TY - CONF A1 - Altmann, Korinna T1 - Production of reference materials using a quality by design approach N2 - Accurate analysis of microplastics is based on validated methods and the use of standardized protocols. Therefore, reference materials are essential to determine recovery rates and optimise the existing workflows. The reference materials should mimic the reality in terms of particle properties and concentration and are intended for a special use. The Quality-by-Design approach helps to select the users need and defines a target product profile with mandatory and desired particle properties. We will address different reference material top-down production processes with their limits and challenges for production of materials varying in size ranges of micro- and nanoplastics. T2 - OECD Workshop on Nanoplastics CY - Paris, France DA - 12.11.2025 KW - Microplastics KW - Reference materials KW - Nanoplastics KW - Quality-by-Design PY - 2025 AN - OPUS4-64717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Tim A1 - Huber, Norbert T1 - Designing microcompression experiments for nanoporous metals via computational plasticity N2 - Micropillar compression testing is essential for understanding bulk metal plasticity at small scales and has emerged as a key technique for evaluating nanoporous metals like nanoporous gold (NPG). To support experimental design, we present a computational plasticity study on single crystal NPG micropillars, systematically examining four extrinsic factors: pillar height-to-diameter ratio, taper angle, friction coefficient, and misalignment angle. The study reveals that NPG exhibits similar trends to its bulk counterpart but is less prone to post-yield buckling in unstable crystal orientations. For optimal NPG pillar stability, an aspect ratio of is recommended and a moderate taper angle to prevent artificial stiffening and yielding. Even minimal friction enhances stability, while buckling is mainly governed by misalignment, requiring to also avoid underestimating the elastic modulus. KW - Nanoporous gold KW - Microcompression KW - Plasticity KW - Finite element method KW - Micromechanics PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-645317 DO - https://doi.org/10.1016/j.matdes.2025.114550 SN - 0264-1275 VL - 258 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-64531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Huber, Norbert T1 - Perspectives and pitfalls in modeling of structure-property relationships using machine learning N2 - Machine learning (ML) has been increasingly utilized to support microstructure characterization and predict mechanical properties. A successful ML model typically requires a comprehensive understanding of existing knowledge, expertise in translating this knowledge into meaningful input features, an effective ML architecture, and robust validation of the trained model. Despite the rapid growth in publications incorporating ML methods in recent years, there is limited literature specifically addressing nanoporous metals. The talk will give an overview on perspectives and pitfalls in modeling of structureproperty relationships using machine learning with focus on various challenges that arise from the specific nature of nanoporous metals including randomness of microstructure, image segmentation, lack of tomography data, feature engineering for property prediction, and implications for plasticity including anisotropic flow and arbitrary multiaxial loading on the lower scale of hierarchy. An outlook will be given on the perspectives of establishing a culture of open data, specifically towards curated data sets needed for training and validation of ML models. Potential use cases are the comparison of data from different sources, mining of more general relationships, and validation of models trained with computer generated data using experimental data. T2 - 5th International Symposium on Nanoporous Materials by Alloy Corrosion CY - Sendai, Japan DA - 06.10.2025 KW - Nanoporous metals KW - Machine learning KW - Structure-properties relationship KW - Materials design PY - 2025 AN - OPUS4-64536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, Yong A1 - Hu, Kaixiong A1 - Lilleodden, Erica T. A1 - Huber, Norbert T1 - Datasets for structural and mechanical properties of nanoporous networks from FIB reconstruction N2 - This dataset paper presents a comprehensive archive of 3D tomographic reconstruction image files, volume mesh files for finite element simulations, and tabulated structural and mechanical properties data of nanoporous gold structures. The base material is nanoporous gold, fabricated using a dealloying process, with a solid fraction of approximately 0.30. The NPG samples with ligament sizes ranging from 20 nm to 400 nm were prepared by dealloying and by controlling the thermal annealing process. The original data consist of tomographic TIFF files acquired through Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) 3D reconstruction, as detailed in Philosophical Magazine 2016 96 (32-34), 3322-3335. At each ligament size, six sets of 3D tomographic images were obtained from different regions of the same sample to ensure representative data. New simulations and analyses were conducted based on the 3D image data. The resulting structural and mechanical property data of nanoporous gold are reported for the first time in this dataset paper. Volume meshing of the 3D reconstructed data was performed using Simpleware software. Structural parameters, including surface area, solid volume, and solid volume fraction of the nanoporous network, were extracted from the meshed volumes. Structural connectivity was assessed from the 3D microstructures. The meshed volumes were then used as input for finite element simulations performed in Abaqus to evaluate mechanical responses under uniaxial compression along all three principal axes respectively. From the resulting stress–strain curves, the Young’s modulus and yield strength of each structure were determined. Both elastic and plastic Poisson’s ratios were analyzed from true strain increments. This dataset includes the 3D tomographic images, corresponding volume mesh files, mechanical behavior data and tables summarizing the structural and mechanical properties. The archived data serve as a database for nanoporous network materials and can be reused for numerical simulations, additive manufacturing, and machine learning applications within the materials science community. All files are openly accessible via the TORE repository at https://doi.org/10.15480/882.15230 KW - Nanoporous gold KW - Dealloying KW - FIB/SEM tomography KW - Finite element KW - Volume mesh KW - Young’s modulus KW - Yield stress KW - Poisson’s ratio PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-645330 DO - https://doi.org/10.1016/j.dib.2025.112152 SN - 2352-3409 VL - 63 SP - 1 EP - 14 PB - Elsevier Inc. AN - OPUS4-64533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Li, Yong A1 - Hu, Kaixiong A1 - Lilleodden, Erica T. A1 - Huber, Norbert T1 - Datasets for structural and mechanical properties of nanoporous networks from FIB reconstruction N2 - This dataset includes 3D tomographic reconstruction image files, volume mesh files for finite element simulations, and data on the structural and mechanical properties of nanoporous gold (NPG) structures. It serves as a supplement to a dataset paper, with the corresponding DOI provided in the “Related Identifiers” section. Detailed descriptions of the data, as well as the procedures for their preparation and curation, are presented in that paper. The base material, nanoporous gold, was fabricated via a dealloying process and has a solid fraction of approximately 0.30. NPG samples with ligament sizes ranging from 20 nm to 400 nm were prepared through dealloying and subsequent thermal annealing. Tomographic TIFF files were obtained via Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) 3D reconstruction, with the procedure detailed in Philosophical Magazine (2016, 96(32–34), 3322–3335). Based on the 3D image data, new simulations and analyses were performed. The resulting structural and mechanical property data of nanoporous gold are reported for the first time in the dataset paper and are archived here. This dataset provides a valuable database for the study of nanoporous network materials and can be reused for numerical simulations, additive manufacturing, and machine learning applications within the materials science community. KW - Nanoporous gold KW - Dealloying KW - Coarsening KW - FIB/SEM tomography KW - Connectivity KW - Finite element KW - Volume mesh KW - Young’s modulus KW - Yield stress KW - Poisson’s ratio PY - 2025 DO - https://doi.org/10.15480/882.15230 PB - Technische Universität Hamburg Open Research CY - Hamburg AN - OPUS4-64534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altmann, Korinna A1 - Portela, Raquel A1 - Barbero, Francesco A1 - Breuninger, Esther A1 - Camassa, Laura Maria Azzurra A1 - Velickovic, Tanja Cirkovic A1 - Charitidis, Costas A1 - Costa, Anna A1 - Fadda, Marta A1 - Fengler, Petra A1 - Fenoglio, Ivana A1 - Giovannozzi, Andrea M. A1 - Haugen, Øyvind Pernell A1 - Kainourgios, Panagiotis A1 - von der Kammer, Frank A1 - Kirchner, Markus J. A1 - Lomax-Vogt, Madeleine A1 - Lujic, Tamara A1 - Milczewski, Frank A1 - Moussawi, Mhamad Aly A1 - Ortelli, Simona A1 - Parac-Vogt, Tatjana N. A1 - Potthoff, Annegret A1 - Jimenez Reinosa, Julian J. A1 - Röschter, Sophie A1 - Sacco, Alessio A1 - Wimmer, Lukas A1 - Zanoni, Ilaria A1 - Dailey, Lea Ann T1 - Characterizing nanoplastic suspensions of increasing complexity: inter-laboratory comparison of size measurements using dynamic light scattering N2 - Understanding the potential human health risks associated with micro- and nanoplastic exposure is currently a priority research area. Nanoplastic toxicity studies are complicated by the lack of available, well-characterized test and reference materials. Further, many nanoplastic test materials are inherently more polydisperse and heterogenous in shape compared to polystyrene beads, making accurate and representative size distribution measurements particularly challenging. The aim of this study was to conduct an inter-laboratory comparison of dynamic light scattering measurements, the most commonly used particle sizing method for nanomaterials. Using a published standard operating procedure, size measurements in water and a standardized cell culture medium (CCM) were generated for spherical, carboxy-functionalized polystyrene nanoparticles (PS-COOH; 50 nm; benchmark material), and for increasingly complex in-house produced spherical poly(ethylene terephthalate) (nanoPET) and irregular shaped polypropylene (nanoPP) test materials. The weighted mean of hydrodynamic diameters of PS-COOH dispersed in water (55 ± 5 nm) showed moderate variation between labs (coefficient of variation, CV = 8.2%) and were similar to literature reports. Measurements of nanoPET (82 ± 6 nm) and nanoPP (182 ± 12 nm) in water exhibited similar CV values (nanoPET: 7.3% and nanoPP; 6.8%). Dispersion of PS-COOH and nanoPET in CCM increased the CV to 15.1 and 14.2%, respectively, which is lower than literature reports (CV = 30%). We conclude with a series of practical recommendations for robust size measurements of nanoplastics in both water and complex media highlighting that strict adherence to a standard operating procedure is required to prevent particle agglomeration in CCM KW - Nanoplastics KW - Reference materials KW - Polypropylene PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-644571 DO - https://doi.org/10.1039/d5en00645g SN - 2051-8153 SP - 1 EP - 15 PB - Royal Society of Chemistry (RSC) AN - OPUS4-64457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wegner, Karl David T1 - Advancing Short-Wave Infrared (SWIR) Emission N2 - There is a growing interest in the exploitation of the short-wave infrared (SWIR), which refers to the wavelength band of light between 900 nm and 2500 nm. Luminophores that emit in the SWIR are used in various areas of telecommunications, photovoltaics, security systems (night vision), and in biomedicine. In particular for biomedical applications, the SWIR range is highly promising because light scattering, absorption, and autofluorescence of tissue and biological compounds are strongly reduced compared to the visible (400–700 nm) and NIR (~700–900 nm). The benefits of SWIR-emissive QDs have been demonstrated for a variety of applications, such as in thermal sensing, as photoelectrochemical biosensor, in in vivo vascular imaging, and for fluorescence-guided surgery.[1] Full exploitation of SWIR photoluminescence (PL) imaging and sensing is currently hampered by i.) a lack of suitable advanced nanomaterials with a high PL quantum yield (PL QY) and a high brightness, that can be used safely in vivo and ii.) a lack of quantitative and reliable data on the optical properties of many SWIR emitters. Promising nanomaterials for the SWIR are heavy metal-free Ag2S quantum dots (QDs). Aiming for the development of SWIR advanced nanomaterials with optimum performance, we have dived deeper into the photophysical processes occurring in these nanomaterials, thereby exploring in depth how the environment such as temperature, surface ligand composition, and the incorporation of transition metals influence the optical properties Ag2S QDs. We observed a strong enhancement of the SWIR emission of upon addition of metal ions such as Zn2+, yielding PL quantum yields of about 10% and thus making them highly suitable for non-invasive deep imaging of vascular networks and 3D fluid flow mapping. T2 - Anakon 2025 CY - Leipzig, Germany DA - 10.03.2025 KW - Quantum dots KW - Nano KW - Particle KW - SWIR KW - Fluorescence KW - Temperature KW - Ag2S KW - Quality assuarance KW - Ligand KW - Sensor PY - 2025 AN - OPUS4-62769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Andresen, Elina T1 - Lanthanide based multi element nanoparticles: a versatile platform for surface chemistry analysis and potential reference materials N2 - The use of engineered nanoparticles of different size, shape, and composition is continuously increasing in the life and materials sciences. This calls for methods and reference materials enabling the reliable and accurate determination of nanoparticle size, particle size distribution, shape, number concentration, degree of aggregation and agglomeration in different environments as well as for nanoparticle dispersibility and stability. We are currently building up and exploring a platform of lanthanide-based nanocrystals (LnNCs) with application-specifically tuned size, shape, composition, architecture, optical properties, and surface chemistry for emerging applications in life sciences. As a prerequisite for the broad applicability of these nanomaterials, we assess simple, robust, and easily upscaleable synthesis protocols for LnNCs with defined morphologies and tunable optical properties, and the short-term and long-term stability of LnNCs with selected surface coatings in aqueous environments under different application-relevant conditions. T2 - Anakon 2025 CY - Leipzig, Germany DA - 10.03.2025 KW - Nano KW - Particle KW - Method KW - Lanthanide KW - Synthesis KW - Upconversion KW - Ligand KW - Quality assurance KW - Particle number concentration KW - Reference material KW - Surface chemistry PY - 2025 AN - OPUS4-62768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Matiushkina, Anna A1 - Abram, Sarah-Luise A1 - Tavernaro, Isabella A1 - Richstein, R. A1 - Reithofer, M. R. A1 - Andresen, Elina A1 - Michaelis, Matthias A1 - Koch, Matthias A1 - Resch-Genger, Ute T1 - Quantifying Citrate Surface Ligands on Iron Oxide Nanoparticles with TGA, CHN Analysis, NMR, and RP-HPLC with UV Detection N2 - Although citrate is frequently used as a surface ligand for nanomaterials (NMs) such as metal, metal oxide, and lanthanide-based NMs in hydrophilic environments due to its biocompatibility and simple replacement by other more strongly binding ligands in postsynthetic surface modification reactions, its quantification on NM surfaces has rarely been addressed. Here, we present a multimethod approach for citrate quantification on iron oxide nanoparticles (IONPs) broadly applied in the life and material sciences. Methods explored include thermogravimetric (TGA) and elemental (CHN) analysis, providing citrate-nonspecific information on the IONP coating, simple photometry, and citrate-selective reversed-phase high-performance liquid chromatography (RP-HPLC) with absorption (UV) detection and quantitative nuclear magnetic resonance spectroscopy (qNMR). Challenges originating from the strongly absorbing magnetic NM and paramagnetic iron species interfering with optical and NMR Methods were overcome by suitable sample preparation workflows. Our multimethod approach to citrate quantification highlights the advantages of combining specific and unspecific methods for characterizing NM Surface chemistry and method cross-validation. It also demonstrates that chemically nonselective measurements can favor an overestimation of the amount of a specific surface ligand by signal contributions from molecules remaining on the NM surface, e.g., from particle synthesis, such as initially employed ligands and/or surfactants. Our results emphasize the potential of underexplored selective RPHPLC for quantifying ligands on NMs, which does not require a multistep sample preparation workflow such as qNMR for many NMs and provides a higher sensitivity. These findings can pave the road to future applications of versatile HPLC methods in NM characterization. KW - Advanced material KW - Functional group KW - Iron oxide KW - Ligand KW - Nano KW - Particle KW - Quantification KW - Surface analysis PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-648632 DO - https://doi.org/10.1021/acs.analchem.5c03024 SN - 0003-2700 VL - 97 IS - 36 SP - 19627 EP - 19634 PB - American Chemical Society (ACS) CY - Washington, DC AN - OPUS4-64863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Absolute determination of photoluminescence quantum yields of scattering led converter materials how to get it right N2 - Scattering luminescent materials dispersed in liquid and solid matrices and luminescent powders are increasingly relevant for fundamental research and industry. Examples are luminescent nano- and microparticles and phosphors of different compositions in various matrices or incorporated into ceramics with applications in energy conversion, solid-state lighting, medical diagnostics. A key performance parameter is the photoluminescence quantum yield (Φf), i.e., the number of emitted per number of absorbed photons. Φf of transparent luminophore solutions can be obtained relative to a fluorescence Φf standard of known Φf, meanwhile available as certified reference materials.[1] The determination of Φf of scattering liquid and solid samples requires, however, absolute measurements with an integrating sphere setup. Fist we present the results of an interlaboratory comparison of 3 labs from academia and industry on measurements of transparent and scattering dye solutions and YAG:Ce optoceramics, an optical converter material, with commercial stand-alone integrating sphere setups of different illumination and detection geometries.[2] Second we present results for a series of 500 μm-thick polymer films containing different concentrations of photoluminescent and scattering YAG:Ce microparticles.[3] We systematically explored and quantified pitfalls of absolute Φf measurements with special emphasis dedicated to the influence of measurement geometry, optical properties of the blank for determining the number of incident photons absorbed by the sample, and sample-specific surface roughness. Matching Φf values could be easily obtained for transparent dye solutions and scattering dispersions with a blank with scattering properties closely matching those of the sample, Φf measurements of optoceramic samples with different blanks revealed substantial differences of more than 20 %. Our results further reveal that setup configurations can introduce systematic errors resulting in under- or overestimation of the absorbed photon flux and hence an under- or overestimation of Φf. T2 - Shift 2025 CY - La Laguna, Tenerife, Spain DA - 13.10.2025 KW - Quantum Yield KW - LED Converter KW - Luminescent KW - Microparticles PY - 2025 AN - OPUS4-64785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - Nanoparticle Characterisation - The long way to standardisation N2 - Diese Präsentation gibt einen Überblick über die Entwicklung der Nanopartikelforschung von ca. 2005 bis heute. Beginnend mit den Besonderheiten von Nanopartikeln und der Aufnahme in den menschlichen Körper über Messmethoden bis hin zur Entwicklung einer Prüfrichtlinie im Rahmen der OECD und einem Ausblick über die absehbaren digitalen Entwicklungen. T2 - Abteilungsseminar der Abteilung 4 CY - Berlin, Germany DA - 27.02.2025 KW - Nanomaterials KW - Nano KW - OECD KW - Standardisierung KW - Advanced Materials PY - 2025 AN - OPUS4-64977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - da Rocha, Morgana A1 - Chaves, Eduardo T1 - Assessment of Pd Nanoparticles as Chemical Modifiers and Preconcentration Agents for Cd Determination in River Water by HR-CS GFAAS N2 - Cadmium is a heavy metal that can be hazardous to environmental and human health, even in trace levels.[1] In this way, the extraction and/or preconcentration of this element from environmental samples, such as river water, is important to obtain information about the composition and monitoring of potential contamination.[2] High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS) is widely used for Cd determination. However, the determination of this element at trace-level can be challenging, especially in complex matrices. Thus, nanoparticles (NPs) can be used as an alternative for the extraction and preconcentration of Cd in environmental samples, minimizing the potential interferences and improving the method´s limit of detection (LOD). Considering that Pd is also widely used as a “universal” chemical modifier, this project aims todevelop PdNPs capped with 3-mercaptopropionic acid (MPA) to assess its potential as a chemical modifier and preconcentration agent for Cd determination by HR-CS GF AAS in river water. In this way, the synthesis of PdNPs was performed in an aqueous medium by using ascorbic acid as a reducing agent. The characterization of PdNPs was performed by checking the size via dynamic light scattering (DLS), transmission electron microscopy (TEM), and inductively coupled plasma mass spectrometer in single particle mode (spICP-MS), where the median size was 56 ± 14 nm. The temperature program of HR-CS GFAAS was optimized for river water under three conditions: using Pd(NO3)2/Mg2+ (0.01%/0.5% m/v) as a chemical modifier (condition A), using Pd NPs as a chemical modifier (condition B), and without chemical modifiers (condition C). The pyrolysis and atomization temperatures for condition A were 900 and 1900 ºC, for condition B were 700 ºC and 1900 ºC, and for condition C were 500 and 1900ºC, respectively. Besides the temperature of pyrolysis for the universal chemical modifier being higher than that of PdNPs, using the PdNPs, the absorbance is significantly greater, according to the t-test for pairs, at a 95% confidence level. In addition, the evaluation of the preconcentration property of the PdNP was performed by adding 1 µg L-1 of Cd2+ in buffer pH 4 in two systems: one with and the other without PdNPs. After 1 h of stirring, both systems were centrifuged at 3600 rpm for 10 min, and the absorbance in HR-CS GFAAS for Cd in both supernatants was evaluated. According to ANOVA from the t-test, at a 95% confidence level, there was a significant difference in the absorbance, indicating that Cd is interacting with the PdNPs. A multifactorial planning 2k, where k is the number of parameters of the extraction, which was time of extraction (10; 35; 60 min), Volume of Pd NPs (100; 300; 500 µL), pH (3; 5; 7), was used to evaluate the parameters with significant influence in the preconcentration of Cd2+. According to ANOVA, with 95% confidence, there is no lack of fit, and the parameters volume of PdNP and pH significantly influenced the response. In this way, the Doehlert methodology surface will be applied to both significant parameters. The goal is to achieve optimal conditions that increase the extraction efficiency of Cd2+ from environmental samples. The results indicate that the developed material is promising to use as a chemical modifier and for the preconcentration of Cd2+ in environmental samples. T2 - 17th Rio Symposium on Atomic Spectrometry (RSAS 2025) CY - Sao Pedro, Brazil DA - 12.11.2025 KW - Pd Nanoparticles KW - HR-CS GFAAS KW - Cadmium Ion Sensing KW - Particle Characterization KW - Particle Surface PY - 2025 AN - OPUS4-64997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Batatia, Ilyes A1 - Benner, Philipp A1 - Chiang, Yuan A1 - Elena, Alin M. A1 - Kovács, Dávid P. A1 - Riebesell, Janosh A1 - Advincula, Xavier R. A1 - Asta, Mark A1 - Avaylon, Matthew A1 - Baldwin, William J. A1 - Berger, Fabian A1 - Bernstein, Noam A1 - Bhowmik, Arghya A1 - Bigi, Filippo A1 - Blau, Samuel M. A1 - Cărare, Vlad A1 - Ceriotti, Michele A1 - Chong, Sanggyu A1 - Darby, James P. A1 - De, Sandip A1 - Della Pia, Flaviano A1 - Deringer, Volker L. A1 - Elijošius, Rokas A1 - El-Machachi, Zakariya A1 - Fako, Edvin A1 - Falcioni, Fabio A1 - Ferrari, Andrea C. A1 - Gardner, John L. A. A1 - Gawkowski, Mikołaj J. A1 - Genreith-Schriever, Annalena A1 - George, Janine A1 - Goodall, Rhys E. A. A1 - Grandel, Jonas A1 - Grey, Clare P. A1 - Grigorev, Petr A1 - Han, Shuang A1 - Handley, Will A1 - Heenen, Hendrik H. A1 - Hermansson, Kersti A1 - Ho, Cheuk Hin A1 - Hofmann, Stephan A1 - Holm, Christian A1 - Jaafar, Jad A1 - Jakob, Konstantin S. A1 - Jung, Hyunwook A1 - Kapil, Venkat A1 - Kaplan, Aaron D. A1 - Karimitari, Nima A1 - Naik, Aakash A. A1 - Csányi, Gábor T1 - A foundation model for atomistic materials chemistry N2 - Atomistic simulations of matter, especially those that leverage first-principles (ab initio) electronic structure theory, provide a microscopic view of the world, underpinning much of our understanding of chemistry and materials science. Over the last decade or so, machine-learned force fields have transformed atomistic modeling by enabling simulations of ab initio quality over unprecedented time and length scales. However, early machine-learning (ML) force fields have largely been limited by (i) the substantial computational and human effort required to develop and validate potentials for each particular system of interest and (ii) a general lack of transferability from one chemical system to the next. Here, we show that it is possible to create a general-purpose atomistic ML model, trained on a public dataset of moderate size, that is capable of running stable molecular dynamics for a wide range of molecules and materials. We demonstrate the power of the MACE-MP-0 model—and its qualitative and at times quantitative accuracy—on a diverse set of problems in the physical sciences, including properties of solids, liquids, gases, chemical reactions, interfaces, and even the dynamics of a small protein. The model can be applied out of the box as a starting or “foundation” model for any atomistic system of interest and, when desired, can be fine-tuned on just a handful of application-specific data points to reach ab initio accuracy. Establishing that a stable force-field model can cover almost all materials changes atomistic modeling in a fundamental way: experienced users obtain reliable results much faster, and beginners face a lower barrier to entry. Foundation models thus represent a step toward democratizing the revolution in atomic-scale modeling that has been brought about by ML force fields. KW - Materials Design KW - Thermal Conducitivity KW - Nanoparticles KW - Batteries PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647829 DO - https://doi.org/10.1063/5.0297006 SN - 0021-9606 VL - 163 IS - 18 SP - 1 EP - 89 PB - AIP Publishing AN - OPUS4-64782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - The digital product passport N2 - This presentation contains information for industry and the scientific communitiy about the new digital product passport and the demands from the EU. Furthermore a short overview is given about the different supporting activities which are currently under developement by BAM. T2 - 3. Netzwerktag Cluster Nanotechnologie CY - Würzburg, Germany DA - 02.07.2025 KW - DPP KW - ESPR KW - Product Passport KW - Ökodesignrichtlinie KW - DMP PY - 2025 AN - OPUS4-64964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - del Rocío Silva-Calpa, Leydi A1 - de Souza Bernardes, Andrelaine A1 - de Avillez, Roberto Ribeiro A1 - Smales, Glen J. A1 - Camarena, Mariella Alzamora A1 - Ramos Moreira, Carla A1 - Zaitsev, Volodymyr A1 - Archanjo, Braulio Soares A1 - Letichevsky, Sonia T1 - From support to shell: An innovative design of air-stable nano zero-valent iron–nickel catalysts via structural self-assembly N2 - This work presents the design of air-stable core–shell zero-valent iron–nickel nanofilaments supported on silica and zeolite, developed to overcome the oxidation limitations of nano zero-valent iron in environmental catalysis. The nanofilaments feature ∼ 100 nm iron–nickel cores surrounded by ultrafine iron-rich threads embedded with aluminates and silicates, originating from partial support dissolution during synthesis. By varying the iron reduction time, three catalysts were prepared: one on silica reduced for 30 min, and two on zeolite reduced for 30 and 15 min. They were thoroughly characterized using nitrogen physisorption, X-ray diffraction, electron microscopy with elemental analysis, Mössbauer spectroscopy, and small-angle X-ray scattering. The zeolite-supported catalyst reduced for 15 min showed the highest activity for hexavalent chromium reduction (rate constant 8.054 min−1), attributed to a higher fraction of reactive iron–nickel phases formed under shorter reduction. Its tailored core–shell structure improves air stability and surface reactivity, highlighting its potential as a next-generation zero-valent iron nanocatalyst for aqueous remediation KW - nanofilaments KW - Core–shell nanostructures KW - Air-stable nanomaterials KW - Structure-controlled FeNi nanoparticles KW - Hexavalent chromium reduction KW - X-ray scattering KW - MOUSE PY - 2025 DO - https://doi.org/10.1016/j.mtcomm.2025.114142 SN - 2352-4928 VL - 49 SP - 1 EP - 15677 PB - Elsevier Ltd. AN - OPUS4-65087 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Berry, Charlotte A. A1 - Reinart, Katre A1 - Smales, Glen J. A1 - Wilkinson, Holly N. A1 - Hardman, Matthew J. A1 - Marchesini, Sofia A1 - Lee, William A1 - Nery, Eveliny Tomás A1 - Moghaddam, Zarrin A1 - Hoxha, Agron A1 - Felipe-Sotelo, Mónica A1 - Gutierrez-Merino, Jorge A1 - Carta, Daniela T1 - Hierarchically porous copper and gallium loaded sol–gel phosphate glasses for enhancement of wound closure N2 - In this work, we have developed hierarchically porous phosphate-based glasses (PPGs) as novel materials capable of promoting wound closure and simultaneously delivering antibacterial effects at the glass-biological tissue interface. PPGs are characterised by extended porosity, which enhances the controlled release of therapeutic ions, whilst facilitating cell infiltration and tissue growth. Two series of PPGs in the systems P2O5–CaO–Na2O–CuO and P2O5–CaO–Na2O–Ga2O3 with (CuO and Ga2O3 0, 1, 5 and 10 mol%) were manufactured using a supramolecular sol–gel synthesis strategy. Significant wound healing promotion (up to 97%) was demonstrated using a human ex vivo wound model. A statistically significant reduction of the bacterial strains Staphylococcus aureus and Escherichia coli was observed in both series of PPGs, particularly those containing copper. All PPGs exhibited good cytocompatibility on keratinocytes (HaCaTs), and analysis of PPG dissolution products over a 7-day period demonstrated controlled release of phosphate anions and Ca, Na, Cu, and Ga cations. These findings indicate that Cu- and Ga-loaded PPGs are promising materials for applications in soft tissue regeneration given their antibacterial capabilities, in vitro biocompatibility with keratinocytes and ex vivo wound healing properties at the biomaterial-human tissue interface. KW - Porous glass KW - Phosphates KW - Wound healing materials KW - Antibacterial KW - X-ray scattering KW - MOUSE PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-650867 DO - https://doi.org/10.1039/d5tb01945a SN - 2050-750X VL - 13 IS - 48 SP - 15662 EP - 15677 PB - Royal Society of Chemistry (RSC) AN - OPUS4-65086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sun, Yijuan A1 - Pérez-Padilla, Víctor A1 - Valderrey, Virginia A1 - Bell, Jérémy A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Ratiometric detection of perfluoroalkyl carboxylic acids using dual fluorescent nanoparticles and a miniaturised microfluidic platform N2 - The widespread contamination of soil and water with perfluoroalkyl substances (PFAS) has caused considerable societal and scientific concern. Legislative measures and an increased need for remediation require effective on-site analytical methods for PFAS management. Here we report on the development of a green-fluorescent guanidine-BODIPY indicator monomer incorporated into a molecularly imprinted polymer (MIP) for the selective detection of perfluorooctanoic acid (PFOA). Complexation of PFOA by the indicator, which is mediated by concerted protonation-induced ion pairing-assisted hydrogen bonding, significantly enhances fluorescence in polar organic solvents. The MIP forms as a thin layer on silica nanoparticles doped with tris(bipyridine)ruthenium(II) chloride, which provides an orange emission signal as internal reference, resulting in low measurement uncertainties. Using a liquid-liquid extraction protocol, this assay enables the direct detection of PFOA in environmental water samples and achieves a detection limit of 0.11 µM. Integration into an opto-microfluidic system enables a compact and user-friendly system for detecting PFOA in less than 15 minutes. KW - PFAS KW - Molecular imprinting KW - Microfluidics KW - Fluorescence KW - Onsite assay PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-650270 DO - https://doi.org/10.1038/s41467-025-66872-9 SN - 2041-1723 VL - 16 IS - 1 SP - 1 EP - 16 PB - Springer Science and Business Media LLC AN - OPUS4-65027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kostenko, Yevgen T1 - Harmonizing Viscoplastic Material Model Application within the BMBF-Project “DigitalModelling” of the Platform Material Digital- Basic Idea, General Strategy and Current Status N2 - For decades, Germany stands for excellent cutting-edge research in the field of so-called higher-value constitutive visco-plastic material models and can draw on a large and globally unique pool of material data. However, both the data and the model structure are extremely heterogeneous and sometimes fundamentally different from research center to research center and from industrial partner to industrial partner. To address the heterogeneity in the material model landscape appropriately, an adaptable material model for the specific application and the specific material is required. The relevant parameters for the adapted material model must be identified as objectively and automatically as possible. To achieve a potentially real-time capable implementation, the material model equation system should be abstracted. The “DigitalModeling” project, organized within the German Platform initiative Material Digital, aims to create a standard and an interface that harmonize the scientific and technical development of constitutive, visco-plastic material models, increase their visibility and maximize the productivity of future research funding. This presentation summarizes the basic idea, the strategy behind it as well as the current status of the project, which was started beginning of 2024. T2 - vgbe Workshop with Technical Exhibition Materials & Quality Assurance CY - Bergen, Norway DA - 07.05.2025 KW - Visco-plastic Material Model KW - Simulation Workflows KW - Ontologies KW - Digitalization PY - 2025 AN - OPUS4-64043 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana T1 - Bridging Structure and Electronic State: Real-time XES–XRD Fusion for Functional Alloys N2 - We present a unified X-ray Emission Spectroscopy (XES) and X-ray Diffraction (XRD) approach for real-time, in situ characterization of materials, demonstrated on Co₂FeSi Heusler alloys under varied heat treatments. The combination of XES and XRD is particularly well-suited to Heusler alloys, where subtle changes in atomic ordering and electronic structure (e.g. site occupancy, hybridization, and spin state) are tightly interdependent and critical for their magnetic and transport properties. In addition, this method enables more efficient materials design by reducing experimental iterations through comprehensive structural and electronic analysis. Developed at the mySpot beamline at BESSY-II, the platform integrates (a) digital twin-based experiment planning, (b) open-source XES spectral simulations, (c) an optimized single-shot, two-element XES setup with sub-pixel resolution for enhanced energy precision, and (d) result-driven beamtime utilization. With an unprecedented synchronized XES-XRD platform, we aim to shed light on how diffusion-controlled processes in Heusler alloys and double perovskites at elevated temperatures establish the formation of specific phases with distinct structure types in real time. This, in turn, strongly impacts the functional properties of the materials under scrutiny. T2 - XLIV Colloquium Spectroscopicum Internationale CY - Ulm, Germany DA - 27.07.2025 KW - Multimodal KW - X-ray spectroscopy KW - X-ray diffraction KW - Functional alloys PY - 2025 AN - OPUS4-63991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pavlidis, Sotirios A1 - Teutloff, Christian A1 - de Oliveira Guilherme Buzanich, Ana A1 - Krause, Konstantin B. A1 - Emmerling, Franziska A1 - Bittl, Robert A1 - Abbenseth, Josh T1 - A Crystalline Bismuth(II) Radical Anion: Synthesis, Characterization, and Reactivity N2 - AbstractWe report the synthesis of a planarized tris‐amidobismuthane supported by a rigid, bulky NNN pincer ligand, which enforces a T‐shaped geometry at the bismuth center. The Bi(NNN) complex features a low‐lying LUMO with distinct Bi(6p) orbital character as shown by DFT calculations. Cyclic voltammetry reveals a fully reversible one‐electron reduction at E1/2 = –1.85 V versus Fc0/+ in THF. Chemical reduction with KC8 in the presence of 4,7,13,16,21,24‐hexaoxa‐1,10‐diazabicyclo[8.8.8]hexacosane (222‐crypt) enables the isolation of an unprecedented Bi(II) radical anion in high isolated yields. Multi‐frequency EPR, X‐ray absorption spectroscopy and SQUID magnetometry complemented by theoretical calculations confirm localization of the unpaired electron on the bismuth center. Preliminary reactivity studies display radical reactivity as shown by single‐electron transfer chemistry and radical coupling reactions. KW - Bi(III) PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-644143 DO - https://doi.org/10.1002/anie.202515545 SN - 1433-7851 VL - 64 IS - 49 SP - 1 EP - 6 PB - Wiley VHC-Verlag AN - OPUS4-64414 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernardino, Carolina T1 - Effortless Antimicrobial Shield: Spray-coated Silica Nanoparticles For Safer High-touch Surfaces N2 - Functional films with tailored interfacial properties play a pivotal role for the development of next generation surface coatings, particularly in healthcare-related environments. In this contribution, we present a facile spray-coating method for the creation of antimicrobial thin films on high-touch surfaces using mesoporous silica nanoparticles (MSNs) that were specifically functionalized to enable strong adhesion and sustained release of metal-based antimicrobial agents. The process is scalable and addresses key challenges in adhesion control, film homogeneity, and long-term antimicrobial function against a large range of key pathogens responsible for nosocomial infections. Three distinct types of MSNs – bearing amine (MSN-NH₂), carboxy (MSN-COOH), and thiol (MSN-SH) surface groups – were synthesized to optimize both metal ion loading and interactions with polyelectrolyte-based adhesion layers. These surface modifications not only provide chemical handles for Cu²⁺ and Ag⁺ ion coordination but also modulate nanoparticle-substrate interactions and dispersion behavior during film formation. The coating architecture consists of a two-step process: first, spray deposition of polyelectrolyte primers that anchor strongly to stainless steel substrates; second, a nanoparticle layer that bonds electrostatically and chemically to the primer, forming robust films with great surface coverage. The films were characterized to assess structural integrity, adhesion, and functional performance. Transmission electron microscopy (TEM) and N₂ sorption analysis confirmed the mesoporous structure. ATR-FTIR and zeta potential measurements validated surface functionalization and colloidal stability. Environmental SEM revealed conformal coating across the stainless-steel surfaces with uniform nanoparticle distribution. The coating's adhesion strength was maintained through mechanical wiping and simulated wear and abrasion tests, demonstrating film durability relevant in real-world use scenarios. Antimicrobial testing under semi-dry, application-relevant conditions showed excellent performance for Ag⁺-loaded MSN-SH films, inhibiting growth of Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. These results highlight the synergistic role of surface chemistry, metal ion loading, and film-substrate adhesion in creating effective and wear-resistant functional coatings. Moreover, these films do not show any cytotoxic properties towards Human Dermal Fibroblasts (HDF). This study contributes new insights into the design of multifunctional films where adhesion, surface functionality, and scalable processing are co-optimized for enhanced performance and shows how combining tailored surface chemistry and wide-ranging antimicrobial activity brings together smart material design for practical and safe use. T2 - MRS Fall Meeting 2025 CY - Boston, MA, USA DA - 30.11.2025 KW - Mesoporous silica nanoparticles KW - Silver KW - Antimicrobial KW - Coatings KW - Thin film PY - 2025 AN - OPUS4-65150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arai, Marylyn S. A1 - Brambilla, Gabriel V. A1 - Corrêa, Bruna Carolina A1 - Merízio, Leonnam G. A1 - Inada, Natalia M. A1 - de Camargo, Andrea S. S. T1 - A Dual-Mode “Turn-On” Ratiometric Luminescent Sensor Based on Upconverting Nanoparticles for Detection and Differentiation of Gram-Positive and Gram-Negative Bacteria N2 - Infectious bacterial diseases, intensified by antibiotic resistance, cause millions of deaths annually and pose risks beyond human health, including water and food contamination. Current diagnostics are often slow, require complex equipment, and lack specificity, highlighting the need for rapid and reliable detection methods. To address this, we developed a luminescent sensor based on NaYF4 upconverting nanoparticles (UCNPs) doped with Er3+ or Tm3+, coated with COOH-PEG4-COOH, and functionalized with vancomycin (Van) or polymyxin-B (Poly) to selectively target Gram-positive and Gram-negative bacteria, respectively. Gold nanoparticles (AuNPs) served as quenchers, enabling a ratiometric “turn-on” mechanism: upon bacterial binding, the UCNP emission, initially quenched by AuNPs, was partially restored. This allowed Differentiation through changes in the green/red (G/R) ratio for Er-UCNP@PEG4-Van and the blue/red (B/R) ratio for Tm-UCNP@PEG4-Poly. The sensor distinguished between Gram-positive and Gram-negative bacteria over a wide concentration range (0.05 to 5 × 105 CFU/mL) and showed high correlation with actual bacterial counts (r = 0.99 for S. aureus, r = 0.91 for E. coli). This platform is a potential fast, selective, and reliable tool for bacterial detection in clinical and environmental settings. KW - Lminescent sensor KW - Upconverting nanoparticles KW - Gram-positive and Gram-negative bacteria KW - Ratiometric luminescent sensors PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652785 DO - https://doi.org/10.1021/acsomega.5c07006 SN - 2470-1343 VL - 10 IS - 39 SP - 46040 EP - 46050 PB - American Chemical Society (ACS) AN - OPUS4-65278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arai, Marylyn Setsuko A1 - Machado, Thales Rafael A1 - da Silva, Beatriz Giacomelli Rodrigues A1 - Vilela, Raquel Riciati do Couto A1 - de Camargo, Andrea Simone Stucchi A1 - Zucolotto, Valtencir T1 - Biomimetic Upconverting Nanoplatforms for Glioblastoma Bioimaging and Targeted Therapy N2 - Infectious bacterial diseases, intensified by antibiotic resistance, cause millions of deaths annually and pose risks beyond human health, including water and food contamination. Current diagnostics are often slow, require complex equipment, and lack specificity, highlighting the need for rapid and reliable detection methods. To address this, we developed a luminescent sensor based on NaYF4 upconverting nanoparticles (UCNPs) doped with Er3+ or Tm3+, coated with COOH-PEG4-COOH, and functionalized with vancomycin (Van) or polymyxin-B (Poly) to selectively target Gram-positive and Gram-negative bacteria, respectively. Gold nanoparticles (AuNPs) served as quenchers, enabling a ratiometric “turn-on” mechanism: upon bacterial binding, the UCNP emission, initially quenched by AuNPs, was partially restored. This allowed differentiation through changes in the green/red (G/R) ratio for Er-UCNP@PEG4-Van and the blue/red (B/R) ratio for Tm-UCNP@PEG4-Poly. The sensor distinguished between Gram-positive and Gram-negative bacteria over a wide concentration range (0.05 to 5 × 105 CFU/mL) and showed high correlation with actual bacterial counts (r = 0.99 for S. aureus, r = 0.91 for E. coli). This platform is a potential fast, selective, and reliable tool for bacterial detection in clinical and environmental settings. KW - Glioblastoma KW - Homotypic targeting KW - Cell membrane coating KW - Upconverting nanoparticles KW - Temozolamide KW - Near infrared bioimaging KW - Drug delivery PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652808 DO - https://doi.org/10.1021/acsanm.5c04567 SN - 2574-0970 VL - 10 IS - 39 SP - 1 EP - 13 PB - American Chemical Society (ACS) AN - OPUS4-65280 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea A1 - Arai, Marylyn Setsuko T1 - Upconversion nanoparticles for chemical, physical and biological sensing: from functionalization to point-of-care devices N2 - Among several applications, versatile upconversion nanoparticles (UCNPs) which can convert lower-energy infrared radiation into higher-energy visible or ultraviolet light, have emerged as one of the most powerful tools in the field of chemical, physical and biological sensing. The use of UCNPs in fluorescent sensors allows non-invasive, highly sensitive, and selective detection methods, which are particularly beneficial in environments requiring minimal interference and high precision for analytes that can range from metal ions to biomolecules. In this lecture, an overview and the state of the art will be given, accompanied by examples of our recent contributions to key areas such as chronic disease diagnostics, bacterial sensing, and multifunctionally responsive nanoplatforms: (1) An Enhanced Luminescence Lateral-Flow Assay (ELLA) designed for rapid (< 15 min) and early detection of acute kidney injury biomarkers in urine samples, using a commercial cell phone camera, will be presented. The platform is based on Er³⁺- and Tm³⁺-doped UCNPs whose emissions intensities are 40-fold enhanced by an Au-coated mesoporous silica shell, enabling the accurate detection of KIM-1 and NGAL biomarkers with detection limits as low as 0.23 ng/mL; (2) Also, a multifunctional nanoplatform that combines Tm³⁺-doped UCNPs with a Cu(I) complex for applications in oxygen sensing, optical thermometry, and emission colour tuning will be presented. The platform utilizes Luminescent Resonance Energy Transfer (LRET) to achieve efficient energy transfer, enabling red emission from the Cu(I) complex while allowing the use of the UCNP’s original emissions for thermometry. The dual functionality allows sensitive O2 detection and temperature measurements, with relative sensitivities of up to 1% K⁻¹; (3) The critical challenge of rapid bacterial detection and differentiation was addressed by the development of a novel UCNP-based sensor. By functionalizing UCNPs with the antibiotics - vancomycin for Gram-(+) and polymyxin-B for Gram-(-), and using Au nanoparticles as intensity quenchers, the sensor leverages a ratiometric "turn-on" mechanism for selective detection of the bacteria, through changes in the green/red (G/R) ratio for Er-UCNP@PEG4-Van, and blue/red (B/R) ratio for Tm-UCNP@PEG4-Poly. By this approach, differentiation was possible over a wide concentration range of bacteria (0.05 to 5 x 105 CFU/mL) with high correlation with actual bacterial counts (r = 0.99 for S. aureus, r = 0.91 for E. coli); (4) Recently, we have demonstrated a water dispersable ratiometric pH-nanosensor based on host-guest interaction of Tm3+/Yb3+ co-doped UCNPs functionalized with b-cyclodextrin (b-CD) and a pH-responsive nitrobenzoxadiazol dye modified with adamantane (NBD-Ad). The sensor shows a ratiometric emission response (blue/red) over a pH range of 8.0 – 11.0 with high reproducibility, excellent reusability and selectivity, even in the presence of interferents. Together, the presented examples highlight the versatility and potential of UCNPs to develop novel sensors, offering measurable advances in diagnostics, environmental monitoring, and beyond. T2 - Shift2025 - Spectral shaping for biomedical and energy applications CY - Tenerife, Spain DA - 13.10.2025 KW - Upconverting nanoparticles KW - Fluorescent sensors KW - Point-of-care devices PY - 2025 AN - OPUS4-65282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hallier, Dorothea C. A1 - Radnik, Jörg A1 - Dietrich, Paul M. A1 - Seitz, Harald A1 - Hahn, Marc Benjamin T1 - Radiation damage to amino acids, peptides and DNA-binding proteins: the influence of water directly monitored by X-ray photoelectron spectroscopy N2 - Ionizing radiation damage to biomolecules plays a crucial role in radiotherapy as a cancer treatment. Among these, DNA-binding proteins are of particular interest due to their pivotal roles in shielding DNA and facilitating its repair. Hence, in this study, we present first-ever recorded data of radiation damage to a protein monitored directly with near-ambient pressure (NAP) X-ray photoelectron spectroscopy (XPS) under a water atmosphere. This surface sensitive technique was used to in situ damage and probe gene-V protein (G5P, a model DNA-binding protein) under wet NAP conditions and dry vacuum (UHV) conditions to determine the effect of water on the radiation response. In addition, the X-ray radiation damage to selected pure amino acids and short homopeptides was determined to better understand the variety of damage mechanisms within the complex protein. In dry samples, drastic chemical changes were detected in all biomolecules dominated by fragmentation processes. Here, the breakage of peptide bonds in the peptides and the protein are dominant. Surprisingly, hydration – despite introducing additional indirect damage pathways via water radiolysis – led to a reduction in overall radiation damage. This behaviour was attributed to hydration-dependent changes in reaction rates and respective deexcitation and damaging channels within the molecules and secondary species such as low-energy (LEE), (pre)-hydrated/(pre)-solvated electrons and radical species such as hydroxyl radicals. KW - Radiation damage KW - (Near-ambient pressure) X-ray photoelectron spectroscopy KW - Ultra-high vacuum PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647565 DO - https://doi.org/10.1039/d5cp01887k VL - 27 IS - 48 SP - 1 EP - 22 PB - Royal Society of Chemistry AN - OPUS4-64756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Amiri, Hesam A1 - Nikookhesal, Aidin A1 - Murugan, Divagar A1 - Scholz, Stefan A1 - Frentzen, Michael A1 - Cao, Yuan A1 - Nickl, Philip A1 - Radnik, Jörg A1 - Stockmann, Jörg M. A1 - Vu, Xuan-Thang A1 - Narayanan, Madaboosi S. A1 - Knoch, Joachim A1 - Ingebrandt, Sven A1 - Adeli, Mohsen A1 - Pachauri, Vivek T1 - High precision correlative analysis of dielectric behavior evolution and anisotropy in graphene oxide thin film as a function of thermal annealing parameters N2 - Graphene oxide (GO) and reduced graphene oxide (rGO) attract keen interest from different science and technology sectors owing to their tunable material characteristics dependent on C/O ratio. Thermal annealing in different gaseous environments serves as an effective approach to manipulate the C/O ratio in graphitic lattice, making it suitable for various electronic, optical and composites applications. Despite regular use of thermal annealing, systematic studies on dielectric properties evolution in GO against different annealing parameters remain elusive. This work reports on a reliable approach that adopts a joint Raman Spectroscopy, Mueller Matrix Spectroscopic Ellipsometry (MMSE) and high-precision electrical impedance spectroscopy (HP-EIS) framework for studying the evolution of dielectric behavior and anisotropies in GO. The experimental platform involved lithography-defined GO patterns connected to metal microelectrodes and glass passivation for protection from gaseous environments during annealing and measurements using Raman, MMSE and HP-EIS. The presented study delineates the effects of annealing parameters such as temperature, heating rate, and gaseous environment on GO permittivity. Novel findings include the discovery of a direct relationship between heating rate and dielectric properties, as well as determination of vertical limitation of MMSE for permittivity distribution characterization in GO, for the first time, to be around 8 nm. KW - Thermal annealing KW - Reduced graphene oxide KW - Thin films KW - 2D materials KW - Spectroscopic ellipsometry PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652428 DO - https://doi.org/10.1016/j.nwnano.2025.100130 SN - 2666-9781 VL - 11 SP - 1 EP - 10 PB - Elsevier Ltd. AN - OPUS4-65242 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tavernaro, Isabella A1 - Rajotte, Isabelle A1 - Thibeault, Marie-Pier A1 - Sander, Philipp C. A1 - Kodra, Oltion A1 - Lopinski, Gregory A1 - Radnik, Jörg A1 - Johnston, Linda J. A1 - Brinkmann, Andreas A1 - Resch-Genger, Ute T1 - Quantifying surface groups on aminated silica nanoparticles of different size, surface chemistry, and porosity with solution NMR, XPS, optical assays, and potentiometric titration N2 - We assessed the quantification of surface amino functional groups (FGs) for a large set of commercial and custom-made aminated silica nanoparticles (SiO2 NPs) with sizes of 20–100 nm, prepared with different sol–gel routes, different amounts of surface amino FGs, and different porosity with four methods providing different, yet connected measurands in a bilateral study of two laboratories, BAM and NRC, with the overall aim to develop standardizable measurements for surface FG quantification. Special emphasis was dedicated to traceable quantitative magnetic resonance spectroscopy (qNMR) performed with dissolved SiO2 NPs. For the cost efficient and automatable screening of the amount of surface amino FGs done in a first step of this study, the optical fluorescamine assay and a potentiometric titration method were utilized by one partner, i.e., BAM, yielding the amount of primary amino FGs accessible for the reaction with a dye precursor and the total amount of (de)protonatable FGs. These measurements, which give estimates of the minimum and maximum number of surface amino FGs, laid the basis for quantifying the amount of amino silane molecules with chemo-selective qNMR with stepwise fine-tuned workflows, involving centrifugation, drying, weighting, dissolution, measurement, and data evaluation steps jointly performed by BAM and NRC. Data comparability and relative standard deviations (RSDs) obtained by both labs were used as quality measures for method optimization and as prerequisites to identify method-inherent limitations to be later considered for standardized measurement protocols. Additionally, the nitrogen (N) to silicon (Si) ratio in the near-surface region of the SiO2 NPs was determined by both labs using X-ray photoelectron spectroscopy (XPS), a well established surface sensitive analytical method increasingly utilized for microparticles and nano-objects which is currently also in the focus of international standardization activities. Overall, our results underline the importance of multi-method characterization studies for quantifying FGs on NMs involving at least two expert laboratories for effectively identifying sources of uncertainty, validating analytical methods, and deriving NM structure–property relationships. KW - Advanced Materials KW - Amino Groups KW - Calibration KW - Characterization KW - Functional groups KW - Method Comparison KW - Nano Particle KW - Validation KW - XPS KW - Optical Assay KW - Quantification KW - Surface Analysis KW - Reference Materials KW - Synthesis KW - Fluorescence PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-649992 DO - https://doi.org/10.1039/d5na00794a VL - 7 IS - 21 SP - 6888 EP - 6900 PB - Royal Society of Chemistry AN - OPUS4-64999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schusterbauer, Robert A1 - Schünemann, Pia A1 - Nickl, Philip A1 - Er, Jasmin A1 - Kämmer, Victoria A1 - Junge, Florian A1 - Fazzani, Salim A1 - Mrkwitschka, Paul A1 - Meermann, Björn A1 - Haag, Rainer A1 - Donskyi, Ievgen T1 - Bifunctional Reduced Graphene Oxide Derivatives for PFOA Adsorption N2 - Innovative materials are crucial for removing persistent pollutants per‐ and polyfluorinated alkyl substances (PFAS) from water. Here, a novel bifunctional reduced graphene oxide (TRGO) adsorbent is developed and characterized by advanced surface sensitive methods. Compared to pristine TRGO, the functionalized TRGO shows markedly improved PFAS removal efficiency and demonstrates strong potential for water purification applications. KW - Adsorber KW - PFAS KW - HR-CS-GFMAS PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-651238 DO - https://doi.org/10.1002/ceur.202500240 SN - 2751-4765 SP - 1 EP - 7 PB - Wiley VHC-Verlag AN - OPUS4-65123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - The emp project smurfnano – Standardizing the quantification of surface functionalities, ligands, and coatings on nanomaterials N2 - For industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, opto-electronics, and information storage, meanwhile engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely fabricated. NP function, interaction with biological species, and environmental fate are largely determined by surface functionalities. Reliable, reproducible, and standardized surface characterization methods are therefore vital for quality control of NPs, and mandatory to meet increasing concerns regarding their safety. Also, industry, international standardization organizations, regulatory agencies, and policymakers need validated and standardized measurement methods and reference materials. These needs are addressed by the recently started European metrology project SMURFnano involving 12 partners from different National Metrology Institutes, designated institutes, and research institutes, two university groups as well as one large company and one SME producing NPs. This project as well as first results derived from the development of test and reference materials with a well characterized surface chemistry and ongoing interlaboratory comparisons will be presented. T2 - LNE Workshop CY - Paris, France DA - 04.11.2025 KW - Quality assurance KW - Fluorescence KW - Nano KW - Particle KW - Synthesis KW - Characterization KW - Advanced material KW - Surface KW - Standardization KW - Reference material KW - Functional group KW - Quantification KW - Coating KW - Automation KW - Potentiometry KW - Method KW - Validation KW - Optical assay KW - Fluram KW - qNMR KW - Comparison KW - ILC PY - 2025 AN - OPUS4-64725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scholtz, Lena T1 - Standardized Measurements of Surface Functionalities on Nanoparticles N2 - Engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely and commonly fabricated for industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, opto-electronics, and information storage. NP function, their interaction with biological species, and also their environmental fate are largely determined by the surface functionalities of the particles. Reliable, reproducible, and standardized surface characterization methods are therefore vital for quality control of NPs, determination of their applicability, and mandatory to meet increasing concerns regarding their safety. In addition, industry as well as international standardization organizations, regulatory agencies, and policymakers need validated and standardized measurement methods and reference materials. However, methodologies for determining NP surface properties, including the amount, chemical composition, and homogeneity of surface functionalities and coatings are largely non-standardized up until now. Suitable methods for determining surface functionalities on ligand-stabilized core and core/shell NPs include advanced techniques such as traceable quantitative nuclear magnetic resonance (qNMR), as well as X-ray electron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF-SIMS), and simpler optical and electrochemical methods. The latter, typically less costly methods are often used by SMEs, e.g., for quality control. To validate methods, establish measurement uncertainties, test reference materials, and produce reference data, international interlaboratory comparisons (ILC) on NP surface functionalization measurements are required to provide well characterized test and reference nanomaterials including benchmark values.[1] These needs are addressed by the current European metrology project SMURFnano, involving 12 partners from different National Metrology Institutes, designated and research institutes, two university groups as well as one large company and one SME producing NPs. This project, as well as first results derived from the development of test and reference materials with a well characterized surface chemistry, and ongoing interlaboratory comparisons, will be presented. T2 - eMRS - Fall Meeting 2025 CY - Warsaw, Poland DA - 15.09.2025 KW - Nano KW - Particle KW - Silica KW - Polymer KW - Metrology KW - Quality assurance KW - Reference material KW - Surface chemistry KW - Size KW - Shape KW - Particle number concentration KW - Method KW - Optical assay KW - qNMR KW - Validation KW - Potentiometry KW - XPS PY - 2025 AN - OPUS4-64243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Advanced Materials for the Energy Transition N2 - Advanced Materials are crucial for the sucess of the energy transition. 10 relevant advanced materials were chosen and their role for relevant technologies was analysed. Challenges regarding their safe and sustainable use are discussed. T2 - OECD WPMN SG Advanced Materials Teleconference CY - Online meeting DA - 30.09.2025 KW - Solar Cells KW - Advanced Carbon Materials KW - Fuel Cells KW - Batteries KW - Hydrogen Storage PY - 2025 AN - OPUS4-64306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hülagü, Deniz A1 - Hirahara, Kenta A1 - Fischer, Daniel A1 - Florian, Camilo A1 - Schusterbauer, Robert A1 - Ermilova, Elena A1 - Krüger, Jörg A1 - Unterreiner, Andreas-Neil A1 - Bonse, Jörn A1 - Hertwig, Andreas T1 - Using imaging ellipsometry to understand femtosecond laser materials processing of group IV materials N2 - Laser materials processing is an important tool for creating and shaping new materials. Laser machining, especially with ultrashort pulses offers the modification of surfaces, thin coatings, and bulk materials with an unprecedented precision and control. The most desired feature of pulsed laser processing in the femtosecond range is that the heat-affected zone in the irradiated material will be extremely small. To better understand the mechanisms involved during laser irradiation, it is important to analyse the outcome of light-matter interaction with spectroscopic methods. Ellipsometry, especially spectroscopic imaging ellipsometry (SIE), has become an important tool for this in recent times, as it gives access to local layer thicknesses, materials dielectric functions, and features like changes in surface roughness. This work includes an overview over our recent studies examining near-infrared fs-laser surface processing of different group IV materials. The superficial phase change of silicon from crystalline to amorphous has been investigated in the past as the result of laser processing strongly depends on the crystal orientation. Moreover, SIE is capable of determining the properties of buried a-Si interfaces with micrometer lateral and sub-nanoneter vertical precision. Additionally, the growth of native and laser-induced oxides can be revealed. T2 - ICSE10 - 10th International Conference on Spectroscopic Ellipsometry CY - Boulder, CO, USA DA - 08.06.2025 KW - Laser surface ablation KW - Amorphous Carbon KW - Silicon KW - Correlative Imaging Ellipsometry PY - 2025 AN - OPUS4-63633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella T1 - Quantifying the Total and Accessible Number of Surface Functional Groups and Ligands on Engineered Nanomaterials Using a Multimodal Approach N2 - Functionalized nanomaterials (NM) with their unique size-dependent properties are of increasing relevance for current and future developments in various fields such as medical and pharmaceutical industry, computing, electronics or food and consumer products. For instance, NMs are used as drug carriers, fluorescent sensors, and multimodal labels in bio-analytical assays and imaging applications. The performance and safety of NMs are influenced by their intrinsic physicochemical properties. Among these, the surface chemistry of the particles, which is largely determined by the chemical nature and density of functional groups and ligands, plays a crucial role in enhancing the stability, and processability of NMs, as well as their interactions with the environment. Thus, particle standards with well-designed surfaces and methods for functional group quantification can foster the sustainable development of functional and safe(r) NM.[1] To develop simple, versatile, and multimodal tools for quantifying various bioanalytically relevant functional groups (FG) such as amine,[2,3] carboxy,[2] thiol, and aldehyde[4] functionalities, we explored and compared several analytical methods. These methods included electrochemical titration, dye-based optical assays, and other instrumental techniques like nuclear magnetic resonance, mass spectrometry, and thermal analysis. Our multimodal approach’s potential for FG quantification was demonstrated using both commercial and custom-made polymeric and silica particles with different densities of functional groups. T2 - ANAKON 2025 CY - Leipzig, Germany DA - 10.03.2025 KW - Quality Assurance KW - Nano Particle KW - qNMR KW - Potentiometry KW - Reference Material KW - Surface Analysis KW - Advance Materials KW - Functional Group KW - Silica KW - Synthesis KW - Optical Assays KW - Reference Data PY - 2025 AN - OPUS4-65000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - The SMURFnano project - standardized measurements of surface functionalities on nanoparticles N2 - Engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely fabricated for industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, optoelectronics, and information storage. NP function, interaction with biological species, and environmental fate are largely determined by surface functionalities. Reliable, reproducible, and standardized surface characterization methods are therefore vital for quality control of NPs, and mandatory to meet increasing concerns regarding their safety. Also, industry, international standardization organizations, regulatory agencies, and policymakers need validated and standardized measurement methods and reference materials. However, methodologies for determining NP surface properties, including the amount, chemical composition, and homogeneity of surface functionalities and coatings are largely non-standardized. Suitable methods for determining surface functionalities on ligand-stabilized core and core/shell NPs include advanced techniques such as traceable quantitative nuclear magnetic resonance (qNMR) as well as X-ray electron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF-SIMS), and simpler optical and electrochemical methods. The latter less costly methods are often used by SMEs, e.g., for quality control. To validate methods, establish measurement uncertainties, test reference materials, and produce reference data, international interlaboratory comparisons (ILC) on NP surface functionalization measurements are required and well characterized test and reference nanomaterials providing benchmark values.[1] These needs are addressed by the recently started European metrology project SMURFnano involving 12 partners from different National Metrology Institutes, designated institutes, and research institutes, two university groups as well as one large company and one SME producing NPs. This project as well as first results derived from the development of test and reference materials with a well characterized surface chemistry and ongoing interlaboratory comparisons will be presented. T2 - eMRS CY - Strasbourg, France DA - 27.05.2025 KW - Quality assurance KW - Reference analysis KW - Standardization KW - Metrology KW - Reference products KW - Reference materials KW - Mission KW - Surface chemistry KW - Nano KW - Particle KW - qNMR KW - XPS KW - Fluorescence KW - Optical assays KW - Interlaboratory comparison KW - Uncertainty PY - 2025 AN - OPUS4-63243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Tavernaro, Isabella A1 - Abram, Sarah-Luise A1 - Homann, Christian A1 - Scholtz, Lena A1 - Radnik, Jörg T1 - Validated and standardized measurements and quantification of surface functionalities on nanoparticles N2 - Engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely fabricated for industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, opto-electronics, and information storage which improve the quality of life and European prosperity. Nanoparticle function, interaction with biological species, and environmental fate are largely determined by surface functionalities. Reliable, reproducible, and standardized surface characterization methods are therefore vital for quality control of NPs, and mandatory to meet increasing concerns regarding their safety. Also, industry, regulatory agencies, and policymakers need validated traceable measurement methods and reference materials. Industry, e.g., must comply with various regulations, including the chemicals´ regulation REACH (2006/1907) and cosmetic products regulation (2009/1223), depending on the use. Therefore, standardization organizations such as the European Committee for Standardization (CEN), the International Organization for Standardization (ISO), and the International Electrotechnical Commission (IEC) as well as industrial stakeholders, European Medicine Agency (EMA), and the nanosafety community responsible for guidelines for nanomaterial (NM) regulation like the Organisation for Economic Co-operation and Development (OECD) have expressed needs for standardized methodologies to measure NP surface chemical properties. Despite these needs, methodologies for determining NP surface properties, including the amount, chemical composition, and homogeneity of surface functionalities and coatings are largely non-standardized. Specifically, validated quantitative procedures for the measurement of thickness and composition of nanoparticle coatings and other surface functionalities are needed. Suitable methods for determining surface functionalities on ligand-stabilized core and core/shell NPs include advanced techniques such as traceable quantitative nuclear magnetic resonance (qNMR) as well as X-ray electron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF-SIMS), and simpler optical and electrochemical methods. The latter less costly methods are often used by SMEs, e.g., for quality control. To validate methods, establish measurement uncertainties, test reference materials, and produce reference data, international interlaboratory comparisons (ILC) on NP surface functionalization measurements are required. These needs have been addressed by us in two interlaboratory comparisons, that will be presented. In addition, the European metrology project SMURFnano will be briefly presented involving 12 partners from different National Metrology Institutes, designated institutes, and research institutes, two university groups as well as one large company and one SME producing NPs. T2 - NanoCarbon Annual Conference 2025 CY - Würzburg, Germany DA - 18.03.2025 KW - Nano KW - Particle KW - Silica KW - Quality assurance KW - Reference material KW - Surface chemistry KW - Size KW - Shape KW - Particle number concentration KW - Method KW - Optical assay KW - QNMR KW - Validation KW - Potentiometry KW - XPS PY - 2025 AN - OPUS4-62790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brinkmann, A. T1 - A qNMR Method for Quantification of Surface Functional Groups on Silica Nanoparticles: Bilateral Comparisons N2 - Nanomaterials (NM) of different size, shape, morphology, composition, and surface chemistry are used in a wide range of applications, including medical diagnostics, and imaging and consumer products. The importance of an adequate and reliable characterization is crucial for quality control during NM production, for ensuring an optimum function for the desired application, and for risk assessment studies. Currently there is a lack of reliable and validated methods and reference materials for quantifying NM surface functional groups, despite the importance of surface chemistry for the production of colloidally stable materials, further processing steps, and the interaction with the environment and biological species. Following our initial study on the use of qNMR for quantifying the amount of amino groups on surface modified silica (1), we have carried out two bilateral comparisons between NRC and BAM to further develop and optimize a reliable protocol for these measurements (2,3), using aminated silica nanoparticles prepared by multiple methods, both commercial and in-house synthesized, and with varying amine content. Solution qNMR is based on dissolving aminated silica nanoparticles in strong base to release the surface grafted amino silane molecules, followed by the quantification of these molecules by solution qNMR using an internal standard. This method provides the amount of total amino groups present in the sample, which can differ from probe accessible or surface-sensitive measurements performed with X-Ray photoelectron spectroscopy (XPS). Complementary measurements using optical assays, involving a labeling step with a dye reporter, and XPS are employed to assess the probe accessible and surface amine content for representative samples. These measurements, which illustrate the advantages and potential limitations of the different characterization methods, will contribute to establish a basis for testing the protocol in an international inter-laboratory comparison and for standardization at ISO Technical Committee 229 – Nanotechnologies. T2 - BERM CY - Halifax, Canada DA - 01.06.2025 KW - Quality assurance KW - Nano KW - Particle KW - Synthesis KW - Advanced materials KW - Characterization KW - Electron microscopy KW - Silica KW - Surface KW - qNMR KW - Optical assay KW - Interlaboratory comparison KW - Metrology KW - Standardization PY - 2025 AN - OPUS4-63527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Abram, Sarah-Luise A1 - Homann, Christian A1 - Scholtz, Lena A1 - Radnik, Jörg A1 - Resch-Genger, Ute T1 - Validated and standardized measurements and quantification of surface functionalities on nanoparticles N2 - Surface-functionalized organic and inorganic engineered nanomaterials (NMs) are widely applied in the life and materials sciences. NM performance depends on key factors such as particle size and shape, crystal phase, morphology, chemical composition, and surface chemistry, i.e., surface coatings, functional groups (FGs), and ligands.1 The latter controls their processability and interaction with the environment and largely their possible toxicity. Thus, methods for FG quantification are important tools for quality control of NM production processes and can foster the sustainable development of functional and safe(r) NMs. This underlines the importance of validated and standardized analytical methods for surface analysis and reference materials.2 This encouraged us to explore simple and versatile tools for quantifying common bioanalytically relevant FGs such as optical assays, electrochemical titration methods, quantitative nuclear magnetic resonance spectroscopy (qNMR), and X-Ray photoelectron spectroscopy (XPS) and to perform a first interlaboratory comparison (ILC) on surface FG quantification.3,4 In a follow-up ILC, BAM and NRC explored qNMR sample preparation, measurement, and data evaluation protocols for commercial and custom-made aminated SiO2 NPs with sizes of 20-100 nm, different amounts of surface amino FGs, and different porosity.5,6 First, the number of amino FGs accessible for a dye reporter was determined with a cost-efficient, automated optical fluorescamine assay. Then, qNMR workflows and protocols were stepwise fine-tuned. The qNMR ILC was complemented by joint XPS measurements. BAM also examined the applicability of fast and automatable potentiometric titrations to screen the total amount of (de)protonable FGs on aminated SiO2 NPs. Our results underline the need to evaluate protocols for FG quantification in ILCs and the advantages of multi-method characterization strategies for efficient method cross validation. T2 - Surface and Micro/Nano Analysis Working Group CY - Paris, France DA - 08.04.2025 KW - Quality assurance KW - Reference material KW - Fluorescence KW - Nano KW - Particle KW - Surface analysis KW - XPS KW - Traceability KW - Metrology KW - Calibration KW - Reference data KW - Reference product KW - Digital certificate KW - QNMR KW - Potentiometry PY - 2025 AN - OPUS4-62969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portesi, C. T1 - qNMR for standardised measurements of surface functionalities on nanoparticles N2 - Engineered nanoparticles have a large application potential in fields such as medicine, sensing, catalysis, energy storage, and opto-electronics [1]. The applicability and performance of engineered nanoparticles is largely determined by their surface chemistry, i.e. functional groups and ligands on the particle surface. However, documented standards to quantify functional groups and ligands currently do not exist. Such standards are required to support quality control of nanomaterial production and surface modification processes, and safe-by-design concepts and to meet regulatory requirements. Here, this issue is addressed by developing and standardizing quantitative Nuclear Magnetic Resonance (qNMR) methods for the characterization of surface functionalized nanoparticles which specifically address the determination of the amount and chemical composition of surface functionalities and coatings. This work is being developed under the EMP project 23NRM02 SMURFnano - Standardised measurements of surface functionalities on nanoparticles. qNMR competence of 7 qNMR laboratories involved in the project was first tested with a molecular model sample i.e. citrate, to be assessed in terms of purity. Citrate is often used as hydrophilic surface ligand for different nanoparticles. Then, the first nanoparticle samples, here a set of aminated SiO2 NPs [1] with a particle size of 100 nm and two amino group densities, prepared and characterized by BAM regarding size and surface charge as well as stability over 21 months with an optical assay and qNMR, were assessed in an international interlaboratory comparison (ILC) on qNMR. Thereby, the amount of surface amino groups introduced by grafting of the silica cores with different amounts of 3-aminopropyl)triethoxysilane (APTES) was quantified by each participant following a sample preparation protocol previously developed by BAM and NRC.The results of the ILC were then used to refine the protocol for sample preparation and to identify critical points for qNMR measurement and data analysis. This work will contribute to the development of a Preliminary Work Item (PWI) 19257 (ISO/TC 229) on surface functional groups and coatings on nano-objects. Also, it will lay the groundwork to perform ILCs on the quantification and determination of the amount of surface functional groups under the roof of VAMAS TWA2 (Surface Chemical Analysis) for different types of nanomaterials possessing industry-relevant surface functionalities using qNMR. These ILCs will be complemented by other techniques like X-Ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). T2 - BERM CY - Halifax, Canada DA - 01.06.2025 KW - Quality assurance KW - Nano KW - Particle KW - Synthesis KW - Advanced materials KW - Characterization KW - Electron microscopy KW - Silica KW - Surface KW - qNMR KW - Optical assay KW - Interlaboratory comparison KW - Metrology KW - Validation KW - Standardization PY - 2025 AN - OPUS4-63443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Quantifying the total and accessible amount of surface functionalities and ligands on nano-materials: Overview and recommended methods N2 - Engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely fabricated for industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, opto-electronics, and information storage. NP function, interaction with biological species, and environmental fate are largely determined by surface functionalities. This calls for reliable, reproducible, and standardized surface characterization methods, which are vital for quality control of NPs, and mandatory to meet increasing concerns regarding their safety. Validated and standardized workflows for surface analysis are also increasingly requested by industry, international standardization organizations, regulatory agencies, and policymakers. To establish comparable measurements of surface functionalities across different labs and ease instrument performance validation, reference test materials and reference materials of known surface chemistry as well as reference data are needed. In the following, different methods for determining surface functionalities on ligand-stabilized core and core/shell NPs include advanced techniques are presented and discussed regarding method-inherent advantages and limitations. Special emphasis is dedicated to traceable quantitative nuclear magnetic resonance (qNMR), X-ray electron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF-SIMS), and simpler optical and electrochemical methods. T2 - LNE Workshop CY - Paris, France DA - 04.11.2025 KW - Quality assurance KW - Fluorescence KW - Nano KW - Particle KW - Synthesis KW - Characterization KW - Advanced material KW - Surface KW - Standardization KW - Reference material KW - Functional group KW - Quantification KW - Coating KW - Automation KW - Potentiometry KW - Method KW - Validation KW - Optical assay KW - Fluram KW - Fluorescamine KW - qNMR KW - Comparison KW - ILC PY - 2025 AN - OPUS4-64726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Standardized Measurements of Surface - Functionalities on Nanoparticles N2 - Engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely fabricated for industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, optoelectronics, and information storage. NP function, interaction with biological species, and environmental fate are largely determined by surface functionalities. Reliable, reproducible, and standardized surface characterization methods are therefore vital for quality control of NPs, and mandatory to meet increasing concerns regarding their safety. Also, industry, international standardization organizations, regulatory agencies, and policymakers need validated and standardized measurement methods and reference materials. However, methodologies for determining NP surface properties, including the amount, chemical composition, and homogeneity of surface functionalities and coatings are largely non-standardized. Suitable methods for determining surface functionalities on ligand-stabilized core and core/shell NPs include advanced techniques such as traceable quantitative nuclear magnetic resonance (qNMR) as well as X-ray electron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF-SIMS), and simpler optical and electrochemical methods. The latter less costly methods are often used by SMEs, e.g., for quality control. To validate methods, establish measurement uncertainties, test reference materials, and produce reference data, international interlaboratory comparisons (ILC) on NP surface functionalization measurements are required and well characterized test and reference nanomaterials providing benchmark values.[1] These needs are addressed by the recently started European metrology project SMURFnano involving 12 partners from different National Metrology Institutes, designated institutes, and research institutes, two university groups as well as one large company and one SME producing NPs. This project as well as first results derived from the development of test and reference materials with a well characterized surface chemistry and ongoing interlaboratory comparisons will be presented. T2 - eMRS CY - Strasbourg, France DA - 27.05.2025 KW - Quality assurance KW - Fluorescence KW - Nano KW - Particle KW - Synthesis KW - Silica KW - Upconversion nanoparticles KW - Optical assay KW - qNMR KW - Surface analysis KW - Ligand KW - Quantification KW - Functional group KW - XPS KW - ToF-SIMS KW - Polymer particle KW - Surface modification KW - Potentiometry KW - Metrology KW - Method KW - Validation KW - ILC PY - 2025 AN - OPUS4-63339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Standardized Measurements of Surface Functionalities on Nanoparticles - F. Synthesis and characterization of functional nanocomposite materials N2 - Engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely and commonly fabricated for industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, opto-electronics, and information storage. NP function, their interaction with biological species, and also their environmental fate are largely determined by the surface functionalities of the particles. Reliable, reproducible, and standardized surface characterization methods are therefore vital for quality control of NPs, determination of their applicability, and mandatory to meet increasing concerns regarding their safety. In addition, industry as well as international standardization organizations, regulatory agencies, and policymakers need validated and standardized measurement methods and reference materials. However, methodologies for determining NP surface properties, including the amount, chemical composition, and homogeneity of surface functionalities and coatings are largely non-standardized up until now. Suitable methods for determining surface functionalities on ligand-stabilized core and core/shell NPs include advanced techniques such as traceable quantitative nuclear magnetic resonance (qNMR), as well as X-ray electron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF-SIMS), and simpler optical and electrochemical methods. The latter, typically less costly methods are often used by SMEs, e.g., for quality control. To validate methods, establish measurement uncertainties, test reference materials, and produce reference data, international interlaboratory comparisons (ILC) on NP surface functionalization measurements are required to provide well characterized test and reference nanomaterials including benchmark values.[1] These needs are addressed by the current European metrology project SMURFnano, involving 12 partners from different National Metrology Institutes, designated and research institutes, two university groups as well as one large company and one SME producing NPs. This project, as well as first results derived from the development of test and reference materials with a well characterized surface chemistry, and ongoing interlaboratory comparisons, will be presented. T2 - Shift 2025 CY - La Laguna, Tenerife DA - 13.10.2025 KW - Nano KW - Particle KW - Silica KW - Iron oxide KW - Lanthanide KW - Metrology KW - Quality assurance KW - Reference material KW - Surface chemistry KW - Size KW - Shape KW - Particle number concentration KW - Method KW - Optical assay KW - qNMR KW - Validation KW - Potentiometry KW - XPS KW - ILC KW - Standardization PY - 2025 AN - OPUS4-64370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Guitton-Spassky, Tiffany A1 - Schade, Boris A1 - Zoister, Christian A1 - Veronese, Eleonora A1 - Rosati, Marta A1 - Baldelli Bombelli, Francesca A1 - Cavallo, Gabriella A1 - Thünemann, Andreas A1 - Ghermezcheshme, Hassan A1 - Makki, Hesam A1 - Netz, Roland R. A1 - Ludwig, Kai A1 - Metrangolo, Pierangelo A1 - Singh, Abhishek Kumar A1 - Haag, Rainer T1 - Fluorinated Hexosome Carriers for Enhanced Solubility of Drugs N2 - Designing nanomaterials for drug encapsulation is a crucial, yet challenging, aspect for pharmaceutical development. An important step is synthesizing amphiphiles that form stable supramolecular systems for efficient drug loading. In the case of fluorinated drugs, these have superior properties and also a tendency toward reduced water solubility. For the first time, we report here fluorinated hexosome carriers made from nonionic dendritic amphiphiles, capable of encapsulating the fluorinated drug Leflunomide with high efficiency (62 ± 3%) and increasing its solubility by 12-fold. We synthesized amphiphiles with varying tail groups (fluorinated/alkylated), and their supramolecular self-assembly was investigated using cryogenic transmission electron microscopy and small-angle X-ray scattering. Furthermore, Leflunomide and its equivalent nonfluorinated counterpart were encapsulated within fluorinated and nonfluorinated assemblies. Self-assembly and encapsulation mechanisms were well supported by coarse-grained molecular simulations, yielding a fundamental understanding of the new systems. KW - PEFAS KW - Small-angle X-ray scattering KW - SAXS KW - Reference method PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-632002 DO - https://doi.org/10.1021/jacsau.5c00198 SN - 2691-3704 VL - 5 IS - 5 SP - 2223 EP - 2236 PB - American Chemical Society (ACS) CY - Washington, DC AN - OPUS4-63200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Qiang A1 - Heuchel, Matthias A1 - Thünemann, Andreas A1 - Machatscheck, Rainhard T1 - The role of diffusion in the hydrolytic degradation of poly(lactic-co-glycolic acid): A molecular perspective N2 - This research emphasizes the importance of internal surface erosion as a key factor in the hydrolytic degradation of PLGA (poly(D,L-lactic-co-glycolic acid)) providing an alternative view of the established surface and bulk erosion degradation modes. Using molecular dynamics (MD) simulations, this study reveals the role of water and oligomer diffusion during the degradation of PLGA and highlights the importance of water channels formed as the overall water content increases. We found that these continuous water channels play a crucial role in accelerating the transport of water and the release of degradation products from the polymer matrix, as the diffusion coefficients of water and small oligomers exhibit significant differences spanning 2 to 3 orders of magnitude between the water and polymer phases. Water follows a different diffusion mechanism than polymer fragments. The diffusion rate of the fragments up to a size of octamers was found to be size-dependent and reasonably well approximated by a 1/N behavior, in line with the Rouse model. KW - Small-angle X-ray scattering KW - SAXS KW - Nanostructure KW - PLGA PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-621250 DO - https://doi.org/10.1016/j.polymdegradstab.2024.111119 VL - 232 SP - 1 EP - 12 PB - Elsevier Ltd. AN - OPUS4-62125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lange, Alyna A1 - Holtzheimer, Lea A1 - Clarke, Coby A1 - Thünemann, Andreas A1 - Taubert, Andreas T1 - Complex Self-Organization in n-Alkylammonium Sulfobetaine Zwitterions with High Thermal Stabilities and High Expansion Coefficients N2 - Sulfobetaine zwitterions made from n-alkyl dimethylamines and butanesultone yield a series of n-alkylammonium sulfobetaine zwitterions with complex self-organization behavior. The compounds are thermally quite stable and the length of the alkyl chain directly affects all phase transition temperatures of the compounds: the longer the alkyl chain, the higher the transition temperature. All compounds exhibit lamellar order and the different phases are characterized by a lower temperature orthorhombic and a higher temperature hexagonal in-plane order. The phase transition from the orthorhombic to the hexagonal phase is always associated with an increase of the long period. The phase transition is also associated with a rather high thermal expansion coefficient. KW - SAXS KW - Small-angle X-ray scattering KW - Nanostructure PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-626276 DO - https://doi.org/10.1021/acs.langmuir.4c02892 SN - 1520-5827 VL - 41 SP - 4422 EP - 4434 PB - American Chemical Society (ACS) AN - OPUS4-62627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kieserling, Helena A1 - Sieg, Holger A1 - Heilscher, Jasmin A1 - Drusch, Stephan A1 - Braeuning, Albert A1 - Thünemann, Andreas A1 - Rohn, Sascha T1 - Towards Understanding Particle-Protein Complexes: Physicochemical, Structural, and Cellbiological Characterization of β-Lactoglobulin Interactions with Silica, Polylactic Acid, and Polyethylene Terephthalate Nanoparticles N2 - Nanoplastic particles and their additives are increasingly present in the food chain, interacting with biomacromolecules with not yet known consequences. A protein corona forms around the particles in these usually complex matrices, primarily with a first contact at surface-active proteins. However, systematic studies on the interactions between the particles and proteins –especially regarding protein affinity and structural changes due to surface properties like polarity – are limited. It is also unclear whether the protein corona can "mask" the particles, mimic protein properties, and induce cytotoxic effects when internalized by mammalian cells. This study aimed at investigating the physicochemical properties of model particle-protein complexes, the structural changes of adsorbed proteins, and their effects on Caco-2 cells. Whey protein β-lactoglobulin (β-Lg) was used as a well-characterized model protein and studied in a mixture with nanoparticles of varying polarity, specifically silica, polylactic acid (PLA), and polyethylene terephthalate (PET). The physicochemical analyses included measurements of the hydrodynamic diameter and the zeta potential, while the protein conformational changes were analyzed using Fourier-transform-infrared spectroscopy (FTIR) and intrinsic fluorescence. Cellular uptake in Caco-2 cells was assessed through flow cytometry, cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) assay, and cellular impedance was analyzed with xCELLigence® technology. The results indicated that β-Lg had the highest affinity for hydrophilic silica particles, forming silica-β-Lg complexes and large aggregates through electrostatic interactions. The affinity decreased for PLA and was lowest for hydrophobic PET, which formed smaller complexes. Adsorption onto silica caused partial unfolding and refolding of β-Lg. The silica-β-Lg complexes were internalized by Caco-2 cells, impairing cell proliferation. In contrast, PLA- and PET-protein complexes were not internalized, though PLA complexes slightly reduced cell viability. This study enhances our understanding of protein adsorption on nanoparticles and its potential biological effects. KW - Nanoplastics KW - Microplastics KW - Reference materials KW - Scattering KW - DLS PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-630093 DO - https://doi.org/10.1016/j.colsurfb.2025.114702 SN - 1873-4367 VL - 253 SP - 1 EP - 12 PB - Elsevier BV CY - Amsterdam AN - OPUS4-63009 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Giannakopoulos, Antonios E. A1 - Zisis, Athanasios A1 - Zervaki, Anna D. A1 - Dimopoulos, Christos D. A1 - Platypodis, Efstathios A1 - Eberwein, Robert T1 - Effective elastic moduli and failure mechanisms of a random assembly of thin walled glass microbubbles N2 - In this work a methodology is presented to estimate the elastic properties and failure mechanisms of an assembly of random, brittle microbubbles. The approach is based on the mechanics of frictionless micro-contact between hollow spherical shells by employing relations from classical shell theory and verified by two dimensional axisymmetric Finite Elements. The estimated values are in agreement with available experimental values. Moreover, a granular type analytical homogenization model provides an isotropic elastic constitutive law to be used for the macroscopic deformation of an assembly of glass micro-bubbles when it is compressed by external loads. In addition, approximate estimates are also proposed for two important micro-failure mechanisms of such assemblies that relate either to the splitting or to the buckling of a brittle spherical shell, prior its complete crushing. The results are novel and are expected to enhance the application of glass microbubbles directly in acute thermal insulation problems such as liquid hydrogen storage. KW - LH2 KW - Cryogenic Vessels KW - Insulation PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634354 DO - https://doi.org/10.1016/j.ijsolstr.2025.113528 SN - 0020-7683 VL - 320 SP - 1 EP - 11 PB - Elsevier BV CY - Amsterdam AN - OPUS4-63435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shasmal, Nilanjana T1 - Effects of Direct femtosecond laser writing on chloroborosilicate glasses doped with Eu3+/Eu2+ and CdS quantum dots N2 - Femtosecond (fs) direct laser writing (DLW) is a promising technique for developing nano-inhomogeneous materials with advanced optical properties and for fabricating novel photonic devices such as integrated waveguides, ultrafast optical switches, phase plates, and 3D optical memory. In this study, DLW was applied to chloroborosilicate glasses that were singly and co-doped with Eu and CdS quantum dots (QDs). The glasses were laser-treated within a very narrow range of experimental conditions, resulting in laser-inscribed sites exhibiting enhanced emission, similar to the glass-ceramics crystallized from the as-prepared glass. In the regions crystalized by DLW a significant reduction of Eu3+ to Eu2+ was verified by photoluminescence spectroscopy. However, the characteristics of the emission bands of Eu2+ changed markedly in the laser-treated sites as compared to the emission spectra of the same glass crystallized by heat treatment. A considerable redshift and splitting of the emission band were observed, attributed to changes in the surrounding environment of the rare earth (RE) ions which was, in turn, attributed to an alteration in the coordination number of Ba2 + and/or Eu2+ as a result of the high-power laser treatment. Although there was an issue with homogeneity of the glass in the micro-level, which restricts some of the aspects of the DLW, these findings suggest the potential for structural modifications through laser treatment, which could be harnessed to create new functionalities for advanced optical applications. T2 - ICG 2025 (27th International Congress on Glass) CY - Kolkata, India DA - 20.01.2025 KW - Femtosecond direct laser writing KW - DLW KW - CdS quantum dots KW - Eu/CdS co-doped glass PY - 2025 AN - OPUS4-65285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ankli, P. P. A1 - Abdelwahab, A. A. A1 - Logachov, A. A1 - Bugiel, R. A1 - Drobne, D. A1 - Novak, S. A1 - Kranjc, E. A1 - Saje, S. A1 - Pellegrino, F. A1 - Alladio, E. A1 - Sordello, F. A1 - Corrao, E. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg A1 - Mrkwitschka, Paul A1 - Madbouly, Loay Akmaal A1 - Akdemir, Yücel A1 - Gulumian, M. A1 - Wepener, V. A1 - Andraos, C. A1 - Boodhia, K. A1 - Jones, E. A1 - Doolin, A. A1 - Leuchtenberg, K. A1 - Valsami Jones, E. A1 - Rocca, C. A1 - Ibrahim, B. A1 - Singh, D. A1 - Chakraborty, S. A1 - Jurkschat, K. A1 - Johnston, C. A1 - Van Der Zande, M. A1 - Fernandez, D. A1 - Queipo, P. A1 - Clifford, C. A1 - Hardy, B. T1 - Knowledge Infrastructure supporting image-based characterisation of 2D graphene materials N2 - As part of the European Horizon ACCORDs project, advanced methods are being developed for the image-based characterisation of 2D nanomaterials. Given the complexity of this task, robust nd wellorganised data management is critical to ensuring high-quality outcomes. To support this, we have established a knowledge infrastructure that serves as the central repository for protocols, images and experimental data which are stored in a standardised, harmonised manner and in accordance with the FAIR principles – Findable, Accessible, Interoperable and Reusable and open science. This machine-readable framework enables the systematic and computationally automated correlation of image features with experimental descriptors, facilitating accurate material characterisation and transparent reporting which is all integrated in the ACCORDs KI. KW - Graphene-related 2D materials (GR2M) KW - 2D materials KW - Knowledge infrastructure KW - Characterisation PY - 2025 DO - https://doi.org/10.1016/j.toxlet.2025.07.660 SN - 0378-4274 VL - 411 SP - S281 EP - S282 PB - Elsevier B.V. AN - OPUS4-65061 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ciornii, Dmitri A1 - Hodoroaba, Vasile-Dan A1 - Wachtendorf, Volker A1 - Fengler, Petra A1 - Altmann, Korinna T1 - Interlaboratory Comparison Reveals State of the Art in Microplastic Detection and Quantification Methods N2 - In this study, we investigate the current accuracy of widely used microplastic (MP) detection methods through an interlaboratory comparison (ILC) involving ISO-approved techniques. The ILC was organized under the prestandardization platform of VAMAS (Versailles Project on Advanced Materials and Standards) and gathered a large number (84) of analytical laboratories across the globe. The aim of this ILC was (i) to test and to compare two thermo-analytical and three spectroscopical methods with respect to their suitability to identify and quantify microplastics in a water-soluble matrix and (ii) to test the suitability of the microplastic test materials to be used in ILCs. Two reference materials (RMs), polyethylene terephthalate (PET) and polyethylene (PE) as powders with rough size ranges between 10 and 200 μm, were used to press tablets for the ILC. The following parameters had to be assessed: polymer identity, mass fraction, particle number concentration, and particle size distribution. The reproducibility, SR, in thermo-analytical experiments ranged from 62%−117% (for PE) and 45.9%−62% (for PET). In spectroscopical experiments, the SR varied between 121% and 129% (for PE) and 64% and 70% (for PET). Tablet dissolution turned out to be a very challenging step and should be optimized. Based on the knowledge gained, development of guidance for improved tablet filtration is in progress. Further, in this study, we discuss the main sources of uncertainties that need to be considered and minimized for preparation of standardized protocols for future measurements with higher accuracy. KW - Microplastics KW - Interlaboratory comparison KW - PlasticsFatE KW - PET KW - PE KW - Reference materials KW - VAMAS KW - Thermo-analytical methods KW - Spectroscopical methods PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-630462 DO - https://doi.org/10.1021/acs.analchem.4c05403 SN - 1520-6882 VL - 97 SP - 8719 EP - 8728 PB - ACS Publications AN - OPUS4-63046 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Reliable physico–chemical characterisation of graphene-related and other 2D materials: present and future N2 - In the path of commercialisation of graphene-related and other 2D materials the consolidation has begun. In this phase, it is important to build trust between the individual partners in the product value chain. This requires trustworthy statements based on reliable and reproducible material characterisation. The first steps have been taken to measure graphene and other related 2D materials (GR2Ms) under well-defined conditions. Measurands and protocols for key methods were made available for this purpose. But there are still some challenges to overcome such as (i) reference materials, (ii) reference data, (iii) reproducibility throughout the workflow, (iv) credible structure-activity relationships, bringing the standards to (v) the factory floor and to (vi) real-word products. In addition, 2D materials beyond graphene should also be considered exploiting the knowledge gained from the characterisation of GR2M. KW - 2D Materials KW - Commercialisation KW - Standardisation KW - Trust PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-638122 DO - https://doi.org/10.1088/2053-1583/aded9d SN - 2053-1583 VL - 12 IS - 4 SP - 1 EP - 8 PB - IOP Publishing AN - OPUS4-63812 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wolf, M. E. A1 - Vickery, W. M. A1 - Swift-Ramirez, W. A1 - Arnold, A. M. A1 - Orlando, J. D. A1 - Schmidt, S. J. A1 - Liu, Y. A1 - Er, Jasmin A1 - Schusterbauer, Robert A1 - Ahmed, R. A1 - Nickl, Philip A1 - Radnik, Jörg A1 - Donskyi, Ievgen A1 - Sydlik, S. A. T1 - The Mitsunobu reaction for the gentle covalent attachment of biomolecules to graphene oxide N2 - Graphene oxide (GO) has emerged as a promising biomaterial as it is easily and cheaply synthesized, strong, cytocompatible, osteoinductive, and has a well-characterized aqueous degradation pathway. It is also a great substrate for functionalization with biomolecules such as proteins, peptides, and small molecules that can enhance or add bioactivity. Covalent chemical linkages as opposed to typical noncovalent association methods are preferable so that the biomolecules do not quickly diffuse away or face replacement by other proteins, which is critical in long time scale applications like bone regeneration. However, covalent chemistry tends to carry a drawback of harsh reaction conditions that can damage the structure, conformation, and therefore function of a delicate biomolecule like a protein. Here, the Mitsunobu reaction is introduced as a novel method of covalently attaching proteins to graphene oxide. It features gentle reaction conditions and has the added benefit of utilizing the plentiful basal plane alcohol functionalities on graphene oxide, allowing for high yield protein functionalization. The amino acid Glycine (G), the protein bovine serum albumin (BSA), and the small molecule SVAK-12 are utilized to create the three Mitsunobu Graphene (MG) materials G-MG, BSA-MG, and SVAK-MG that demonstrate the wide applicability of this functionalization method. KW - Graphene oxide KW - Mitsunobu reaction KW - Covalent attachment KW - Bovine serum albumin KW - Macrophage polarization KW - Osteogenesis PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-630483 DO - https://doi.org/10.1016/j.carbon.2025.120221 VL - 238 SP - 1 EP - 15 PB - Elsevier Ltd. AN - OPUS4-63048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chemello, Giovanni A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - XPS–SEM/EDS Tandem Analysis for the Elemental Composition of Functionalized Graphene Nanoplatelets N2 - Over the past decade, energy-dispersive X-ray spectrometry (EDS) with scanning electron microscopy (SEM) has advanced to enable the accurate analysis of light elements such as C, N, or O. For this reason, EDS is becoming increasingly interesting as an analytical method for the elemental analysis of functionalized graphene and could be an attractive alternative to Xray photoelectron spectroscopy (XPS), which is considered the most important method for elemental analysis. In this study, comparative XPS and EDS investigations under different excitation conditions are carried out on commercially available powders containing graphene particles with different morphologies. The slightly different XPS/HAXPES and EDS results can be explained by the different information depths of the methods and the functionalization of the particle surfaces. For the material with smaller graphene particles and higher O/C ratios, all methods reported a lower O/C ratio in pellets compared with the unpressed powder samples. This clearly shows that sample preparation has a significant influence on the quantification results, especially for such a type of morphology. Overall, the study demonstrates that EDS is a reliable and fast alternative to XPS for the elemental quantification of functionalized graphene particles, provided that differences in the information depth are taken into account. Particle morphology can be examined in parallel with quantitative element analysis, since EDS spectrometers are typically coupled with SEM, which are available in a huge number of analytical laboratories. KW - Graphene oxide KW - SEM/EDS KW - XPS/HAXPES KW - Elemental composition KW - Functionalization PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647294 DO - https://doi.org/10.1021/acsomega.5c07830 SN - 2470-1343 SP - 1 EP - 7 PB - American Chemical Society (ACS) AN - OPUS4-64729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mrkwitschka, Paul A1 - Sahre, Mario A1 - Zurutuza, Amaia A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Standardized Chemical Composition Analysis of Graphene Oxide Flakes with SEM/EDS and XPS Works Reliably N2 - Suspensions of graphene-related 2D materials (GR2M) are broadly used for further applications like printable electronics. The reliable quantification of the composition of graphene-related 2D materials as liquid suspensions is still a challenging task, which can hinder the commercialisation of the products. Specific parameters to be measured are defined, e.g. the oxygen-to-carbon (O/C) concentration ratio, the trace metal impurities, or the functional groups present, but reference protocols are still missing. One of the central methods for the quantification is X-ray photoelectron spectroscopy (XPS) as a rather expensive method. Therefore, the development of cheaper alternatives is highly desired. One attractive alternative of XPS is energy-dispersive spectroscopy (EDS) which is usually coupled with scanning electron microscopy (SEM). This combination is one of the most widely used methods in analytical laboratories. In this contribution the results of a systematic study on the capability of SEM/EDS to reliably quantify the O/C ratio in a well-defined and well-characterized graphene oxide material are presented. The robustness of the SEM/EDS results obtained at various measurement conditions (various excitation energies) is tested by comparing the results to the established XPS analysis, which has been carried out on the same samples. It is demonstrated that for samples prepared by drop-casting on a substrate, both surface-sensitive XPS analysis and bulk-characterising EDS result in very similar elemental composition of oxygen and carbon for thick spots. Further, the effect of untight deposited material enabling co-analysis of the (silicon) substrate, is evaluated for both methods, XPS and EDS. The last results clearly show the influence of the substrate on the analysis of the results and stressed out the importance of the sample preparation. KW - EDS KW - Light elements KW - XPS/HAXPES KW - Graphene oxide KW - Quantification KW - Standardisation PY - 2025 DO - https://doi.org/10.1093/mam/ozaf048.267 VL - 31 IS - 7 SP - 531 EP - 532 PB - Oxford Aacademic AN - OPUS4-63792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Reusable data: putting the “Arr” in FAIR N2 - This talk demonstrates how to apply FAIR principles to data from actual scientific investigations. The reasons and practical benefits of FAIR data are highlighted. Several levels of reusability are discussed, i.e. the “trust me”-level, the “I’ll not need to repeat my measurement”-level, and the “you’ll not need to repeat my measurements”-level. Practical FAIR datafiles are explored and their information content highlighted. T2 - Reusability of Scientific Data for Matter CY - Online meeting DA - 13.11.2025 KW - Methodology KW - Metadata KW - FAIR KW - Reusability KW - X-ray scattering KW - Traceability PY - 2025 AN - OPUS4-65309 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul T1 - Standardized Chemical Characterisation of Graphene Oxide Flakes by X-Ray Photoelectron Spectroscopy and Energy-Dispersive X-Ray Spectroscopy N2 - Reliable quantification of the chemical composition of graphene-related 2D materials as powders and liquid suspensions is a challenging task. Analytical methods such as XPS, ICP-MS, TGA and FTIR are recommended to be used in ongoing projects at standardisation bodies. The specific parameters to be measured are also defined, e.g. the oxygen-to-carbon (O/C) concentration ratio, the trace metal impurities, or the functional groups present [1]. In this contribution, for the first time, the results of a systematic study on the capability of SEM/EDS to reliably quantify the O/C ratio in a well-defined and well-characterized graphene oxide material [2] are presented. It is expected that the quantitative EDS analysis of light elements emitting characteristic X-ray lines below 1 keV to be provided with significantly larger measurement uncertainties than the analysis of elements with an atomic number of 11 (Na) or above [3]. The robustness of the SEM/EDS results obtained at various measurement conditions (various excitation energies) is tested by comparing the results to the established XPS analysis [4], which has been carried out on the same samples. A crucial step in sample preparation from liquid suspension with graphene oxides flakes onto a substrate for analysis with both XPS and EDS. It is demonstrated that if a closed and enough thick drop-cast deposited spot is succeeded to be deposited on a substrate, both surface-sensitive XPS analysis and bulk-characterising EDS result in very similar elemental composition of oxygen and carbon. Hence, theoretical, expected O/C atomic ratio values for pure graphene oxide of ~0.5 [1] are achieved (with both methods), see Figure 1. Further, the effect of untight deposited material enabling co-analysis of the (silicon) substrate, is evaluated for both methods, XPS and EDS. To note that all the EDS results in this study have been quantified standardless. The results of this study demonstrate the reliability of the reference measurement protocol for SEM/EDS to be introduced into ISO/DTS 23359, including the dedicated sample preparation, particularly for the cases when the concentration of the GO flakes in stock liquid suspension is low. Further, also the consideration of this GO material as one of the very few available as a commercial material on the market as the very first GO reference material with regard to its morphology as well as chemical composition. Both the standard measurement procedure and the candidate reference material will immensely contribute to characterise reliably the chemical composition of graphene-related 2D materials with SEM/EDS as one of the most widely used methods in analytical laboratories T2 - EMAS 2025 Workshop CY - Mataró, Spain DA - 11.05.2025 KW - Advanced Materials KW - Graphene KW - Chemical Quantification KW - EDX KW - XPS PY - 2025 AN - OPUS4-64082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul T1 - Wire-print procedure for accurate morphological and Chemical characterization of graphene-related 2D-materials N2 - One of the biggest challenges in the physico-chemical characterization of particulate nanomaterials pertains to the sample preparation. Particularly the imaging methods require suitable deposition of the sample on a substrate. ‘Suitable’ sample preparation of a particulate (nano)material on a substrate means to make visible the constituent particles to a microscopy technique able to analyze the nanoscale (AFM, SEM, TEM, etc). The particles deposited on a substrate either directly as a powder or from liquid suspension must be ideally isolated (de-agglomerated), without particle losses, homogeneously distributed in a high density of particles per substrate area for efficient analysis, with good statistics of the counted particles. Various sample preparation approaches to meet the latter requirements have been reported in the literature, e.g. electrospray, substrate surface treatment, embedding the particulate material and polishing the cross-section, or addition of ligands to the suspended nanostructures to enhance their hydrophilicity [1], [2], [3], [4]. In this study we have systematically tested the efficacy of a new deposition procedure for graphene-related 2D materials (GR2M’s) from liquid suspension onto a substrate for quantitative analysis of their size and shape distribution with electron microscopy. The technique is an extension of the conventional drop-casting method, and we have designated it “wire-print” deposition. It consists of two steps, first one being usual drop-casting on a copper substrate and second one involving a thin copper wire with a sub-mm diameter being dipped into the deposited droplet and retracted with a corresponding half-spherical droplet attached on its tip and final deposition of this entire nL-amount of suspension onto e.g. a silicon wafer for microscopical, detailed analysis. The result of 11 series of such a wire-print deposition for a graphene-based ink is shown in Figure 1 (labeled A-L), where various conditions (treatment of the starting suspension) have been experimented with a repetition of up to 10 times per condition, all together 86 spots on a silicon wafer of 10 mm x 10 mm. The result of one series of 8 repeated wire-print depositions is shown in Figure 2, where the deposited spots are visualized with SEM. Note the weak presence of coffee-rings, irregular spot shape, and presence of agglomerates. The results for the measured flake size distribution expressed as ECD (equivalent circular diameter) are represented in Fig. 3 for all the eight depositions. Both the mean value of the 8 ECD distributions and the total number of flakes deposited in each spot show a variance in the range of 17% and 22%, respectively, see Table 1. In the context of accurate analysis of such challenging complex materials these numbers can be considered as excellent and demonstrate the high benefit of the wire-print deposition for accurate morphological measurements on GR2M’s. T2 - Microscopy and Microanalysis 2025 CY - Salt Lake City, UTAH, USA DA - 27.07.2025 KW - Sample preparation KW - Graphene KW - Electron Microscopy KW - Morphology PY - 2025 AN - OPUS4-64083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Waqfi, R. A. A1 - Khan, C. J. A1 - Irving, O. J. A1 - Matthews, Lauren A1 - Albrecht, T. T1 - Crowding Effects during DNA Translocation in Nanopipettes N2 - Quartz nanopipettes are an important emerging class of electric single-molecule sensors for DNA, proteins, their complexes, as well as other biomolecular targets. However, in comparison to other resistive pulse sensors, nanopipettes constitute a highly asymmetric environment and the transport of ions and biopolymers can become strongly directiondependent. For double-stranded DNA, this can include the characteristic translocation time and tertiary structure, but as we show here, nanoconfinement can also unlock capabilities for biophysical and bioanalytical studies at the single-molecule level. To this end, we show how the accumulation of DNA inside the nanochannel leads to crowding effects, and in some cases reversible blocking of DNA entry, and provide a detailed analysis based on a range of different DNA samples and experimental conditions. Moreover, using biotin-functionalized DNA and streptavidinmodified gold nanoparticles as target, we demonstrate in a proof-of-concept study how the crowding effect, and the resulting increased residence time in nanochannel, can be exploited by first injecting the DNA into the nanochannel, followed by incubation with the nanoparticle target and analysis of the complex by reverse translocation. We thereby integrate elements of sample processing and detection into the nanopipette, as an important conceptual advance, and make a case for the wider applicability of this device concept. KW - DNA translocation KW - Transport KW - Resistive-pulse sensing KW - Nanopores KW - Nanopipettes KW - Crowding KW - Confinement PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-630448 DO - https://doi.org/10.1021/acsnano.5c01529 SN - 1936-086X VL - 19 IS - 17 SP - 1 EP - 9 PB - ACS Publications AN - OPUS4-63044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pellegrino, F. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Unveiling Order in Graphene Oxide Synthesis Through A Design of Experiment and Chemometric Strategy Based on Tour’s Method N2 - Graphene oxide (GO), a derivative of graphene containing oxygen functional groups, shows significant potential for a wide range of applications due to its unique electrical, mechanical, and chemical properties. Traditional synthesis methods, such as Tour's method, often rely on trial-and-error, leading to variations in product quality and yield. To address these challenges, we applied Design of Experiments (DoE) to systematically investigate the effects of key synthesis parameters, including reaction temperature, reaction time, and oxidant concentration. We identified the most significant factors influencing GO characteristics using a Plackett-Burman design and chemometric analysis. Our results highlight that the oxidation level is the most critical factor, impacