documents/2023_vamas_twa41_project13_GO_SEM.pdf). Aspects related to sample preparation, measurement conditions, and image analysis with different approaches to extract the corresponding size and shape descriptors will be presented. A discussion on the measurement uncertainty budget associated to the final result will be also included. T2 - Graphene Week 2025 CY - Vicenza, Italy DA - 22.09.2025 KW - Graphene-related 2D materials (GR2M) KW - Interlaboratory comparison KW - VAMAS KW - Lateral size KW - ISO/TC 229 Nanotechnologies PY - 2025 AN - OPUS4-64250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eggert, Claudia A1 - Hodoroaba, Vasile-Dan T1 - Welcome and Introduction N2 - Nanotechnology has emerged over the past decade as a key field involving the design, characterization, production, and application of materials, structures, devices, and systems at the nanometer scale. Due to their large specific surface area and significant surface chemistry, nanomaterials offer enhanced material properties and product functionalities. However, alongside these advancements comes the potential risk to humans and the environment. The development of nanomaterials has provided new opportunities to understand matter at the nanoscale, accelerating the creation of innovative advanced materials and devices. The expertise gained in the standardization and regulation of nanomaterials, particularly in characterizing nanoparticulate matter, should be applied to other innovative advanced materials, such as (nano)composites, 2D structures, additive manufactured materials, gels, and foams. Initial guidance for the safe-and-sustainable-by-design (SSbD) development of advanced materials during the early innovation phase has been introduced by various groups and projects. Additionally, digital material passports (DMP) and digital product passports (DPP) need to be defined and implemented uniformly across Europe. In 2024, the Innovative Advanced Materials Initiative (IAM-I) was launched by European stakeholders to contribute to a "Research and Innovation ecosystem that will significantly accelerate the time-to-market of sustainable innovative advanced materials (IAMs) and associated technologies designed for a digital circular economy." Knowledge transfer is a crucial pillar of this ecosystem, and a future IAM-I Academy could be a valuable tool. Initially, it is essential to define "education & training needs to boost Europe’s competitiveness and sovereignty within the area of IAM." T2 - Nano and Beyond - What can we learn from Nano for other Innovative Advanced Materials? CY - Online meeting DA - 04.07.2025 KW - Advance Materials KW - Nanomaterials KW - IAM-I KW - SSbD KW - DMP KW - DPP PY - 2025 UR - https://www.bam-akademie.de/kursangebot/kurs/webinar-nano-and-beyond-55.html?lang=en AN - OPUS4-63690 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Advanced physico-chemical Characterisation & Correlation of Results with different Methods for GFMs N2 - An accurate characterisation of the morphological, structural, and chemical properties of nano and advanced materials is key for the understanding of the material functionality and constitutes the basis for future optimisation or even prediction of the product performance. Further, the correlation of the physical-chemical properties with results from biological testing leads to an understanding of the potential toxicological effects so that a minimisation of the materials risks becomes possible. The presentation will highlight with examples the importance of the selection of the relevant parameters/descriptors and particularly their measurement for the reliable characterisation of the morphology, structure, and chemistry of graphene-related 2D-materials (GR2M’s) [1-3]. One crucial aspect is also one of most challenging ones in the characterisation chain: the proper sample preparation, which shall be tailored to the accurate measurement of the defined analytical parameter. Practical examples of measurement of morphological descriptors of GR2M’s, such as equivalent circular diameter (ECD), minimum and maximum Feret, and aspect ratio with electron microscopy, or of the thickness with atomic force microscopy (AFM) will be showed, together with quantitative chemical characterisation with X-ray photoelectron spectroscopy (XPS) and, newly, with energy-dispersive X-ray spectroscopy with a scanning electron microscope (SEM/EDX) [4] by evaluating accurately the elemental content as the ratio of O/C and the composition of impurities. Another relevant, but challenging part of the characterisation of GR2M’s, particularly as the final products containing mostly low amounts of GR2M’s, is the analysis of homogeneity of the chemical composition by sensitive imaging methods. Examples of successful analysis with secondary ion mass spectrometry (SIMS), even if not quantitative, will be presented. T2 - Joint online Workshop: Harmonisation & Standardisation of Test Methods for Nano- and Advanced Materials CY - Paris, France DA - 19.06.2025 KW - Physico-chemical characterisation KW - Graphene-related 2D materials KW - OECD KW - Standardisation KW - GO flakes PY - 2025 UR - https://macrame-project.eu/macrame-meetings-workshops/ws_hamonisation_standardisation_2023/ AN - OPUS4-63557 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Measurement of the Lateral Size of Graphene Oxide Flakes by SEM N2 - The progress of the VAMAS interlaboratory comparison Project P13 "Lateral size of graphene oxide flakes by SEM" within the Technical Working Area 41 "Graphene and Related 2D Materials" is presented. The challenges at sample preparation on substrates for accurate measurement and image analysis as well as two different analysis approaches, containing exact guidance how to measure the main descriptors for the lateral size measurement of the imaged graphene oxide flakes with Scanning Electron Microscopy are highlighted. The size and shape distributions as measured by 17 laboratories are showed expressed in size and shape descriptors extracted from SEM images by using two proposed measurement approaches. The implementation of the results into the corresponding ISO technical specification AWI/TS 23879 is discussed and planned, in relation with the AFM part. T2 - ISO/TC 229 Nanotechnologies Meeting Week CY - Stockholm, Sweden DA - 19.05.2025 KW - Graphene oxide KW - Interlaboratory comparison KW - SEM KW - Lateral size KW - VAMAS KW - ISO/TC 229 Nanotechnologies PY - 2025 AN - OPUS4-63189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - The next steps in the standardisation of graphene-related and other 2D materials (GR2M) N2 - The first products with graphene-related 2D material (GR2M) are on the market. In this phase trust is essential for the commercial success of these products, between the individual partners of the product value chain, and between the manufacturer and the consumer. Standards are an important tool for building this trust. The first steps have been taken in standardisation, e.g. in terminology and the characterization of raw materials. But there are still some challenges to overcome such as bringing the standards to the factory floor and real-world products. For the validation of new protocols and methods there is a need of reference data and materials. But not only the measurement should be reproducible, the whole analytical workflow from sample storage and preparation to data analysis should be reproducible. Another important issue is the establishment of credible structure-activity relationships which allows the prediction of the properties of the GR2M, but also of the biological activity including the safety for the human health and the environment. Such relationships can be used for read-across and grouping and can facilitate the regulation of the advanced materials. In addition, 2D materials beyond graphene should also be considered and can benefit from the experience from the standardisation of graphene and graphene oxide. T2 - Nanomaterials Standardization Strategy Forum - Europe - Republic of Korea CY - Online meeting DA - 08.07.2025 KW - Commercialisation KW - Product-value chain KW - Confidence building PY - 2025 AN - OPUS4-63731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul T1 - Standardized Chemical Composition Analysis of Graphene Oxide Flakes with SEM/EDS and XPS Works Reliably N2 - Reliable quantification of the chemical composition of graphene-related 2D materials as powders and liquid suspensions is a challenging task. Analytical methods such as XPS, ICP-MS, TGA and FTIR are recommended to be used in ongoing projects at standardization bodies. The specific parameters to be measured are also defined, e.g. the oxygen-to-carbon (O/C) concentration ratio, the trace metal impurities, or the functional groups present [1]. In this contribution, for the first time, the results of a systematic study on the capability of SEM/EDS to reliably quantify the O/C ratio in a well-defined and well-characterized graphene oxide material [2] are presented. It is expected that the quantitative EDS analysis of light elements emitting characteristic X-ray lines below 1 keV to be provided with significantly larger measurement uncertainties than the analysis of elements with an atomic number of 11 (Na) or above [3]. The robustness of the SEM/EDS results obtained at various measurement conditions (various excitation energies) is tested by comparing the results to the established XPS analysis [4], which has been carried out on the same samples. A crucial step in sample preparation from liquid suspension with graphene oxides flakes onto a substrate for analysis with both XPS and EDS. It is demonstrated that if a closed and enough thick drop-cast deposited spot is succeeded to be deposited on a substrate, both surface-sensitive XPS analysis and bulk-characterizing EDS result in very similar elemental composition of oxygen and carbon. Hence, theoretical, expected O/C atomic ratio values for pure graphene oxide of ~0.5 [1] are achieved (with both methods), see Figure 1. Further, the effect of untight deposited material enabling co-analysis of the (silicon) substrate, is evaluated for both methods, XPS and EDS. To note that all the EDS results in this study have been quantified standardless. The effect of the variation of beam voltage on the result of the quantification of the O/C ratio is shown in Figure 2. No clear tendency is visible by varying the kV, which is a confirmation of the quality of the standardless analysis at the used EDS spectrometer. The results of this study demonstrate the reliability of the reference measurement protocol for SEM/EDS to be introduced into ISO/DTS 23359, including the dedicated sample preparation, particularly for the cases when the concentration of the GO flakes in stock liquid suspension is low. Further, also the consideration of this GO material as one of the very few available as a commercial material on the market as the very first GO reference material with regard to its morphology as well as chemical composition. Both the standard measurement procedure and the candidate reference material will immensely contribute to characterise reliably the chemical composition of graphene-related 2D materials with SEM/EDS as one of the most widely used methods in analytical laboratories. T2 - Microscopy and Microanalysis 2025 CY - Salt Lake City, UTAH, USA DA - 27.07.2025 KW - Graphene oxide flakes KW - SEM/EDS KW - XPS KW - O/C ratio KW - Impurities PY - 2025 AN - OPUS4-64085 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Physical-chemical Characterization of Graphene-Related 2D Materials: Development of Approaches for Reliable Quantification N2 - An accurate characterisation of the morphological, structural, and chemical properties of nano and advanced materials is key for the understanding of the material functionality and constitutes the basis for future optimisation or even prediction of the product performance. Further, the correlation of the physical-chemical properties with results from biological testing leads to an understanding of the potential toxicological effects so that a minimisation of the materials risks becomes possible. The presentation will highlight with examples the importance of the selection of the relevant parameters/descriptors and particularly their measurement for the reliable characterisation of the morphology, structure, and chemistry of graphene-related 2D-materials (GR2M’s) [1-3]. One crucial aspect is also one of most challenging ones in the characterisation chain: the proper sample preparation, which shall be tailored to the accurate measurement of the defined analytical parameter. Practical examples of measurement of morphological descriptors of GR2M’s, such as equivalent circular diameter (ECD), minimum and maximum Feret, and aspect ratio with electron microscopy, or of the thickness with atomic force microscopy (AFM) will be showed, together with quantitative chemical characterisation with X-ray photoelectron spectroscopy (XPS) and, newly, with energy-dispersive X-ray spectroscopy with a scanning electron microscope (SEM/EDX) [4] by evaluating accurately the elemental content as the ratio of O/C and the composition of impurities. Another relevant, but challenging part of the characterisation of GR2M’s, particularly as the final products containing mostly low amounts of GR2M’s, is the analysis of homogeneity of the chemical composition by sensitive imaging methods. Examples of successful analysis with secondary ion mass spectrometry (SIMS), even if not quantitative, will be showed. T2 - SaferWorldbyDesign Webinars CY - Online meeting DA - 25.03.2025 KW - Graphene-related 2D materials KW - Standardisation KW - Interlaboratory comparison KW - Physico-chemical characterisation PY - 2025 UR - https://saferworldbydesign.com/webinars/ AN - OPUS4-62791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Quantitative EDS analysis on graphene related 2D materials N2 - The elemental analysis of solid matter by means of the Energy-Dispersive X-Ray Spectrometry (EDS) is meanwhile posible as a quick (seconds!) and more and more accurate analysis via standardsless (instantaneous) quantification. The sensitivity & quantification accuracy for light elements (C, O,..) has significantly increased in the recent years. The availability via table-top SEMs with incorporated EDS is also enhanced. Further, the EDS analysis at an SEM is well-standardized, see ISO/TC 202 Microbeam Analysis & VAMAS/ TWA 37 Quantitative Microstructural Analysis in good liaisonships with ISO/TC 229 Nanotechnologies. It is demostrated that key parameters such as oxygen-to-carbon atomic-% ratio and impurities can be realibly measured, with XPS as a reference method. Various EDS spectrometers and analysis conditions are tested and the validity of the EDS quantification of an ionic liquid of well-defined chemical composition is demonstrated. Next steps are to launch a corresponding VAMAS interlaboratory comparison and to discuss within ISO/TC 229 towards inclusion of EDS as a routine method for the elemental analysis of GR2M into the ISO/TS 23359 Nanotechnologies — Chemical characterization of GR2Ms in powders and suspensions. T2 - Annual Microscopy Community Meeting for the National Research Council in Canada CY - Online meeting DA - 18.11.2025 KW - Graphene-related 2D materials (GR2M) KW - Elemental analysis KW - Light elements KW - SEM/EDS KW - Standardisation PY - 2025 AN - OPUS4-64766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Advanced materials for the energy transition N2 - The climate crisis is the burning issue of our time. In order to avert the impending consequences, global efforts are being made in a wide variety of social and scientific fields. This report looks at a small part of these efforts, a technical aspect, namely the question of which AdMa are currently considered in techniques to support the energy transition. AdMa, i.e. materials that are rationally designed to have new or enhanced properties, and/or targeted or enhanced structural features, are used in all sectors of the energy transition. Questions of energy generation, storage and saving are considered here. This report is based on literature research and contains a general compilation of various AdMa that are used in the energy transition or are being researched for this purpose. From this compilation, ten materials that are considered particularly relevant for various reasons were selected and examined in more detail in relation to their use. The specific question here lies in the conflicting objective that the development of technologies for the energy transition is welcomed, but the use of AdMa may entail possible challenges in view of chemical safety as well as sustainability and circular economy. KW - Energy generation KW - Energy saving KW - Eneergy storage KW - Energy transportation PY - 2025 DO - https://doi.org/10.60810/openumwelt-7853 SN - 1862-4804 VL - 83 SP - 1 EP - 64 PB - Umweltbundesamt CY - Dessau-Roßlau AN - OPUS4-63529 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus T1 - Towards Structured Data Spaces: Prototypical Application of Semantic Technologies as a Driver for Innovation in Materials Science N2 - In the pursuit of advancing development and digitalization within materials science, ensuring quality assurance, interoperability, and adherence to FAIR principles is significant. To address these aspects, semantic technologies are employed for storage, processing, and contextualization of data, offering machine-actionable and human-readable knowledge representations crucial for data management. This presentation showcases the prototypical application of generic approaches of knowledge representation in materials science. It includes the design and documentation of graph patterns that may be compiled into rule-based semantic shapes. The development and application of the PMD Core Ontology 3.0 (PMDco 3.0) tailored for materials science is highlighted. Its integration into daily lab life is demonstrated through its functional incorporation into electronic lab notebooks (ELN). Examples of material processing and standardized mechanical testing illustrate how knowledge graph operations enhance ELN capabilities, providing a generalizable unified approach for managing diverse experimental data from different sources with automation potentials. T2 - TMS Specialty Congress 2025 CY - Anaheim, CA, USA DA - 15.06.2025 KW - Semantic Data KW - Data Integration KW - Digitalization KW - Data Interoperability KW - Plattform MaterialDigital PY - 2025 AN - OPUS4-63401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fernandez-Poulussen, D. A1 - Hodoroaba, Vasile-Dan T1 - Holistic, reliable and practical Characterization Framework for Graphene Family Materials, a correlated approach including Imaging based techniques N2 - ACCORDs is an Horizon Europe project working in the development of an imaging-based characterization framework (ACCORDs framework) for the holistic correlative assessment of Graphene Family Materials (GFMs) as a representative of 2D nanomaterials (NMs) to assess and predict 2D NMs health and environmental risks. The ACCORDs framework will operationalise safe and sustainable by design (SSbD) strategies proposed in past or ongoing H2020 projects or within OECD by correlating low-, medium-, and high-resolution physico-chemical-biological imaging-based methods with non-imaging methods in a tiered approach. ACCORDs will deliver the ACCORDs framework and user guidance, new imaging-based characterisation methods, reference in vitro tests, new reference 2D NMs for different matrices, a new minimum information reporting guideline for FAIR data sharing and reuse of images as well as an atlas with reference images for diagnostics of compromised safety of GFMs/GFM products. The new guidelines and standard proposals will be submitted to standardisation bodies to allow creation of regulatory ready products. The novelty of ACCORDs is in translating the principles of medical imaging-based diagnostics to 2D material hazard diagnostics. ACCORDs will accelerate industrial sectors in the area of aviation, marine construction, drone production, flexible electronics, photovoltaics, photocatalytics and print inks-based sensors. The value ACCORDs proposes to the graphene industry are practical, easy, imaging-based tools for GFM quality monitoring next to the production line with a possibility to be correlated with advanced highresolution imaging characterization methods in case hazard i.e. deviation from controls (benchmark values) are diagnosed. The ACCORDs framework and tools will contribute to the European Green Deal by addressing the topic: “Graphene: Europe in the lead” and to a new European strategy on standardization, released on 2nd February, 2022 T2 - Joint Regulatory Risk Assessors Summit – Advancing Safety & Sustainability Assessments of Advanced Materials CY - Paris, France DA - 19.06.2025 KW - Graphene-related 2D materials (GR2M) KW - Imaging KW - SSbD KW - ACCORDs PY - 2025 UR - https://macrame-project.eu/macrame-meetings-workshops/jointrras/#Agenda AN - OPUS4-63660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Investigation of Fe-Ni-O nanoparticles for water splitting N2 - This study investigates the effect of varying iron-to-nickel ratios on the catalytic performance of Fe-Ni oxide nanoparticles (NPs) for the oxygen evolution reaction (OER). Addressing the issue of high energy wastage due to large overpotentials in OER, we synthesized and characterized different NP catalysts with different Fe: Ni oxide ratios. Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Spectroscopy (EDS), and X-ray Diffraction (XRD) were employed to determine the morphology, elemental and phase composition of the NPs. Furthermore, in-depth profiling with X-rayPhotoelectron Spectroscopy (XPS) and Hard X-ray Photoelectron Spectroscopy (HAXPES) revealedthat iron predominantly exists as oxide, while nickel exhibits both metallic and oxidic forms depending on the Fe content. XPS indicated an enrichment of iron at the NP surface, whereas HAXPES and EDSdata agreed on the bulk stoichiometry. T2 - PhI European User Meeting 2025 CY - Eibelstadt, Germany DA - 29.04.2025 KW - Oxygen evolution reaction KW - In depth analysis KW - (Hard) X-ray Photoelectron Spectroscopy PY - 2025 AN - OPUS4-63334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fagan, J. A1 - Hodoroaba, Vasile-Dan T1 - VAMAS TWA 34 Nanoparticle Populations Combined Projects P15 and P16 N2 - The progress in the VAMAS Project #15 "Measurement of particle size and shape distribution of bipyramidal titania including deposition from liquid suspension" within TWA 34 Nanoparticle Populations is presented with highlight of the following points: - Determine and compare particle size and shape distribution by means of electron microscopy (SEM, TEM, STEM-in-SEM), atomic force microscopy (AFM) and small angle X-ray scattering (SAXS). - Determine uncertainty induced by deposition protocol from liquid suspension with comparison to known values from a prior ILC with already deposited nanoparticles on TEM grids. - Provide comparative validation of protocols for the techniques other than TEM. Further, the VAMAS/TWA 34 Project #16 "Measurement of (relative) number concentration of bimodal silica nanoparticles including deposition from liquid suspension" is presented. Follwowing points are discusssed: - Validate the performance of imaging methods to measure the relative number concentration by electron microscopy (SEM, TEM) and atomic force microscopy (AFM) and two modes of bimodal (30 and 60 nm) silica nanoparticles - Validate the performance of small angle X-ray scattering (SAXS) for the traceable measurement of the number concentration of the two modes. - Discussion of sample preparation issues - Publication of the results in 2026 T2 - Versailles Project on Advanced Materials and Standards (VAMAS) 50th Steering Committee Meeting CY - London, United Kingdom DA - 14.09.2025 KW - VAMAS KW - Interlaboratory comparison KW - Particle size and shape distribution KW - Particle number concentration KW - Standardisation PY - 2025 UR - https://www.vamas.org/twa34/index.html AN - OPUS4-64234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - VAMAS Regional Report Advanced Materials Germany 2025 N2 - Regional standardisation activities and how VAMAS can help in any way to promote activities are reported. Activities related to organisational updates, government initiatives/priorities (especially related to Advanced Materials), details of any strategy documents publicly available, networks within Germany and how we engage are presented. T2 - Versailles Project on Advanced Materials and Standards (VAMAS) 50th Steering Committee Meeting CY - London, United Kingdom DA - 14.09.2025 KW - VAMAS KW - Interlaboratory comparison KW - Advanced materials KW - Standardisation PY - 2025 AN - OPUS4-64232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Narayanan, M.M. A1 - Nicolai, M. A1 - Prager, J. T1 - C9-a5 - Optimization of Low-Frequency Shear Wave Transducers for Guided Wave Applications N2 - Development of ultrasonic transducers for the excitation of a torsional mode T(0,1) mode in a large pipe of the material typical of actual oil/gas pipelines is discussed. Towards this,16 ultrasonic transducers are designed and fabricated using shear plates of PIC 255 material, backing mass of tungsten-epoxy composite and brass shims as wear plates. The transducers are qualified using Laser Doppler Vibrometry. Then, the transducers are embedded in a springloaded ring and tested on a pipe using a multi-channel ultrasonic system. The results show the successful excitation of T(0,1) mode and it is seen to propagate for distance of 60 m with a good SNR. T2 - 2025 ICU PADERBORN - 9th International Congress on Ultrasonics CY - Paderborn, Germany DA - 21.09.2025 KW - Ultrasonic guided waves KW - Torsional mode KW - Shear PZT plates KW - Ring array transducer design KW - Pipe testing PY - 2025 DO - https://doi.org/10.5162/Ultrasonic2025/C9-a5 SP - 223 EP - 226 PB - AMA Service GmbH AN - OPUS4-65356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zeipert, H. A1 - Nellius, T. A1 - Schönlau, N. A1 - Wippermann, M. A1 - Claes, L. A1 - Henning, B. A1 - Nicolai, Marcel A1 - Prager, J. T1 - C6-a3 - Monitoring the curing process of adhesive bonds using selective excitation of guided ultrasonic waves N2 - A measurement setup for the selective excitation of guided ultrasonic waves in adhesively bonded plates is introduced. Changes of the dispersive behaviour of the guided waves during the curing process is known to be accompanied by a change in the propagating waves group velocities. The proposed measurement setup is used to monitor that change during the curing process of an aluminium-epoxy-polycarbonate bond. T2 - 2025 ICU PADERBORN - 9th International Congress on Ultrasonics CY - Paderborn, Germany DA - 21.09.2025 KW - Ultrasonic guided waves KW - Selective excitation KW - Non-destructive testing KW - Adhesive bonding KW - Condition monitoring PY - 2025 DO - https://doi.org/10.5162/Ultrasonic2025/C6-a3 SP - 207 EP - 210 PB - AMA Service GmbH AN - OPUS4-65357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dudziak, Mateusz A1 - Riechers, Birte A1 - Maaß, Robert A1 - Michalchuk, Adam A1 - Schönhals, Andreas A1 - Szymoniak, Paulina T1 - Beyond conventional calorimetry: Unlocking thermal characterization with fast scanning techniques N2 - Fast scanning calorimetry (FSC) has emerged as a transformative technique in thermal analysis, enabling the investigation of rapid and kinetically driven thermal transitions that are inaccessible to conventional differential scanning calorimetry. This review highlights the capabilities enabled by FSC for studying a wide range of materials under extreme thermal conditions, including polymers, pharmaceuticals, metallic glasses, nanocomposites, and hydrogels. By employing ultrafast heating and cooling rates, FSC allows for the suppression of crystallization, resolution of weak transitions, and analysis of thermally labile or size-limited samples. The technique is particularly valuable for probing glass transitions, relaxation phenomena, and phase behavior in systems with complex morphologies or confined geometries. Case studies demonstrate the use of FSC in characterizing vitrification, physical aging, and interfacial dynamics, as well as its application in emerging fields such as additive manufacturing, supramolecular systems, and neuromorphic materials. Together, these examples underscore the role that FSC plays in advancing the understanding of structure-property relationships across diverse material classes. KW - Flash DSC KW - Calorimetry KW - Glass transition PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647405 DO - https://doi.org/10.1016/j.tca.2025.180177 VL - 754 SP - 1 EP - 14 PB - Elsevier B.V. AN - OPUS4-64740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kossatz, Philipp A1 - Mezhov, Alexander A1 - Andresen, Elina A1 - Prinz, Carsten A1 - Schmidt, Wolfram A1 - Resch-Genger, Ute T1 - Assessing the Applicability of Lanthanide-Based Upconverting Nanoparticles for Optically Monitoring Cement Hydration and Tagging Building Materials N2 - Chemically stable, lanthanide-based photon upconversion micro- and nanoparticles (UCNPs) with their characteristic multicolor emission bands in the ultraviolet (UV), visible (vis), near-infrared (NIR), and short-wave infrared (SWIR) arepromising optical reporters and barcoding tags. To assess the applicability of UCNPs for the monitoring of early stage cement hydration processes and as authentication tags for cementitious materials, we screened the evolution of the luminescence of Selfmade core-only NaYF4:Yb,Er UCNPs and commercial μm-sized Y2O2S:Yb,Er particles during the first stages of cement hydration, which largely determines the future properties of the hardened material. Parameters explored from the UCNP side included particle size, morphology, surface chemistry or coating, luminescence properties, and concentration in different cement mixtures. From the cement side, the influence of the mineral composition of the cement matrix was representatively examined for ordinary Portland cement (OPC) and its constituents tricalcium aluminate (C3A), tricalcium silicate (C3S), and gypsum at different water to cement ratios. Based on reflection and luminescence measurements, enabling online monitoring, which were complemented by XRD and isothermal heat-flow calorimetric measurements to determine whether the incorporation of these particles could impair cement hydration processes, well suited lanthanide particle reporters could be identified as well as application conditions. In addition, thereby the reporter influence on cement hydration kinetics could be minimized while still preserving a high level of information content. The best performance for the luminescence probing of changes during early stage cement hydration processes was observed for 25 nm-sized oleate (OA)-coated UCNPs added in a concentration of 0.1 wt %. Higher UCNP amounts of 1.0 wt % delayed cement hydration processes size- and surface coatingspecifically in the first 24 h. Subsequent luminescence stability screening studies performed over a period of about one year support the applicability of UCNPs as optical authentication tags for construction materials. KW - Quality assurance KW - Fluorescence KW - Nano KW - Particle KW - Synthesis KW - Quantum yield KW - NIR KW - Mechanism KW - Characterization KW - XRD KW - Calorimetry KW - Advanced material KW - Cement KW - Monitoring KW - Surface KW - Size KW - Lifetime KW - Barcode KW - Lanthanide KW - Upconversion KW - Encoding KW - Method PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-638318 DO - https://doi.org/10.1021/acsomega.5c02236 SN - 2470-1343 VL - 10 IS - 29 SP - 31587 EP - 31599 PB - ACS Publications CY - Washington, DC AN - OPUS4-63831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus T1 - Semantic Technologies in Action: Integrating Mechanical and Microstructure Data in MSE N2 - Semantic technologies (ST) are a powerful tool for storing, processing, and querying data in a contextualized and interoperable manner. They enable machine-actionable and human-readable knowledge representations essential for advanced data management, retrieval, and reuse. As one of the key factors within the frame of the collaborative project platform MaterialDigital (PMD), the establishment of a virtual material data space and the semantic modeling of hierarchical, process-dependent material data is aimed at to serve as best-practice examples of knowledge representation through ontologies and knowledge graphs. In this presentation, the application of ST to a specific use case from the field of materials sciences and engineering (MSE) is demonstrated: the integration and analysis of data related to a 2000 series age-hardenable aluminum alloy. By semantically representing mechanical and microstructural data obtained from tensile tests and dark-field transmission electron microscopy across various aging times, an expandable knowledge graph was constructed that is aligned with the PMD Core Ontology (PMDco) and enriched through the Tensile Test (TTO) and Precipitate Geometry Ontologies. This semantically integrated dataset enables advanced analytical capabilities via SPARQL queries and reveals microstructure–property relationships consistent with the well-known Orowan mechanism. The approach highlights the potential of semantic data integration to support FAIR data principles and to foster a more data-centric and interoperable research infrastructure in MSE. T2 - MSE Research Data Forum 2025 CY - Siegburg, Germany DA - 08.07.2025 KW - Semantic Data KW - Data Integration KW - Digitalization KW - Data Interoperability PY - 2025 AN - OPUS4-63666 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oskoei, Párástu A1 - Afonso, Rúben A1 - Bastos, Verónica A1 - Nogueira, João A1 - Keller, Lisa-Marie A1 - Andresen, Elina A1 - Saleh, Maysoon I. A1 - Rühle, Bastian A1 - Resch-Genger, Ute A1 - Daniel-da-Silva, Ana L. A1 - Oliveira, Helena T1 - Upconversion Nanoparticles with Mesoporous Silica Coatings for Doxorubicin Targeted Delivery to Melanoma Cells N2 - Melanoma is one of the most aggressive skin cancers and requires innovative therapeutic strategies to overcome the limitations of conventional therapies. In this work, upconversion nanoparticles coated with mesoporous silica and functionalized with folic acid (UCNP@mSiO2-FA) were developed as a targeted nanocarrier system for the delivery of doxorubicin (DOX). The UCNPs were synthesized via thermal decomposition, coated with mesoporous silica shells, and functionalized with folic acid (FA) to enable receptor-mediated targeting. DOX was then loaded into the mesoporous silica coating by adsorption, yielding UCNP@mSiO2-FA-DOX. The different UCNPs were characterized for size, composition, colloidal stability, and loading and release of DOX. This comprehensive physicochemical characterization confirmed a high DOX loading efficiency and a slightly increased drug release under acidic conditions, mimicking the tumour microenvironment. In vitro assays using four melanoma cell lines (A375, B16-F10, MNT-1, and SK-MEL-28) revealed an excellent biocompatibility of UCNP@mSiO2-FA and a significantly higher cytotoxicity of UCNP@mSiO2-FA-DOX compared to unloaded UCNPs, in a dose-dependent manner. Cell cycle analysis demonstrated G2/M phase arrest after treatment with UCNP@mSiO2-FA-DOX, confirming its antiproliferative effect. Overall, UCNP@mSiO2-FA-DOX represents a promising nanoplatform for targeted melanoma therapy, combining active tumour targeting and enhanced anticancer efficacy. KW - Fluorescence KW - Synthesis KW - Nano KW - Particle KW - Silica KW - Cell KW - Uptake KW - Drug KW - Characterization KW - DOX KW - Imaging KW - Toxicity KW - Release KW - pH PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653596 DO - https://doi.org/10.3390/molecules31010074 SN - 1420-3049 VL - 31 IS - 1 SP - 1 EP - 18 PB - MDPI AG AN - OPUS4-65359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madbouly, Loay Akmal T1 - Chemical analysis of commercial functionalized graphene along the production process N2 - Graphene has been commercialized for over a decade. For many applications like flexible electronics, coating of different materials like paper or for textiles, it used in the form of suspensions or inks. Functionalization enables tailoring the properties of graphene, such as the sheet resistance. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy are used to characterize the chemical composition of graphene flakes, functionalized and otherwise. In this study, we investigate the following set of commercial materials: fluorine-functionalized graphene (F-graphene) and nitrogen-functionalized graphene (N-graphene) as well as unfunctionalized graphene (G-graphene, as the starting material) in the forms of powders, suspensions, and inks, the latter as the final commercial product. Raman spectroscopy and XPS are complementary techniques. Our results obtained from Raman spectroscopy confirmed the existence of graphene structures in all samples investigated and provided a comparative insight on the structural defects between samples. XPS was used to investigate the chemical states of elements in graphene, such as sp2 and sp3 hybridization states of carbon, as well as the chemical effect of functionalization on graphene. High resolution XPS analysis was performed for C 1s, F 1s and N 1s core-levels for all the graphene samples. The XPS results showed the elemental composition and the impurities of each sample. All powders showed less presence of carboxyl groups, compared to their respective suspensions and inks. F-functionalized suspension and inks showed a significant decrease in the at-% of fluorine relative to the powder. These valuable insights, particularly when correlated, allowed the tracking of the structural and chemical changes of graphene along its production process. T2 - 3rd FUB Nano Colloquium CY - Berlin, Germany DA - 15.07.2025 KW - Functionalized graphene KW - Graphene-related 2D materials (GR2M) KW - Raman Spectroscopy KW - XPS KW - Inks PY - 2025 AN - OPUS4-64116 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madbouly, Loay Akmal A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Raman Spectroscopy and X-ray Photoelectron Spectroscopy of Commercial Functionalized Graphene N2 - Graphene has found widespread commercial use, particularly in flexible electronics and coatings for substrates such as paper and textiles, in the form of suspensions and inks (Zhang et al., 2017). Functionalization of graphene allows fine-tuning of properties like electrical conductivity. Structural and chemical features of graphene materials are typically analyzed by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). While Raman spectroscopy plays a critical role in identifying the presence of graphene and characterizing its structural defects (Pollard et al., 2017), XPS examines the chemistry of graphene. This study investigates three types of graphene materials — graphene (unfunctionalized, G-graphene), fluorine-functionalized graphene (F-graphene), and nitrogen-functionalized graphene (N-graphene) — across three physical forms: powders, suspensions, and embedded in inks. Functionalization was performed via plasma treatment of G-graphene with fluorine or ammonia gases. Suspensions were obtained by dispersing powders in distilled water, while inks were formulated using diacetone alcohol, carbon black, and graphene. Raman spectroscopy analysis confirmed the graphitic nature of all materials and revealed differences in defect density across different forms. The characteristic D, G, and D’ bands varied in relative intensity, offering insight into structural integrity and functionalization effects. XPS measurements examined core-level spectra (C 1s, F 1s, N 1s), revealing chemical bonding environments and hybridization states, including the sp² and sp³ states. A notable decline in fluorine content in F-graphene suspensions and inks, relative to powders, was observed. Existence of organic fluorine and total absence of metallic fluorine were observed. Raman spectroscopy and XPS data provided a correlated view of structural and chemical evolution through the graphene production chain. T2 - Joint Regulatory Risk Assessors Summit – Advancing Safety & Sustainability Assessments of Advanced Materials CY - Paris, France DA - 19.06.2025 KW - Graphene-related 2D materials (GR2M) KW - Inks KW - Raman Spectroscopy KW - XPS KW - Functionalized graphene PY - 2025 UR - https://macrame-project.eu/macrame-meetings-workshops/jointrras/#Agenda AN - OPUS4-63661 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Tamang, S. A1 - Wegner, Karl David A1 - Reiss, P. ED - Alivisatos, P. ED - Jang, E. ED - Ma, R. T1 - Quantum Dot Material Systems, Compositional Families N2 - Following the discovery of the quantum confinement effect in the early 1980s, it took more than 10 years to be able to synthesize monodisperse colloidal quantum dots (QDs) using organometallic chemistry approaches. The researchers behind these pioneering works, Alexey Ekimov, Louis Brus, and Moungi Bawendi, were awarded the Nobel Prize in Chemistry in 2023, exactly 30 years after the seminal report on the preparation of cadmium chalcogenide QDs. From the synthetic point of view, this approach, relying on the fast injection of a chalcogenide precursor dissolved in a tertiary phosphine into a hot solution of the cadmium precursor in a coordinating solvent (trioctylphosphine oxide, TOPO) acting at the same time as surface ligand, was revolutionary. It enabled the fast synthesis of wellcrystallized CdS, CdSe, and CdTe QDs of low size dispersion and high colloidal stability, whose size and hence optical and electronic properties could be conveniently tuned with the reaction time. Due to the comparable ease of this method and the later developed shelling procedures with ZnS, ZnSe, CdS, and mixtures or alloys of these materials, CdSe has become the workhorse for the entire QD field, covering the whole visible range of absorption and emission. Meanwhile, several breakthroughs have been achieved, which enabled us to bring QDs to their maturity of today and integrate them in several applications, in particular those relying on their exceptional luminescence properties, such as biological imaging as well as displays and screens. For such real-life applications, the quest for less toxic, safer-to-use, and environmentally friendly materials is of utmost importanceand a highly active research field. The use of cadmium- and lead-based materials is severely restricted by regulations such as the RoHS directive of the European Union: the maximum concentrations of lead and cadmium are 0.1 and 0.01% by weight, respectively, in all homogeneous materials in electrical and electronicequipment. Several families of alternative materials have been explored, with the most important ones for display technologies being indium phosphide (InP)- and ternary chalcopyrite-type QDs. KW - Quantum dots KW - Photoluminescence KW - LED KW - Display technology PY - 2025 SN - 978-1-394-18187-2 SP - 23 EP - 62 PB - John Wiley & Sons Ltd. AN - OPUS4-64675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Döring, Sarah A1 - Wulfes, Birte S. A1 - Atanasova, Aleksandra A1 - Jaeger, Carsten A1 - Walzel, Leopold A1 - Tscheuschner, Georg A1 - Flemig, Sabine A1 - Gawlitza, Kornelia A1 - Feldmann, Ines A1 - Konthur, Zoltán A1 - Weller, Michael G. T1 - Corundum Particles as Trypsin Carrier for Efficient Protein Digestion N2 - Reusable enzyme carriers are valuable for proteomic workflows, yet many supports are expensive or lack robustness. This study describes the covalent immobilization of recombinant trypsin on micrometer-sized corundum particles and assesses their performance in protein digestion and antibody analysis. The corundum surface was cleaned with potassium hydroxide, silanized with 3-aminopropyltriethoxysilane and activated with glutaraldehyde. Recombinant trypsin was then attached, and the resulting imines were reduced with sodium cyanoborohydride. Aromatic amino acid analysis (AAAA) estimated an enzyme loading of approximately 1 µg/mg. Non-specific adsorption of human plasma proteins was suppressed by blocking residual aldehydes with a Tris-glycine-lysine buffer. Compared with free trypsin, immobilization shifted the temperature optimum from 50 to 60 °C and greatly improved stability in 1 M guanidinium hydrochloride. Activity remained above 80 % across several reuse cycles, and storage at 4 °C preserved functionality for weeks. When applied to digesting the NISTmAb, immobilized trypsin provided peptide yields and sequence coverage comparable to soluble enzyme and outperformed it at elevated temperatures. MALDI-TOF MS analysis of Herceptin digests yielded fingerprint spectra that correctly identified the antibody and achieved >60 % sequence coverage. The combination of low cost, robustness and analytical performance makes corundum-immobilized trypsin an attractive option for research and routine proteomic workflows. KW - Aluminum oxide KW - Mass spectrometry KW - Enzyme immobilization KW - Antibodies KW - Protein quantification PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647944 DO - https://doi.org/10.20944/preprints202510.2002.v1 SP - 1 EP - 22 PB - Preprints.org AN - OPUS4-64794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahmed, A. A. A. A1 - Alegret, N. A1 - Almeida, B. A1 - Alvarez-Puebla, R. A1 - Andrews, A. M. A1 - Ballerini, L. A1 - Barrios-Capuchino, J. J. A1 - Becker, C. A1 - Blick, R. H. A1 - Bonakdar, S. A1 - Chakraborty, I. A1 - Chen, X. A1 - Cheon, J. A1 - Chilla, G. A1 - Conceicao, A. L. C. A1 - Delehanty, J. A1 - Dulle, M. A1 - Efros, A. L. A1 - Epple, M. A1 - Fedyk, M. A1 - Feliu, N. A1 - Feng, M. A1 - Fernandez-Chacon, R. A1 - Fernandez-Cuesta, I. A1 - Fertig, N. A1 - Förster, S. A1 - Garrido, J. A. A1 - George, M. A1 - Guse, A. H. A1 - Hampp, N. A1 - Harberts, J. A1 - Han, J. A1 - Heekeren, H. R. A1 - Hofmann, U. G. A1 - Holzapfel, M. A1 - Hosseinkazemi, H. A1 - Huang, Y. A1 - Huber, P. A1 - Hyeon, T. A1 - Ingebrandt, S. A1 - Ienca, M. A1 - Iske, A. A1 - Kang, Y. A1 - Kasieczka, G. A1 - Kim, D.-H. A1 - Kostarelos, K. A1 - Lee, J.-H. A1 - Lin, K.-W. A1 - Liu, S. A1 - Liu, X. A1 - Liu, Y. A1 - Lohr, C. A1 - Mailänder, V. A1 - Maffongelli, L. A1 - Megahed, S. A1 - Mews, A. A1 - Mutas, M. A1 - Nack, L. A1 - Nakatsuka, N. A1 - Oertner, T. G. A1 - Offenhäusser, A. A1 - Oheim, M. A1 - Otange, B. A1 - Otto, F. A1 - Patrono, E. A1 - Peng, B. A1 - Picchiotti, A. A1 - Pierini, F. A1 - Pötter-Nerger, M. A1 - Pozzi, M. A1 - Pralle, A. A1 - Prato, M. A1 - Qi, B. A1 - Ramos-Cabrer, P. A1 - Resch-Genger, Ute A1 - Ritter, N. A1 - Rittner, M. A1 - Roy, S. A1 - Santoro, F. A1 - Schuck, N. W. A1 - Schulz, F. A1 - Seker, E. A1 - Skiba, M. A1 - Sosniok, M. A1 - Stephan, H. A1 - Wang, R. A1 - Wang, T. A1 - Wegner, Karl David A1 - Weiss, P. S. A1 - Xu, M. A1 - Yang, C. A1 - Zargarin, S. S. A1 - Zeng, Y. A1 - Zhou, Y. A1 - Zhu, D. A1 - Zierold, R. A1 - Parak, W. J. T1 - Interfacing with the Brain: How Nanotechnology Can Contribute N2 - Interfacing artificial devices with the human brain is the central goal of neurotechnology. Yet, our imaginations are often limited by currently available paradigms and technologies. Suggestions for brain−machine interfaces have changed over time, along with the available technology. Mechanical levers and cable winches were used to move parts of the brain during the mechanical age. Sophisticated electronic wiring and remote control have arisen during the electronic age, ultimately leading to plug-and-play computer interfaces. Nonetheless, our brains are so complex that these visions, until recently, largely remained unreachable dreams. The general problem, thus far, is that most of our technology is mechanically and/or electrically engineered, whereas the brain is a living, dynamic entity. As a result, these worlds are difficult to interface with one another. Nanotechnology, which encompasses engineered solid-state objects and integrated circuits, excels at small length scales of single to a few hundred nanometers and, thus, matches the sizes of biomolecules, biomolecular assemblies, and parts of cells. Consequently, we envision nanomaterials and nanotools as opportunities to interface with the brain in alternative ways. Here, we review the existing literature on the use of nanotechnology in brain−machine interfaces and look forward in discussing perspectives and limitations based on the authors’ expertise across a range of complementary disciplines from neuroscience, engineering, physics, and chemistry to biology and medicine, computer science and mathematics, and social science and jurisprudence. We focus on nanotechnology but also include information from related fields when useful and complementary. KW - Nanoneuro interface KW - Brain-on-a-chip KW - Nanostructured interface KW - Electrode arrays KW - Neuro-implants KW - Advanced nanomaterials KW - Quality assurance PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634893 DO - https://doi.org/10.1021/acsnano.4c10525 SN - 1936-086X VL - 19 IS - 11 SP - 10630 EP - 10717 PB - ACS Publications AN - OPUS4-63489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Dahshan, O. A1 - Deniaud, A. A1 - Ling, W. L. A1 - Wegner, Karl David A1 - Proux, O. A1 - Veronesi, G. A1 - Reiss, P. T1 - Hydrothermal microwave synthesis of water soluble NIR-II emitting Ag2S quantum dots N2 - Hydrothermal-based synthetic methods of quantum dots allow for the exploration of reaction parameters normally inaccessible to typical aqueous-based batch reactions, such as elevated reaction temperatures (>100 °C) and reaction pressures above atmospheric pressure. Coupled with microwave heating, new instantaneously bio-compatible quantum dots (QDs) with enhanced opitcal properties can be yielded. As of today, aqueous-based synthetic methods often lag behind their organic analogues in terms of the photophysical properties of the QDs obtained and the ease of modulation of both the emission wavelength and crystallite size. Using a novel microwave-assisted hydrothermal approach, the synthesis of silver sulphide (Ag2S) QDs exhibiting NIR emission spanning the biological transparency windows via modulation of the reaction parameters has been developed. The intrinsic link between their optical and structural properties is explored via laboratory and synchrotron-based structural analysis techniques. Their toxicity towards a hepatic cell line was assessed, and related back to their structure and size. Overall this work aims to not only further develop the repertoire of synthetic methods for the synthesis of Ag2S QDs, but also paves the way for the development of safer QDs suitable for future clinical applications. KW - Quantum dots KW - Microwave synthesis KW - Quality assurance KW - NIR-II emission KW - PL quantum yield KW - Ag2S PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634825 DO - https://doi.org/10.1039/d5nr00052a SN - 2040-3372 VL - 17 IS - 24 SP - 14637 EP - 14646 PB - RSC AN - OPUS4-63482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nakadi, Flavio V. T1 - Single-event analysis of discrete entities using microwave-induced nitrogen plasma–mass spectrometry N2 - ICP-MS has become a standard for (ultra)trace elemental analysis due to its excellent sensitivity and multi-element capabilities. However, its widespread use is hampered by spectral interferences—especially in the low mass range (<81 amu)—primarily arising from Ar-based polyatomic ions, such as ArO+ and Ar2+, which compromise the accurate quantification of key elements like Fe and Se.1 Over the years, improvements such as collision/reaction cells and sector-field configurations have helped mitigate these interferences, albeit often at the cost of instrument complexity and increased operational burden.The microwave-induced nitrogen plasma (MINP) source, sustained by microwaves at atmospheric pressure and using nitrogen as the plasma gas, offers a fundamentally different plasma environment. Nitrogen is not only more economical (40-60%) and readily available than Ar, but also avoids the generation of problematic Ar-based interferences. While MINP had been previously applied in optical emission and bulk mass spectrometry,2 its implementation in single-event detection had not yet been demonstrated. This study pioneers the application of MINP-MS in single-event mode for real-time, high-throughput characterization of NPs, cells, and MPs. The evaluation began with Fe2O3 NPs monitoring the 56Fe nuclide, with a limit of detection of 8.6 ag for Fe, equivalent to a particle size threshold of 19 nm—surpassing the detection capabilities of quadrupole-based ICP-MS systems. Size distribution results obtained by SP-MINP-MS for Fe2O3 NPs (20–70 nm) matched closely with transmission electron microscopy (TEM) and dynamic light scattering (DLS), confirming the method’s accuracy. For Se, despite its high ionization energy, metallic SeNPs (150 and 250 nm) were reliably quantified by monitoring 80Se. A calibration curve constructed using SeNP standards yielded excellent linearity (R2 = 0.9994). This approach was further extended to single-cell analysis, using Se-enriched yeast (SELM-1 CRM) as a model. A transport efficiency-independent calibration strategy was employed, relying on SeNPs to determine Se content per cell. The results showed strong agreement with data from conventional SC-ICP-MS, with average Se masses of ~65 fg per cell, validating the performance of SC-MINP-MS for biological systems. Additionally, the instrument's capability to handle large, low atomic number particles was demonstrated via the analysis of polystyrene (PS) and polytetrafluoroethylene (PTFE) MPs. These MPs (2.5–3.0 µm) were quantified by monitoring 12C+ signals and applying a calibration strategy using citric acid as a standard. The resulting size distributions closely matched nominal sizes, reinforcing the system’s robustness for micrometer-sized polymeric materials. Event durations ranging from 470 to over 900 µs were consistent with literature values for single-entity ICP-MS and correlated well with particle size. These findings establish single-event MINP-MS as a promising analytical platform for analyzing discrete entities. It provides significant advantages over conventional Ar-based ICP-MS, including reduced interferences, lower operational cost, and comparable or superior sensitivity for analytes such as Fe and Se. By avoiding the limitations of Ar-based plasmas and enabling accurate quantification across a wide range of particle types and sizes, MINP-MS in single-event mode opens new avenues for high-resolution, interference-free elemental analysis at the individual entity level. T2 - 17th Rio Symposium on Atomic Spectrometry (17th RSAS) CY - São Pedro City, Brazil DA - 09.11.2025 KW - MICAP-MS KW - Nitrogen plasma KW - Nanoparticles KW - Cells KW - Microplastic KW - Single particle KW - Single event KW - ICP-MS PY - 2025 AN - OPUS4-64954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Döring, Sarah T1 - Corundum Particles as Trypsin Carrier for Efficient Protein Digestion N2 - This dataset contains raw LC–MS/MS files of trypsin-digested NISTmAb acquired on a SCIEX TripleTOF 6600 mass spectrometer in DIA (SWATH) mode for antibody quantification. In addition, it includes MALDI-TOF MS peptide mass fingerprints of trypsin-digested Herceptin as well as reference spectra that can be used for antibody identification using the open-source software ABID 2.0 (https://bam.de/ABID). The data were generated within a study demonstrating the applicability of corundum-immobilized trypsin for antibody digestion and its suitability for peptide-based LC–MS/MS quantification and MALDI-TOF MS fingerprinting–based antibody identification. KW - NISTmAb KW - Herceptin KW - MALDI-TOF MS peptide mass fingerprint KW - ABID 2.0 PY - 2025 DO - https://doi.org/10.5281/zenodo.17416536 PB - Zenodo CY - Geneva AN - OPUS4-65365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madbouly, Loay Akmal A1 - Sturm, Heinz A1 - Doolin, Alexander A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Chemical Analysis of Commercial Functionalized Graphene Nanoplatelets along the Production Process with Raman Spectroscopy and X-ray Photoelectron Spectroscopy N2 - Commercial applications increasingly rely on functionalized graphene nanoplatelets (GNPs) supplied as powders, aqueous suspensions, and printable inks, yet their process−structure−property relationships across the production chain remain to be fully mapped. Here we apply a correlative Raman spectroscopy (Raman) and X-ray photoelectron spectroscopy (XPS) workflow to nine independent industrial graphene batches spanning three surface chemistries, raw (R), fluorinated (F), and nitrogen-functionalized (N), in all three physical forms which are powders, suspensions, and inks. Raman mapping (with a 532 nm excitation laser) showed that I2D/IG is highest for N samples and lowest for R-ink. A 2D-vs-G correlation places all samples on a trajectory parallel to the pure-doping vector, which can correlate to holes in the graphene lattice. The mean point-defect spacing is LD = 8.4−10.0 nm. High-resolution XPS resolves the accompanying chemical changes: F-powder exhibits distinct C−F (289 eV), C−F2 (292 eV), and C−F3 (293 eV) components and loses roughly half its F content upon dispersion in deionized water or ink formulation; inks of all chemistries show a pronounced O−C=O peak near 289−290 eV originated from the ink compounds. N-functionalized samples showed a prominent C−N (285.5 eV) only for the ink formulated N-functionalized sample. This study establishes a process-aware blueprint linking the functionalization route and formulation step to lattice disorder and surface chemistry, offering transferable quality-control metrics for graphene supply chains in industrial products/applications such as coatings, storage devices, and printed electronics. KW - Functionalized graphene KW - Raman Spectroscopy KW - XPS KW - Chemical analysis PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652548 DO - https://doi.org/10.1021/acs.jpcc.5c06820 SN - 1932-7447 VL - 129 IS - 50 SP - 22033 EP - 22040 PB - American Chemical Society (ACS) AN - OPUS4-65254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madbouly, Loay Akmal T1 - Chemical analysis of commercial functionalized graphene along the production process N2 - Graphene has found widespread commercial use, particularly in flexible electronics and coatings for substrates such as paper and textiles, in the form of suspensions and inks (Zhang et al., 2017). Functionalization of graphene allows fine-tuning of properties like electrical conductivity. Structural and chemical features of graphene materials are typically analyzed by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). While Raman spectroscopy plays a critical role in identifying the presence of graphene and characterizing its structural defects (Pollard et al., 2017), XPS examines the chemistry of graphene. This study investigates three types of graphene materials — graphene (unfunctionalized, G-graphene), fluorine-functionalized graphene (F-graphene), and nitrogen-functionalized graphene (N-graphene) — across three physical forms: powders, suspensions, and embedded in inks. Functionalization was performed via plasma treatment of G-graphene with fluorine or ammonia gases. Suspensions were obtained by dispersing powders in distilled water, while inks were formulated using diacetone alcohol, carbon black, and graphene. Raman spectroscopy analysis confirmed the graphitic nature of all materials and revealed differences in defect density across different forms. The characteristic D, G, and D’ bands varied in relative intensity, offering insight into structural integrity and functionalization effects. XPS measurements examined core-level spectra (C 1s, F 1s, N 1s), revealing chemical bonding environments and hybridization states, including the sp² and sp³ states. A notable decline in fluorine content in F-graphene suspensions and inks, relative to powders, was observed. Existence of organic fluorine and total absence of metallic fluorine were observed. Raman spectroscopy and XPS data provided a correlated view of structural and chemical evolution through the graphene production chain (Figure 1). T2 - RamanFest 2025 CY - Frankfurt, Germany DA - 02.07.2025 KW - Functionalized graphene KW - Graphene-related 2D materials (GR2M) KW - Raman Spectroscopy KW - XPS KW - Inks PY - 2025 AN - OPUS4-64114 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madbouly, Loay Akmal T1 - Raman Spectroscopy and X-ray Photoelectron Spectroscopy of Commercial Functionalized Graphene N2 - Graphene has been commercialized for over a decade. For many applications like flexible electronics, coating of different materials like paper or for textiles, it used in the form of suspensions or inks [1]. Graphene powders are typically used as the starting material for the synthesize of graphene suspensions and graphene inks. Functionalization enables tailoring the properties of graphene, such as the sheet resistance. X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, along other techniques are used to characterize graphene flakes, functionalized and otherwise. Raman spectroscopy is necessary as a primary step to validate the existence of graphene structure in graphene powders [2]. XPS is commonly used to investigate the elemental composition, including impurities, and the chemical structure of graphene. In this study, we investigate the following set of commercial materials: fluorine-functionalized graphene (F-graphene) and nitrogen-functionalized graphene (N-graphene) as well as unfunctionalized graphene (G-graphene) in the forms of powders, suspensions, and inks. The functionalization process for the graphene powder was carried out in a plasma reactor by purging fluorine and ammonia gases, in separate processes, over the G-graphene powder. The suspensions were prepared by adding distilled water to the powders. The inks consist of diacetone alcohol, carbon black, and graphene powders. Raman spectroscopy and XPS are complementary techniques. Our results obtained from Raman spectroscopy confirmed the existence of graphene structures in all samples and provided a comparative insight on the structural defects between samples. XPS was used to investigate the chemical states of elements in graphene, such as sp2 and sp3 hybridization states of carbon, as well as the chemical effect of functionalization on graphene. High resolution XPS analysis was performed for C 1s, F 1s and N 1s core-levels for all the graphene samples: G-graphene, F-graphene, and N-graphene, in all forms. The XPS results showed the elemental composition and the impurities of each sample. All powders showed less presence of carboxyl groups, compared to their respective suspensions and inks. F-functionalized suspension and inks showed a significant decrease in the at% of fluorine relative to the powder. These valuable insights, independent and when correlated, allowed the tracking of the structural and chemical changes of graphene along its production process. T2 - E-MRS 2025 CY - Strasbough, France DA - 26.05.2025 KW - Functionalized graphene inks PY - 2025 AN - OPUS4-64113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scholtz, Lena T1 - Luminescent, Semiconductor Nanoparticle-Loadedpolymer Microbeads–Comparingparticlearchitectures N2 - Luminescent polymer microparticles (PMPs) are applied in various (bio)analytical and diagnostic processes.[1] The staining of these beads is important for the realization of optically distinguishable barcodes that can be read out, e.g., by a flow cytometer or fluorescence microscope. Typically, luminescent semiconductor nanoparticles (NPs) absorb in a broad wavelength range and show narrow emission bands, which enables simultaneous excitation of differently colored luminophores and facilitates a spectral discrimination.[1] This makes them ideal candidates for this purpose and encouraged us to explore and develop a simple, effective approach to luminescent semiconductor NP encoding of polystyrene PMPs and identify suitable synthesis conditions.[2] Until now, mainly semiconductor quantum dots (QDs) have been used for the synthesis of luminescent PMPs, although NPs with different shapes could introduce beneficial new features. Aiming for the application of our developed procedure to non-spherical NPs, we systematically investigated the luminescence properties of the resulting NP-stained beads using fluorescence and integrating sphere spectroscopy as well as fluorescence and electron microscopy. These studies showed that the suitability of semiconductor NPs for the synthesis of luminescent PMPs depends not only on their shape, but also heavily on their surface chemistry.[3] The successful incorporation of nonspherical NPs opens the path to include even more NPs, and the results can help to deduce future applications for the beads which best suit their specific properties. T2 - E-MRS Fall Meeting 2025 CY - Warsaw, Poland DA - 15.09.2025 KW - Quality assurance KW - Fluorescence KW - Nano KW - Particle KW - Synthesis KW - Quantum dot KW - Quantum rod KW - Platelet KW - Quantum yield KW - Polymer particle KW - Encoding KW - Surface chemistry KW - Mechanism KW - Characterization KW - Lifetime KW - Barcode KW - Polymerization KW - Method PY - 2025 AN - OPUS4-64242 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wegner, Karl David T1 - Ag₂S nanocrystals as next-generation, heavy-metal free SWIR emitter for biomedical imaging and sensing applications N2 - There is a growing interest in the exploitation of the short-wave infrared (SWIR), which refers to the wavelength band of light between 900 nm and 2500 nm. Luminophores that emit in the SWIR are used in various areas of telecommunications, photovoltaics, security systems (night vision), and in biomedicine. In particular for biomedical applications, the SWIR range is highly promising because light scattering, absorption, and autofluorescence of tissue and biological compounds are strongly reduced compared to the visible (400–700 nm) and NIR (~700–900 nm). The benefits of SWIR-emissive QDs have been demonstrated for a variety of applications, such as in thermal sensing, as photoelectrochemical biosensor, in in vivo vascular imaging, and for fluorescence-guided surgery. Full exploitation of SWIR photoluminescence (PL) imaging and sensing is currently hampered by i.) a lack of suitable advanced nanomaterials with a high PL quantum yield (PL QY) and a high brightness, that can be used safely in vivo and ii.) a lack of quantitative and reliable data on the optical properties of many SWIR emitters. Promising nanomaterials for the SWIR are heavy metal-free Ag2S quantum dots (QDs). Aiming for the development of SWIR advanced nanomaterials with optimum performance, we have dived deeper into the photophysical processes occurring in these nanomaterials, thereby exploring in depth how the environment such as temperature, surface ligand composition, and the incorporation of transition metals influence the optical properties Ag2S QDs. We observed a strong enhancement of the SWIR emission of upon addition of metal ions such as Zn2+, yielding PL quantum yields of about 10% and thus making them highly suitable for non-invasive deep imaging of vascular networks and 3D fluid flow mapping. T2 - Shining a light on biomedical and energy applications (Shift) CY - Tenerife, Spain DA - 13.10.2025 KW - Quantum dots KW - Short-wave infrared KW - SWIR KW - Spectroscopy KW - Photoluminescence KW - Quantum yield PY - 2025 AN - OPUS4-64673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nicolai, Marcel T1 - Investigation of lamb wave mode repulsion with a spring-based model N2 - Lamb waves are widely utilized in material characterization, non-destructive testing (NDT), and structural health monitoring (SHM). A unique feature of Lamb waves is mode repulsion, where dispersion curves approach each other but do not cross. This phenomenon is observed in both single and multilayer plates and is influenced by wave coupling. While mode repulsion in single plates has been linked to symmetry-breaking effects, its underlying mechanism in multilayer systems remains unclear. This study investigates mode repulsion in a coupled aluminum-polycarbonate plate system using a spring-based interface model. Dispersion curves are computed via the Scaled Boundary Finite Element Method, and time-domain simulations are used to analyze the interface dynamics. Results indicate that repulsion depends on interface stiffness, distinguishing between opening and closing repulsion regions. The study further reveals that mode repulsion corresponds to distinct oscillatory behaviors in the interface, where certain wave modes induce increased coupling spring elongation, leading to localized strain. A coupled harmonic oscillator model effectively explains opening repulsion regions but does not fully capture closing regions. Findings suggest that mode repulsion could be leveraged for non-destructive evaluation of adhesive interfaces, offering insights into bond strength characterization. This research contributes to a deeper understanding of wave interactions in multilayer structures and provides a theoretical foundation for advancing NDT and SHM techniques. T2 - 2025 ICU PADERBORN - 9th International Congress on Ultrasonics CY - Paderborn, Germany DA - 21.09.2025 KW - Lamb waves KW - Mode repulsion KW - Coupled plates KW - Elastic interface KW - Dispersion curves PY - 2025 AN - OPUS4-65531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Sokolowski‐Tinten, Klaus T1 - Probing Laser‐Driven Structure Formation at Extreme Scales in Space and Time N2 - Irradiation of solid surfaces with high intensity, ultrashort laser pulses triggers a variety of secondary processes that can lead to the formation of transient and permanent structures over a large range of length scales from mm down to the nano‐range. One of the most prominent examples are LIPSS – Laser‐Induced Periodic Surface Structures. While LIPSS have been a scientific evergreen for of almost 60 years, experimental methods that combine ultrafast temporal with the required nm spatial resolution have become available only recently with the advent of short pulse, short wavelength free electron lasers. Here, the current status and future perspectives in this field are discussed by exploiting the unique possibilities of these 4th‐generation light sources to address by time‐domain experimental techniques the fundamental LIPSS‐question, namely why and how laser irradiation can initiate the transition of a “chaotic” (rough) surface from an aperiodic into a periodic structure. KW - Laser-induced periodic surface structures (LIPSS) KW - Free electron laser KW - Pump-probe experiments KW - Time-resolved scattering KW - Capillary waves PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595048 DO - https://doi.org/10.1002/lpor.202300912 SN - 1863-8899 VL - 18 SP - 1 EP - 11 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-59504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard T1 - Trinamic TMCL IOC for exposing Trinamics motor controllers to EPICS CA N2 - Trinamic TMCL IOC is a Python package designed for controlling stepper motors connected to a Trinamic board using the TMCL language (all boards supported by PyTrinamic should now work, has been tested on the TMCM 6110 and the TMCM 6214). Since it is implementing the TMCL protocol, it should be easy to adapt to other Trinamic motor controller boards. This package assumes the motor controller is connected over a machine network via a network-to-serial converter, but the underlying PyTrinamic package allows for other connections too. This allows the control of attached motors via the EPICS Channel-Access virtual communications bus. If EPICS is not desired, plain Pythonic control via motion_control should also be possible. An example for this will be provided in the example.ipynb Jupyter notebook. This package leverages Caproto for EPICS IOCs and a modified PyTrinamic library for the motor board control, and interfaces between the two via an internal set of dataclasses. Configuration for the motors and boards are loaded from YAML files (see tests/testdata/example_config.yaml). The modifications to PyTrinamic involved extending their library with a socket interface. This was a minor modification that should eventually find its way into the official package (a pull request has been submitted). KW - Instrumentation KW - Motor controller KW - EPICS KW - Channel access KW - Instrument control KW - Laboratory automation PY - 2024 DO - https://doi.org/10.5281/zenodo.10792593 PB - Zenodo CY - Geneva AN - OPUS4-59624 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ermilova, Elena A1 - Hertwig, Andreas A1 - Döhring, Thorsten A1 - Stanik, Eva A1 - Cotroneo, Vincenzo A1 - Gibertini, Eugenio T1 - Ellipsometrical characterization of poly-dopamine layers considered for technical applications N2 - Although the organic molecule dopamine (3,4-dihydroxyphenethylamine) is commonly known as the “hormone of happiness”, thin films of poly-dopamine also have interesting technical properties. When produced by dip coating, the self-organizing layers grow in a reproducible thickness of single or multiple molecule monolayers of a few nanometer thickness only. In this work, we introduce a method of determining the layer thickness of poly-dopamine on mirrors for astronomical X-ray telescopes. This work is based on spectroscopic ellipsometry measurements and involves the development of an optical model for the poly-dopamine layers including the dielectric function. Thereby the complex refractive index of the produced layers was determined, covering the range from the ultraviolet to the near infrared spectral region. These measurement results and the corresponding technical challenges are presented in this contribution. Furthermore, an outlook to potential technical applications of this interesting material is given and poly-dopamine layers will make scientist and engineers hopefully happy as an innovative and fascinating technical solution for the future. T2 - SPIE PHOTONICS EUROPE CY - Strasbourg. France DA - 08.04.2024 KW - Polydopamine KW - Thin Solid Layers KW - X-ray optics KW - Spectroscopic Ellipsometry PY - 2024 SN - 978-1-5106-7344-1 DO - https://doi.org/10.1117/12.3015281 VL - 13013 SP - 1 EP - 8 PB - SPIE digital library AN - OPUS4-60954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Omar, Hassan A1 - Hertwig, Andreas A1 - Szymoniak, Paulina A1 - Schönhals, Andreas T1 - Signature of the Adsorbed Layer on the glass transition of thin polymer Films: Broadband Dielectric spectroscopy and related techniques N2 - In well annealed thin polymer films with non-repulsive polymer/substrate interaction with a substrate an irreversibly adsorbed layer is expected to form. These adsorbed layers have shown a great potential for technological applications [1]. However, the growth kinetics and the molecular mobility of the adsorbed layer is still not fully understood. This concerns also the influence of the adsorbed layer on the thickness dependence of the glass transition temperature of thin films. This is partly due to the difficult accessibility of these layers in thin films. Here, the irreversibly adsorbed layers of semi-rigid mail chain polymers like polycarbonate or polysulfone are revealed by solvent-leaching experiments. First, the growth kinetics of these layers is investigated as a function of annealing time. The film thickness, topography and the quality of the adsorbed layer is controlled by Atomic Force Microscopy (AFM). Secondly, the molecular mobility of the adsorbed layer is investigated by Broadband Dielectric Spectroscopy (BDS). A developed nanostructured capacitor arrangement is employed to measure the layer with a free surface. In addition to the dielectric experiments, spectroscopic Ellipsometry measurements are carried out to estimate the glass transition of the thin films. The thickness dependence of the glass transition of the thin films is correlated with the adsorbed layer [2,3]. Acknowledgments D. Hülagü and G. Hidde thanked for the help with the ellipsometry measurements. T2 - 12. Conference on Broabband Dielectric Spectroscopy and its Application CY - Lisbon, Portugal DA - 01.09.2024 KW - Thin films PY - 2024 AN - OPUS4-60959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wegner, Karl David A1 - Hildebrandt, N. T1 - Near infrared quantum dots for biosensing and bioimaging N2 - Quantum dots (QDs) possess unique optoelectronic properties, which make them very attractive to be used as optical probes in biosensing and bioimaging applications. The strong absorbance and light scattering of biological compounds like tissue and blood in the visible range pose a problem. However, if optical probes emitting in the near-infrared (NIR) range are used, scattering, absorption, and autofluorescence of biological components are strongly reduced. This allows for an increased light penetration depth and higher spatial and temporal resolution for the investigation of biological processes. The synthesis and application of NIR emitting QDs is a fast-growing research field and the benefits of using QDs were demonstrated for a variety of applications, such as photoelectrochemical biosensor, in vivo vascular imaging, and fluorescence-guided surgery. This article reviews the state-of-the-art developments in the preparation of NIR/IR QDs and highlights the latest research about their utilization in biosensing and bioimaging applications. KW - Quantum dots KW - Near-infrared KW - Biosensing KW - Bioimaging KW - NIR-II / SWIR KW - Advanced nanomaterials PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-609708 SN - 0165-9936 DO - https://doi.org/10.1016/j.trac.2024.117922 VL - 180 SP - 1 EP - 19 PB - Elsevier B.V. AN - OPUS4-60970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - The Dark Side of Science (2024.v2 edition) N2 - This talk introduces the dark side of science (the ever increasing levels of fraudulent activities in science and scientific publishing). It furthermore explores why the focus on inherently limited metrics drives this phenomenon, and how one can arm themselves against going down this gradient. Tools and tips are presented to enable assessment of other works, and what can be done in general to move away from this. T2 - Informationsmanagement“ im Master Lebensmitteltechnologie CY - Berlin, Germany DA - 26.11.2024 KW - Research fraud KW - Scientific misconduct KW - Literature research KW - Materials science PY - 2024 AN - OPUS4-61792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schardt, Annika A1 - Schmitt, Johannes A1 - Engelhard, Carsten T1 - Single particle inductively coupled plasma mass spectrometry with nanosecond time resolution N2 - In this proof-of-principle study, we present our contribution to single particle inductively coupled plasma mass spectrometry (spICP-MS) developments with a novel in-house built data acquisition system with nanosecond time resolution (nanoDAQ) and a matching data processing approach. The new system can continuously sample the secondary electron multiplier (SEM) detector signal and enables the detection of gold nanoparticles (AuNP) as small as 7.5 nm with the commercial single quadrupole ICP-MS instrument used in this study. Recording of the SEM signal by the nanoDAQ is performed with a dwell time of approximately 4 ns. A tailored method was developed to process this type of transient data, which is based on determining the temporal distance between detector events that is denoted as event gap (EG). We found that the inverse logarithm of EG is proportional to the particle size and that the number of detector events corresponding to a particle signal distribution can be used to calibrate and determine the particle number concentration (PNC) of a nanoparticle dispersion. Due to the high data acquisition frequency, a statistically significant number of data points can be obtained in 60 s or less and the main time limitation for analyses is merely the sample uptake time and rinsing step between analyte solutions. At this stage, the data processing method provides average information on complete data sets only and will be adapted to enable particle-by-particle analysis with future hardware/software revision. KW - ICP-MS KW - Nanoparticles KW - Nanosecond time resolution KW - Single particle detection PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612706 DO - https://doi.org/10.1039/d3ja00373f SN - 1364-5544 SN - 0267-9477 VL - 39 IS - 2 SP - 389 EP - 400 PB - Royal Society of Chemistry (RSC) CY - Cambridge AN - OPUS4-61270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schardt, Annika A1 - Schmitt, Johannes A1 - Engelhard, Carsten T1 - Cover image for the article "Single particle inductively coupled plasma mass spectrometry with nanosecond time resolution" N2 - Image for the front cover of the issue 39(2) of the JAAS (Journal of Analytical Atomic Spectrometry). See Annika Schardt et al., pp. 389–400. Image reproduced by permission of Annika Schardt, Johannes Schmitt and Carsten Engelhard. KW - Analytical chemistry KW - Nanoparticles KW - Single-particle characterization KW - Instrumentation KW - spICP-MS PY - 2024 DO - https://doi.org/10.1039/D4JA90005G SN - 1364-5544 SN - 0267-9477 VL - 39 IS - 2 SP - 295 PB - Royal Society of Chemistry (RSC) CY - Cambridge AN - OPUS4-62156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas T1 - New analytic ways to characterise mesoporous thin layers used in electrocatalytic water splitting N2 - Mesoporous materials are needed in many applications where a high specific surface area and adsorptive behaviour is needed. Important examples are separation techniques and barrier layers and catalysts. Electrochemical water splitting is the key technology for producing green hydrogen and there is no foreseeable alternative to this process for producing elementary hydrogen from green electrical power. Water electrolysis can be divided into the anodic Oxygen Evolution Reaction (OER) and the cathodic Hydrogen Evolution Reaction (HER). Both processes have to be heavily optimised to a large extent to avoid energy losses caused by overvoltage. The development of electrodes for these processes is especially difficult due to the many boundary conditions. Water splitting is a catalytic as well as electrochemical process. The contact area between the electrolyte and the electrode must be maximised maintaining the stability of the surface. Side reactions must be suppressed, and effective gas transport must be ensured. The whole process has to be tolerant with respect to temperature, harsh chemical conditions from the electrolyte as well as high current densities. We present a hybrid analytical method combining several analytical techniques for determining the properties of thin layers of mixed oxides of the general composition Ir:TiOx. These materials are promising candidates for electrocatalytical top coatings of OER electrodes. To lower the costs of the electrolysers, the main goal is to lower the Ir content retaining the system efficiency. The main properties which are hard to determine are the porous volume fraction and the Ir:Ti element ratio. By a combination of electron microscopy, spectroscopic operando ellipsometry, ellipsometric porosimetry, and other techniques, we can determine key features of mesoporous thin layer materials. We aim to develop operando capable techniques used in process monitoring as well as measurement techniques optimised for accuracy. By developing reference materials, we support long term uptake of our methodology. This work can directly be used for optimising electrocatalytic layers and is a good example for the power of hybrid metrology for improving materials design. T2 - International Conference on Resource Chemistry CY - Alzenau, Germany DA - 11.03.2024 KW - Ellipsometry KW - Electrocatalytic Water Splitting KW - Mesoporous Materials KW - Electron Probe Microanalysis KW - Hydrogen Generation PY - 2024 AN - OPUS4-59764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Omar, Hassan T1 - Growth Kinetics and Molecular Mobility of the Adsorbed Layer of Poly(bisphenol-A Carbonate) (PBAC), Polysulfone (PSU), and Poly (2-Vinyl Pyridine) (P2VP) N2 - Interactions between a polymer and a substrate interface play a vital role in understanding the improvement in thin film material properties as well as serving as a model for nanocomposites. For any non-repulsive polymer-substrate interactions, polymer segments form an irreversibly adsorbed layer and show a slowdown in the glassy dynamics and thus an increase in the thermal glass transition temperature compared to the bulk-like values. The growth kinetics of the adsorbed layer showed a deviation for both poly (bisphenol-A carbonate) (PBAC) and polysulfone (PSU), two bulky polymers containing a functional group (phenyl ring) in the backbone, compared to conventional polymers previously studied like poly-2-vinyl pyridine (P2VP). This deviation was attributed to the bulkiness of the phenyl rings. . Further investigations into the influence of the adsorbed layer on glassy dynamics were conducted. The molecular mobility and glass transition for thin films of PBAC and PSU were compared to bulk samples of each polymer. Broadband dielectric spectroscopy, atomic force microscopy, and ellipsometry were primarily used and additionally supported by sum frequency generation spectroscopy. T2 - Deutsche Physikalische Gesellschaft (DPG) Tagung CY - Berlin, Germany DA - 17.03.2024 KW - Thin films KW - Adsorbed Layer KW - Atomic Force Microscopy KW - Ellipsometry KW - Dielectric Spectroscopy PY - 2024 AN - OPUS4-59821 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lindemann, Franziska T1 - Bestimmung der spezifischen Oberfläche mittels Gasadsorption (BET-Verfahren) N2 - Im Rahmen des 2. BAM-Akademie Info-Tages "Nano or not Nano" wurde die OECD TG 124 "Volume Specific Surface Area of Manufactured Nanomaterials" vorgestellt. Der Vortrag beschreibt die Bestimmung der spezifischen Oberfläche von dispersen und/oder porösen Pulvern mittels Gasadsorption nach dem BET-Verfahren. Es wird auf die Anwendbarkeit der Methode eingegangen und es werden praktische Hinweise zur Probenvorbereitung und Messung von Nanomaterialien gegeben. T2 - BAM Akademie II: Info-Tage "Nano or not Nano" CY - Online meeting DA - 25.01.2024 KW - OECD TG 124 KW - Nanopulver KW - VSSA KW - Nano powder KW - BET KW - Spezifische Oberfläche PY - 2024 AN - OPUS4-59623 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Bestimmung der Skelettdichte mittels Gaspyknometrie N2 - Im Rahmen des 2. BAM-Akademie Info-Tages "Nano or not Nano" wurde die OECD TG 124 "Volume Specific Surface Area of Manufactured Nanomaterials" vorgestellt. Der Vortrag beschreibt detailliert das Messverfahren der He-Gaspyknometrie zur Bestimmung der Skelettdichte von Pulvern und geht auf Anwendbarkeit, Besonderheiten bei Nanopulvern und wichtige Einstellparameter für die Messung ein. T2 - BAM Akademie II: Info-Tage "Nano or not Nano" CY - Online meeting DA - 25.01.2024 KW - Pycnometry KW - Density KW - Nano powder PY - 2024 AN - OPUS4-59561 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Einführung: Volume Specific Surface Area (VSSA) N2 - Im Rahmen der 2. BAM-Akademie-Veranstaltung "Nano or not Nano" wurde die OECD TG 124 "Volume Specific Surface Area of Manufactured Nanomaterials" vorgestellt. Der Vortrag enthält ein Einführung zur VSSA mit Definitionen, Vorteilen und Einschränkungen. T2 - BAM Akademie II: Info-Tage "Nano or not Nano" CY - Online meeting DA - 25.01.2024 KW - Nano powder KW - VSSA KW - Specific surface KW - OECD TG PY - 2024 AN - OPUS4-59560 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Herausforderungen bei der Granulometrie von (technischen) Nano-Pulvern N2 - Einführungsvortrag im Rahmen der Veranstaltung der BAM-Akademie zur Anwendung der OECD TG 124 "Volume Specific Surface Area of Manufactured Nanomaterials" zu Herausforderungen bei der Granulometrie von Nanopulvern. Es werden die Einflüsse von Partikelform, Breite der Partikelgrößenverteilung und Agglomeration/ Aggregation auf das Messergebnis sowie die Vergleichbarkeit der Ergebnisse verschiedener Messverfahren dargelegt. T2 - BAM Akademie II: Info-Tage "Nano or not Nano" CY - Online meeting DA - 25.01.2024 KW - Nanopulver KW - Granulometrie KW - Partikelgröße KW - VSSA KW - OECD TG 124 PY - 2024 AN - OPUS4-59558 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Erzeugung und Charakterisierung anisotroper Nanostrukturen durch Ultrakurzpulslaser N2 - Der Vortrag gibt einen Überblick über die Erzeugung und Charakterisierung anisotroper Nanostrukturen mittels ultrakurzgepulster Laserstrahlung. Besonderes Augenmerk liegt dabei auf dem Phänomen der sogenannten Laser-induzierten periodischen Oberflächen-Nanostrukturen auf dielektrischen Werkstoffen und ihrer zeitlichen Dynamik. Weitere Beispiele von Volumen-Nanostrukturen aus der Literatur werden diskutiert. T2 - 21. Treffen des DGG-DKG Arbeitskreises „Glasig-kristalline Multifunktionswerkstoffe“ CY - Mainz, Germany DA - 22.02.2024 KW - Laser-induzierte periodische Oberflächen-Nanostrukturen KW - Quarzglas KW - Saphir KW - Bessel-Strahlen PY - 2024 AN - OPUS4-59565 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Advances in ultrafast laser manufacturing: nanostructures, thin films, and scaling perspectives N2 - Advanced ultrafast laser technology is a rapidly growing field that currently enables many new industrial and scientific applications. During the last decades, this has been significantly driven by the availability of high-repetition-rate laser sources and novel beam delivery concepts. At the laser side, Moore’s law equally manifests for ultrafast laser technologies, since the average output power of such lasers doubles approximately every two years. This development is mainly driven by the increase of the pulse repetition rates of energetic laser pulses, currently enforcing the development of smart beam control and novel scanning strategies for preventing heat-accumulation and plasma-shielding effects during laser-based materials processing. This keynote presentation addresses the advantages, recent developments, and perspectives of laser processing with ultrashort laser pulses. A special focus is laid on the tailored structuring of thin films as well as the manufacturing and probing of sub-diffraction surface nanostructures – an ongoing race to extreme scales. Current limitations are identified and an outlook to future scaling perspectives will be provided. T2 - SPIE Photonics Europe 2024 Conference, Symposium "Lasers and Photonics for Advanced Manufacturing" CY - Strasbourg, France DA - 07.04.2024 KW - Ultrafast laser processing KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - Laser technology KW - Time-resolved analysis PY - 2024 UR - https://spie.org/photonics-europe/presentation/Advances-in-ultrafast-laser-manufacturing--nanostructures-thin-films-and/13005-36#_=_ AN - OPUS4-59852 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - The Dark Side of Science (2024 edition) N2 - This presentation highlights ongoing scientific misconduct as found in academic literature. This includes data- and image manipulation, and paper mills. Starting with an expose of examples, it delves deeper into the causes and metrics driving this phenomenon. Finally a range of possible tools is presented, that the young researcher can use to prevent themselves from sliding into the dark scientific methods. T2 - Winter School on Metrology and Nanomaterials for Clean Energy CY - Claviere, Italy DA - 28.01.2024 KW - Scientific misconduct KW - Data manipulation KW - Image manipulation KW - Paper mills KW - Causes leading to scientific misconduct KW - Tools to combat scientific misconduct KW - Metrics PY - 2024 AN - OPUS4-59622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Glimpses of the future: Systematic investigations of 1200 mofs using a highly automated, full-stack materials research laboratory N2 - By automatically recording as much information as possible in automated laboratory setups, reproducibility and traceability of experiments are vastly improved. This presentation shows what such an approach means for the quality of experiments in an X-ray scattering laboratory and an automated synthesis set-up. T2 - Winter School on Metrology and Nanomaterials for Clean Energy CY - Claviere, Italy DA - 28.01.2024 KW - Digitalization KW - Automation KW - Digital laboratory KW - Scattering KW - Synthesis KW - Nanomaterials KW - Holistic science PY - 2024 AN - OPUS4-59621 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Funktionalisierung durch laser-induzierte periodische Oberflächenstrukturen N2 - Der Vortrag gibt einen Überblick über die vielfältigen Möglichkeiten der Oberflächenfunktionalisierung mittels Mikro- und Nanostrukturierung durch Ultrakurzpuls-Lasermaterialbeabeitung. Dies schließt eine Diskussion des Phänomens der Laser-induzierten periodischen Oberflächenstrukturen (LIPSS, engl.: Laser-induced Periodic Surface Structures, Ripples), sowie deren Klassifikation und Bildungsmechanismen mit ein. Ein Schwerpunkt der Präsentation liegt auf der Diskussion verschiedener Anwendungsmöglichkeiten der LIPSS in Bereichen der Optik, Fluidik, Tribologie und Medizin, sowie auf einem Ausblick auf die industrielle Skalierbarkeit der LIPSS-Technologie. T2 - 1. Netzwerktreffen 2024 des UKPL-Innovationsnetzwerks CY - Rostock, Germany DA - 11.03.2024 KW - Laser-induced Periodic Surface Structures (LIPSS) KW - Oberflächenfunktionalisierung KW - Mikrostrukturen KW - Nanostrukturen KW - Ultrakurzpuls-Laserbearbeitung PY - 2024 AN - OPUS4-59657 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas T1 - On the use of spectroscopic imaging ellipsometry for quantification and characterisation of defects in thin films for power electronics N2 - Compound semiconductors (CS) are promising materials for the development of high-power electrical applications. They have low losses, can withstand high temperatures and can operate at very high voltages and currents. This makes them a key technology for the electrification of many high energy applications, especially electromobility and HVDC power lines. The challenge with CS technology is that most of the process technology has to be developed anew to the high standards required by electronic applications. Today, compound semiconductors can be produced in thin layers on top of substrates fabricated from classical crystal growth processes that are already well established. A promising method for this is metal organic vapour phase epitaxy (MOVPE). With this method, many different compounds with semiconducting properties can be synthesized. Additionally, this process technology is a direct thin layer deposition method. Therefore, complex multilayer systems can be generated directly by the deposition process and without the need of doping after growing. There are a number of critical defects that can originate from the deposition process of these thin film devices. Within this project, we intend to develop new correlative imaging and analysis techniques to determine defect types, to quantify defect size and number density, as well as to characterise defects for process optimisation. We report here on the use of spectroscopic ellipsometry and imaging ellipsometry to investigate defects in several different compound semiconductor materials used in high-power electronic devices. The materials we investigated are β-Ga2O3, SiC, GaN, AlN, and AlGaN materials as well as oxidised SiC surfaces. All of these materials have their typical defects and require optimised measurement and analysis schemes for reliable detection and analysis. Spectroscopic ellipsometry is a highly sensitive method for determining the thicknesses and dielectric function of thin layers, yielding potentially a high number of microscopic properties. The combined method between ellipsometry and optical microscopy is called imaging ellipsometry and is especially powerful for the large amount of data it produces. We have analysed defects in SiC- and AlN-based thin film semiconductors as well as characterised the properties of different types of SiO2 layers created on top of SiC monocrystals. We developed ellipsometric models for the data analysis of the different semiconductor materials. If the defects have geometric features, it is useful to combine the ellipsometric analysis with topometry method like interference microscopy and scanning probe microscopy. We have successfully characterised function-critical defects in MOVPE SiC layers and correlated the findings with topography from WLIM measurements. We have developed an imaging ellipsometric measurement methodology that allows to estimate the relative defect area on a surface by a statistical raw data analysis. T2 - EMRS Spring Meeting 2024 - ALTECH 2024 CY - Strasbourg, France DA - 27.05.2024 KW - compound semiconductors KW - Ellipsometry KW - Layer Materials KW - Defect Analysis PY - 2024 AN - OPUS4-61005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kimiaei, E. A1 - Farooq, M. A1 - Szymoniak, Paulina A1 - Ahmadi, Shayan A1 - Babaeipour, S. A1 - Schönhals, Andreas A1 - Österberg, M. T1 - The role of lignin as interfacial compatibilizer in designing lignocellulosic-polyester composite films N2 - Advancing nanocomposites requires a deep understanding and careful design of nanoscale interfaces, as interfacial interactions and adhesion significantly influence the physical and mechanical properties of these materials. This study demonstrates the effectiveness of lignin nanoparticles (LNPs) as interfacial compatibilizer between hydrophilic cellulose nanofibrils (CNF) and a hydrophobic polyester, polycaprolactone (PCL). In this context, we conducted a detailed analysis of surface-to-bulk interactions in both wet and dry conditions using advanced techniques such as quartz crystal microbalance with dissipation (QCM-D), atomic force microscopy (AFM), water contact angle (WCA) measurements, broadband dielectric spectroscopy (BDS), and inverse gas chromatography (IGC). QCM-D was employed to quantify the adsorption behavior of LNPs on CNF and PCL surfaces, demonstrating LNPs’ capability to interact with both hydrophilic and hydrophobic phases, thereby enhancing composite material properties. LNPs showed extensive adsorption on a CNF model film (1186 ± 178 ng.cm−2) and a lower but still significant adsorption on a PCL model film (270 ± 64 ng.cm−2). In contrast, CNF adsorption on a PCL model film was the lowest, with a sensed mass of only 136 ± 35 ng.cm−2. These findings were further supported by comparing the morphology and wettability of the films before and after adsorption, using AFM and WCA analyses. Then, to gain insights into the molecular-level interactions and molecular mobility within the composite in dry state, BDS was employed. The BDS results showed that LNPs improved the dispersion of PCL within the CNF network. To further investigate the impact of LNPs on the composites’ interfacial properties, IGC was employed. This analysis showed that the composite films containing LNPs exhibited lower surface energy compared to those composed of only CNF and PCL. The presence of LNPs likely reduced the availability of surface hydroxyl groups, thus modifying the physicochemical properties of the interface. These changes were particularly evident in the heterogeneity of the surface energy profile, indicating that LNPs significantly altered the interfacial characteristics of the composite materials. Overall, these findings emphasize the necessity to control the interfaces between components for next-generation nanocomposite materials across diverse applications. KW - Lignin KW - Nanocomposites PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-615098 DO - https://doi.org/10.1016/j.jcis.2024.10.083 SN - 0021-9797 VL - 679 SP - 263 EP - 275 PB - Elsevier Inc. AN - OPUS4-61509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Kalady, Mohammed Fayis A1 - Schultz, Johannes A1 - Weinel, Kristina A1 - Wolf, Daniel A1 - Lubk, Axel T1 - Localization of Hybridized Surface Plasmon Modes on Random Gold Nanoparticle Assemblies N2 - Assemblies of plasmonic nanoparticles (NPs) support hybridized modes of localized surface plasmons (LSPs), which delocalize in geometrically well-ordered arrangements. Here, the hybridization behavior of LSPs in geometrically completely disordered arrangements of Au NPs fabricated by an e-beam synthesis method is studied. Employing electron energy loss spectroscopy in a scanning transmission electron microscope in combination with numerical simulations, the disorder-driven spatial and spectral localization of the coupled LSP modes that depend on the NP thickness is revealed. Below 0.4nm sample thickness (flat NPs), localization increases towards higher hybridized LSP mode energies. In comparison, above 10nm thickness, a decrease of localization (an increase of delocalization) with higher mode energies is observed. In the intermediate thickness regime, a transition of the energy dependence of the localization between the two limiting cases, exhibiting a transition mode energy with minimal localization, is observed. This behavior is mainly driven by the energy and thickness dependence of the polarizability of the individual NPs. KW - Plasmonics KW - Electron-Energy Loss Spectroscopy KW - Discrete Dipole Approximation KW - Nanoparticles PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-618323 DO - https://doi.org/10.48550/arXiv.2410.10514 SP - 1 EP - 8 PB - Cornell University CY - Ithaca, NY AN - OPUS4-61832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Minenkov, Alexey A1 - Hollweger, Sophia A1 - Duchoslav, Jiri A1 - Erdene-Ochir, Otgonbayar A1 - Weise, Matthias A1 - Ermilova, Elena A1 - Hertwig, Andreas A1 - Schiek, Manuela T1 - Monitoring the Electrochemical Failure of Indium Tin Oxide Electrodes via Operando Ellipsometry Complemented by Electron Microscopy and Spectroscopy N2 - Transparent conductive oxides such as indium tin oxide (ITO) are standards for thin film electrodes, providing a synergy of high optical transparency and electrical conductivity. In an electrolytic environment, the determination of an inert electrochemical potential window is crucial to maintain a stable material performance during device operation. We introduce operando ellipsometry, combining cyclic voltammetry (CV) with spectroscopic ellipsometry, as a versatile tool to monitor the evolution of both complete optical (i.e., complex refractive index) and electrical properties under wet electrochemical operational conditions. In particular, we trace the degradation of ITO electrodes caused by electrochemical reduction in a pH-neutral, water-based electrolyte environment during electrochemical cycling. With the onset of hydrogen evolution at negative bias voltages, indium and tin are irreversibly reduced to the metallic state, causing an advancing darkening, i.e., a gradual loss of transparency, with every CV cycle, while the conductivity is mostly conserved over multiple CV cycles. Post-operando analysis reveals the reductive (loss of oxygen) formation of metallic nanodroplets on the surface. The reductive disruption of the ITO electrode happens at the solid–liquid interface and proceeds gradually from the surface to the bottom of the layer, which is evidenced by cross-sectional transmission electron microscopy imaging and complemented by energy-dispersive X-ray spectroscopy mapping. As long as a continuous part of the ITO layer remains at the bottom, the conductivity is largely retained, allowing repeated CV cycling. We consider operando ellipsometry a sensitive and nondestructive tool to monitor early stage material and property changes, either by tracing failure points, controlling intentional processes, or for sensing purposes, making it suitable for various research fields involving solid–liquid interfaces and electrochemical activity. KW - General Materials Science PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597625 DO - https://doi.org/10.1021/acsami.3c17923 SN - 1944-8252 VL - 16 IS - 7 SP - 9517 EP - 9531 PB - American Chemical Society (ACS) AN - OPUS4-59762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knapic, D. A1 - Mardare, A. I. A1 - Voss, Heike A1 - Bonse, Jörn A1 - Hassel, A. W. T1 - Corrosion study of picosecond-laser structured and anodized Ti6Al4V for bone screws N2 - A corrosion study is performed on six variations of titanium grade 5 (Ti6Al4V) samples. Samples are prepared in different conditions by variation of preanodization, postanodization, and picosecond-laser (ps-laser) surface treatment, while polished and anodized samples serve as reference. Microcones and nanosized periodic surface features are successfully produced on Ti6Al4V samples. The morphology and topography of the structures are visualized by scanning electron microscopy and white light interference microscopy. Furthermore, the relative electrochemically active surface area (ECSA) is determined for the ps-laser-treated samples. It is determined that the preanodized and laser-treated sample has 3.5 times larger ECSA than a polished sample, and that the laser-treated sample has 4.1 times larger area. Moreover, Tafel analysis is performed to determine the corrosion properties of the samples. It is shown that the corrosion resistance improves for both laser-structured samples after the anodization. To further study the surface of the samples, electrochemical impedance spectroscopy measurements are conducted. The study indicates that the ps-laser-treated and anodized Ti6Al4V is suitable to be used for the fabrication of bone screws and plates due to its improved corrosion resistance as compared to nonanodized samples. KW - Laser-induced periodic surface structures (LIPSS) KW - Anodization KW - Bone screws KW - Implant material KW - Titanium alloys PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597890 DO - https://doi.org/10.1002/pssa.202300609 SN - 1862-6319 VL - 221 SP - 1 EP - 8 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-59789 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, Z. A1 - Raab, A. A1 - Kolmangadi, Mohamed Aejaz A1 - Busch, M. A1 - Grunwald, M. A1 - Demel, F. A1 - Bertram, F. A1 - Kityk, A. V. A1 - Schönhals, Andreas A1 - Laschat, S. A1 - Huber, P. T1 - Self-Assembly of Ionic Superdiscs in Nanopores N2 - Discotic ionic liquid crystals (DILCs) consist of self-assembled superdiscs of cations and anions that spontaneously stack in linear columns with high one-dimensional ionic and electronic charge mobility, making them prominent model systems for functional soft matter. Compared to classical nonionic discotic liquid crystals, many liquid crystalline structures with a combination of electronic and ionic conductivity have been reported, which are of interest for separation membranes, artificial ion/proton conducting membranes, and optoelectronics. Unfortunately, a homogeneous alignment of the DILCs on the macroscale is often not achievable, which significantly limits the applicability of DILCs. Infiltration into nanoporous solid scaffolds can, in principle, overcome this drawback. However, due to the experimental challenges to scrutinize liquid crystalline order in extreme spatial confinement, little is known about the structures of DILCs in nanopores. Here, we present temperaturedependent high-resolution optical birefringence measurement and 3D reciprocal space mapping based on synchrotron X-ray scattering to investigate the thermotropic phase behavior of dopamine-based ionic liquid crystals confined in cylindrical channels of 180 nm diameter in macroscopic anodic aluminum oxide membranes. As a function of the membranes’ hydrophilicity and thus the molecular anchoring to the pore walls (edge-on or face-on) and the variation of the hydrophilic−hydrophobic balance between the aromatic cores and the alkyl side chain motifs of the superdiscs by tailored chemical synthesis, we find a particularly rich phase behavior, which is not present in the bulk state. It is governed by a complex interplay of liquid crystalline elastic energies (bending and splay deformations), polar interactions, and pure geometric confinement and includes textural transitions between radial and axial alignment of the columns with respect to the long nanochannel axis. Furthermore, confinement-induced continuous order formation is observed in contrast to discontinuous first-order phase transitions, which can be quantitatively described by Landau-de Gennes free energy models for liquid crystalline order transitions in confinement. Our observations suggest that the infiltration of DILCs into nanoporous solids allows tailoring their nanoscale texture and ion channel formation and thus their electrical and optical functionalities over an even wider range than in the bulk state in a homogeneous manner on the centimeter scale as controlled by the monolithic nanoporous scaffolds. KW - Ionic Liquid Crystals KW - Nanopropous materials KW - Landau de-Gennes analysis KW - X-ray scattering KW - Optical birefringence PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600797 DO - https://doi.org/10.1021/acsnano.4c01062 SN - 1936-0851 VL - 18 IS - 22 SP - 14414 EP - 14426 PB - ACS AN - OPUS4-60079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grundmann, Jana A1 - Bodermann, Bernd A1 - Ermilova, Elena A1 - Weise, Matthias A1 - Hertwig, Andreas A1 - Klapetek, Petr A1 - Rafighdoost, Jila A1 - Pereira, Silvania F. T1 - Optical and tactile measurements on SiC sample defects N2 - Abstract. In power electronics, compound semiconductors with large bandgaps, like silicon carbide (SiC), are increasingly being used as material instead of silicon. They have a lot of advantages over silicon but are also intolerant of nanoscale material defects, so that a defect inspection with high accuracy is needed. The different defect types on SiC samples are measured with various measurement methods, including optical and tactile methods. The defect types investigated include carrots, particles, polytype inclusions and threading dislocations, and they are analysed with imaging ellipsometry, coherent Fourier scatterometry (CFS), white light interference microscopy (WLIM) and atomic force microscopy (AFM). These different measurement methods are used to investigate which method is most sensitive for which type of defect to be able to use the measurement methods more effectively. It is important to be able to identify the defects to classify them as critical or non-critical for the functionality of the end product. Once these investigations have been completed, the measurement systems can be optimally distributed to the relevant defects in further work to realize a hybrid analysis of the defects. In addition to the identification and classification of defects, such a future hybrid analysis could also include characterizations, e.g. further evaluation of ellipsometric data by using numerical simulations. KW - Compound semiconductors KW - Hybrid metrology KW - Material defects KW - Spectroscopic ellipsometry KW - Scanning probe microscopy KW - White-light interference microscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601220 DO - https://doi.org/10.5194/jsss-13-109-2024 SN - 2194-878X VL - 13 IS - 1 SP - 109 EP - 121 PB - Copernicus Publ. CY - Göttingen AN - OPUS4-60122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - da Costa, P. F. G. M. A1 - Merízio, L. G. A1 - Wolff, N. A1 - Terraschke, H. A1 - de Camargo, Andrea Simone Stucchi T1 - Real-time monitoring of CdTe quantum dots growth in aqueous solution N2 - Quantum dots (QDs) are remarkable semiconductor nanoparticles, whose optical properties are strongly size-dependent. Therefore, the real-time monitoring of crystal growth pathway during synthesis gives an excellent opportunity to a smart design of the QDs luminescence. In this work, we present a new approach for monitoring the formation of QDs in aqueous solution up to 90 °C, through in situ luminescence analysis, using CdTe as a model system. This technique allows a detailed examination of the evolution of their light emission. In contrast to in situ absorbance analysis, the in situ luminescence measurements in reflection geometry are particularly advantageous once they are not hindered by the concentration increase of the colloidal suspension. The synthesized particles were additionally characterized using X-ray diffraction analysis, transition electron microscopy, UV-Vis absorption and infrared spectroscopy. The infrared spectra showed that 3-mercaptopropionic acid (MPA)-based thiols are covalently bound on the surface of QDs and microscopy revealed the formation of CdS. Setting a total of 3 h of reaction time, for instance, the QDs synthesized at 70, 80 and 90 °C exhibit emission maxima centered at 550, 600 and 655 nm. The in situ monitoring approach opens doors for a more precise achievement of the desired emission wavelength of QDs. KW - CdTe quantum dots KW - In situ synthesis KW - Real time growth control PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-603596 DO - https://doi.org/10.1038/s41598-024-57810-8 SN - 2045-2322 VL - 14 IS - 1 SP - 1 EP - 11 PB - Springer Science and Business Media LLC AN - OPUS4-60359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Fengchan A1 - Oiticica, Pedro Ramon Almeida A1 - Abad-Arredondo, Jaime A1 - Arai, Marylyn Setsuko A1 - Oliveira, Osvaldo N. A1 - Jaque, Daniel A1 - Fernandez Dominguez, Antonio I. A1 - de Camargo, Andrea Simone Stucchi A1 - Haro-González, Patricia T1 - Brownian Motion Governs the Plasmonic Enhancement of Colloidal Upconverting Nanoparticles N2 - Upconverting nanoparticles are essential in modern photonics due to their ability to convert infrared light to visible light. Despite their significance, they exhibit limited brightness, a key drawback that can be addressed by combining them with plasmonic nanoparticles. Plasmon-enhanced upconversion has been widely demonstrated in dry environments, where upconverting nanoparticles are immobilized, but constitutes a challenge in liquid media where Brownian motion competes against immobilization. This study employs optical tweezers for the three-dimensional manipulation of an individual upconverting nanoparticle, enabling the exploration of plasmon-enhanced upconversion luminescence in water. Contrary to expectation, experiments reveal a long-range (micrometer scale) and moderate (20%) enhancement in upconversion luminescence due to the plasmonic resonances of gold nanostructures. Comparison between experiments and numerical simulations evidences the key role of Brownian motion. It is demonstrated how the three-dimensional Brownian fluctuations of the upconverting nanoparticle lead to an “average effect” that explains the magnitude and spatial extension of luminescence enhancement. KW - Upconversion KW - Plasmon enhancement KW - Optical tweezers KW - Brownian motion KW - Nanoparticles PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-603551 DO - https://doi.org/10.1021/acs.nanolett.4c00379 VL - 24 IS - 12 SP - 3785 EP - 3792 PB - American Chemical Society (ACS) AN - OPUS4-60355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weinel, Kristina T1 - Plasmonic Behavior in Assemblies of Disordered Gold Nanoparticles N2 - Plasmons are collective oscillations of the free electron density in metals which can be described by an electromagnetic field. Surface plasmons are longitudinal waves propagating at the surface of the metallic material coupled to an external field. Localized surface plasmons on a nanoparticle reveal the behavior of standing waves with discrete resonance frequencies whose dominating mode is called dipole mode. Coupling of nanoparticles leads eventually to a hybridization of those dipole modes and therefore to spectral and spatial delocalization which was already investigated in ordered systems. In disordered systems, there are a lot of open questions regarding the propagation behavior which changes from delocalization to localization for instance due to the disorder. This phenomenon is then called Anderson localization. To investigate the propagation behavior of plasmonic waves in an assembly of disordered gold NPs, we combine experimental results of electron energy loss spectroscopy in a scanning transmission microscope with simulation results of the self-consistent dipole modelling. We indeed find experimentally localization of plasmon modes and with the simulation we could exclude other localization mechanism such as life-time damping or retardation. In conclusion, we could found Anderson localization of surface plasmons in assemblies of disordered gold nanoparticles which will enhance the understanding of this kind of vector waves to the Anderson localization as a general wave behavior in disordered systems. T2 - PhD seminar Leipniz Institut for solid state and material research (IFW Dresden) CY - Dresden, Germany DA - 19.06.2024 KW - Plasmonic KW - EELS in STEM KW - Self-consistent dipole model KW - Assemblies of gold nanoparticles PY - 2024 AN - OPUS4-60945 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas T1 - Characterisation of thin layers of Polydopamine used as functional coatings in X-Ray optics N2 - Polydopamine (PDA) is a biological / biomimetic polymer which has spiked considerable interest in recent years. Its monomer is an important neurotransmitter and it is one of the strongest glues produced by biological organisms. Polydopamine is a candidate for several applications, mainly in the field of biology and medicine, but also - recently - for layer coatings with optical, electrical, and mechanical function. In this work, we investigate PDA layers intended as reflectivity enhancers for mirror surfaces in X-ray astronomical observatories. It has previously been shown, that such X-ray telescopes can be improved by a coating of PDA in the thickness range of several nm. Accurate thickness determination is required to monitor and optimise the coating process. We use spectroscopic ellipsometry to determine first the dielectric function of the polydopamine layers using model coatings of sufficient thickness. This data is then used to accurately determine the layer thickness of much thinner PDA layers. This study resulted in data on the thickness and dielectric function of PDA layers that could lead to a better understanding of the correlation of layer thickness and layer properties depending on the process parameters. T2 - Deutsche Physikalische Gesellschaft - Frühjahrstagung CY - Berlin, Germany DA - 17.03.2024 KW - Polydopamine KW - Thin Solid Layers KW - X-ray optics KW - Spectroscopic Ellipsometry PY - 2024 AN - OPUS4-60955 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Omar, Hassan A1 - Ahamadi, Shayan A1 - Hülagü, Deniz A1 - Hidde, Gundula A1 - Hertwig, Andreas A1 - Szymoniak, Paulina A1 - Schönhals, Andreas T1 - Investigations of the adsorbed layer of polysulfone: Influence of the thickness of the adsorbed layer on the glass transition of thin films N2 - This work studies the influence of the adsorbed layer on the glass transition of thin films of polysulfone. Therefore, the growth kinetics of the irreversibly adsorbed layer of polysulfone on silicon substrates was first investigated using the solvent leaching approach, and the thickness of the remaining layer was measured with atomic force microscopy. Annealing conditions before leaching were varied in temperature and time (0–336 h). The growth kinetics showed three distinct regions: a pre-growth step where it was assumed that phenyl rings align parallel to the substrate at the shortest annealing times, a linear growth region, and a crossover from linear to logarithmic growth observed at higher temperatures for the longest annealing times. No signs of desorption were observed, pointing to the formation of a strongly adsorbed layer. Second, the glass transition of thin polysulfone films was studied in dependence on the film thickness using spectroscopic ellipsometry. Three annealing conditions were compared: two with only a tightly bound layer formed in the linear growth regime and one with both tightly bound and loosely adsorbed layers formed in the logarithmic growth regime. The onset thickness and increase in the glass transition temperature increases with annealing time and temperature. These differences were attributed to the distinct conformations of the formed adsorbed layers. KW - Glass transition KW - Adsorbed Layer PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607701 DO - https://doi.org/10.1063/5.0223415 SN - 0021-9606 VL - 161 IS - 5 SP - 1 EP - 12 PB - AIP Publishing AN - OPUS4-60770 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shahsanaei, Majid A1 - Farahbakhsh, Nastaran A1 - Pour-Ali, Sadegh A1 - Schardt, Annika A1 - Orangpour, Setareh A1 - Engelhard, Carsten A1 - Mohajernia, Shiva A1 - Killian, Manuela S. A1 - Hejazi, Sina T1 - Synergistic enhancement of photocatalytic hydrogen production in TiO2 nanosheets through light-induced defect formation and Pt single atoms N2 - In this investigation, we present a direct method employing UV-light radiation to induce point defects, specifically Ti3+ and VO, onto the surface of TiO2 nanosheets (TiO2-NSs) and efficiently decorate them with Pt particles. The addition of the Pt precursor is carried out during rest periods following UV-light cessation (light-induced samples, LI) and during UV-light exposure (photo-deposited samples, PD). The size and distribution of Pt particles on both LI and PD TiO2-NSs are systematically correlated with varying resting times, enabling precise control over Pt loading. The characterization of various TiO2-NSs is extensively conducted using microscopy techniques (FESEM, TEM, and HAADF-STEM) and spectroscopy (XPS). Gas chromatography is also employed for the evaluation of the H2 photocatalytic performance of various samples. Our findings reveal that Pt particles deposit on the TiO2-NSs surfaces as nanoparticles under illumination. After a 5 minutes resting time, a combination of Pt single atoms (SAs) and clusters, with a maximum loading of 0.37 at%, is formed. Extending the resting time to 60 minutes results in a gradual reduction in Pt SAs and clusters, leading to the deposition of Pt nanoparticles with lower loadings. Notably, Pt SAs and clusters exhibit superior performance in hydrogen evolution, showcasing a remarkable 4000-fold increase over pristine TiO2-NSs. Additionally, sustained UV radiation during Pt addition in the photo-deposited samples results in the formation of Pt nanoparticles with lower loading compared to LI samples, consequently diminishing photocatalytic hydrogen production. This study not only provides insights into the controlled manipulation of Pt SAs on TiO2-NSs but also highlights their exceptional efficacy in hydrogen evolution, offering valuable contributions to the design of efficient photocatalytic systems for sustainable hydrogen generation. KW - Chemistry KW - Nanosheets KW - Hydrogen PY - 2024 DO - https://doi.org/10.1039/D4TA01809E VL - 12 IS - 29 SP - 18554 EP - 18562 PB - Royal Society of Chemistry (RSC) AN - OPUS4-61271 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wojciak, K. A1 - Tokarski, T. A1 - Cios, G. A1 - Nolze, Gert T1 - Precision and accuracy during standard-less mapping of local lattice distortions using ebsd and calm technique N2 - Electron Back Scatter Diffraction (EBSD) is a very versatile analytical technique allowing for the characterization of material structure. Historically, diffraction images (Kikuchi patterns) registered during EBSD analysis were solved using Hough/Radon transformation. The last decade brought several novel techniques of experimental pattern analysis, focusing entirely on image analysis routines such as pattern matching, or various variants of High-Resolution EBSD. However, all the above-mentioned techniques require prior knowledge of the material structure to perform orientation analysis. The recently presented algorithm employed in Crystallographic Analysis of Lattice Metric (CALM) software, effectively removes this limitation enabling a standard-less analytical approach in EBSD systems. At its core, the CALM technique couples accurate detection of the Kikuchi bands position, with a rigid construction of reciprocal lattice resulting from translational crystal symmetry. A unique characteristic of the methodology also gives an opportunity for application in the analysis of continuous lattice changes, for example tetragonality mapping. During mapping, however, the geometry of the gnomonic projection (represented by the projection center) is continuously altered decreasing overall algorithm efficiency. The work presents an analysis of the projection center in terms of precision and accuracy. T2 - Oxford User Meeting 2024 CY - Krakow, Poland DA - 14.05.2024 KW - EBSD KW - Kikuchi KW - Lattice parameters KW - Ratio refinement PY - 2024 AN - OPUS4-60087 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tokarski, T. A1 - Nolze, Gert T1 - Exploring Unconventional Uses of Kikuchi Pattern Analysis N2 - The characterization of really unknown phases typically uses 70 to 150 reflectors for lattice metric calculation. The determination of the lattice parameters follows with 4% accuracy. Including a Z correction up to 1% can be reached. The precision of the lattice parameters ratios (a:b:c) is, however, better than 0.1%. T2 - Oxford Users Meeting 2024 CY - Krakow, Poland DA - 14.05.2024 KW - EBSD KW - Kikuchi KW - Lattice parameters KW - Ratio refinement PY - 2024 AN - OPUS4-60086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - Critical needs and stakeholder networks for engineered particles in air N2 - In the frame of CCQM a new Task Group for particle characterization is being formed. This presentation is a gap analysis and stakeholder mapping for particles in air, from engineered to natural materials. The analysis was requested for the following points: (1) critical literature on stakeholder needs and relevant metrology (2) existing reference materials and relevant interlaboratory comparisons (3) relevant metrology projects (4) critical stakeholders and stakeholder networks and stakeholder surveys T2 - CCQM IAWG/SAWG TG Particle Metrology CY - Online meeting DA - 09.07.2024 KW - CCQM KW - Particle KW - Nano KW - Characterization KW - Aerosol PY - 2024 AN - OPUS4-62067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hertwig, Andreas A1 - Ermilova, Elena T1 - Optical constants of a single AlN layer on Si N2 - Spectroscopic ellipsometry was used to determine the thickness and dielectric function of a Aluminium Nitride (AlN) layer on a Si wafer. The layer was determined to be 170 nm thick. The layer was provided by AIXTRON and manufactured by means of MOVPE. The data was created using a M2000DI spectroscopic ellipsometer from Woollam Co. Inc. Analysis was done using the CompleteEASE software. The model used is a multi-peak oscillator model for the AlN layer. The data resembles common database values for the material AlN. KW - Aluminium nitride KW - Thin solid layers KW - Spectroscopic ellipsometry KW - Compund semiconductors KW - MOVPE PY - 2024 UR - https://zenodo.org/records/12743500 DO - https://doi.org/10.5281/zenodo.12743499 PB - Zenodo CY - Geneva AN - OPUS4-60661 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Smales, G. J. T1 - DACHS-MOFs Database for Automation, Characterisation, and Holistic Synthesis N2 - The DACHS (Database for Automation, Characterization and Holistic Synthesis) project aims to create completely traceable experimental data, covering syntheses, measurements, analyses, and interpretations. DACHS MOFs focuses on the synthesis and characterisation of metal-organic frameworks (MOFs), across multiple, automation-assisted experimental series (AutoMOFs), with the overall goal of producing reproducible MOF syntheses. So far > 1200 MOF samples have been synthesised, with SAXS/WAXS data currently being collected on all samples. All results, including those from “failed” syntheses, are included in the database, as results are results and should be considered agnostic to any positive ornegative interpretations. DACHS MOFs represents the initial trial of the DACHS project, serving as a comprehensive resource for researchers aiming to optimize the synthesis and characterization of MOFs. T2 - XIX International Small Angle Scattering Conference CY - Taipei, Taiwan DA - 04.11.2024 KW - Lab automation KW - Synthesis KW - Metal organic frameworks KW - Zif-8 KW - Databases KW - Synthesis data PY - 2024 AN - OPUS4-61626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Seilert, J. T1 - (Re)engineering functional fat phases – bridging industry and ivory tower N2 - The crystallization kinetics of commercial structuring fats are determined by the interplay of polymorphic transitions and the formation of mixed crystals involving three primary melting groups: H3, H2M, and H2U. Here, H represents long-chain saturated fatty acids, M denotes medium-chain saturated fatty acids, and U signifies unsaturated fatty acids. Assigning the molecular makeup of structuring fats to the kinetic pathways proves to be a challenging task when dealing with complex mixtures. For example, incorporating H2M triglycerides alters the crystallization pathways substantially by impacting the formation of mixed crystals with and between H3 and H2U triglycerides (TAGs). However, determining the impact of specifics in molecular composition, e.g., fatty acid content and TAG asymmetry, remains a complex challenge when dealing with intricate mixtures. This might be overcome by targeting distinct melting groups and comparing their behavior in complex mixtures to academic replicates. This study examined four commercial blends with different fatty acids (palmitic versus stearic acid) and varying H3 contents (8% versus 4%), C8-P, C8-S, C4-P, and C4-S. The H2M content and sum of structuring melting groups was kept constant at 9 % and 25 %, respectively. Further, the commercial blends were replicated using synthetic triglycerides representing the main melting groups: PPP and SSS for H3, PLaP and SLaS for H2M and POP and SOS for H2U – resulting in academic blends A8-P, A8-S, A4-P, and A4-S. The crystallization under quiescent conditions at a cooling rate of 3.5 K/min of all eight blends was studied via DSC and time-resolved SAXS/WAXS. While the P-based commercial blends (C8-P and C4-P) followed typical crystallization routes including an α-β’ transition and clear dependency on H3 content, the S-based counterparts, C8-S and C4-S, showed an α-phase of prolonged stability and evidence of two distinct β’ phases. Differences between commercial and academic blends are discussed. T2 - 2nd Berlin Symposium on Structured Lipid Phases CY - Berlin, Germany DA - 30.09.2024 KW - Lipid phases KW - Thermal structuring KW - Crystallography KW - X-ray scattering PY - 2024 AN - OPUS4-61334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tang, Chi-Long T1 - Sub-4 nm particles from FFF-3D printing measured with the TSI 1 nm CPC and the Airmodus A11 nCNC N2 - Concerns have been raised as Fused Filament Fabrication (FFF) desktop 3D printer emits harmful ultrafine particles (dP < 100 nm) during operation in indoor spaces. However, the vast majority of previous emission studies have neglected the possible occurrence of sub-4 nm particles by using conventional condensation particle counter (CPC) for detection. Thus, the total particle emission could be systematically underestimated. This study has compared two diethylene glycol (DEG) based instruments to evaluate their suitability for measuring organic FFF particles in the sub-4 nm size range either as particle counter or as a particle size spectrometer. T2 - European Aerosol Conference 2024 CY - Tampere, Finland DA - 25.08.2024 KW - Air pollution KW - Emission testing KW - FFF-3D printing KW - Sub-4nm particles KW - Ultrafine particles PY - 2024 AN - OPUS4-60930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -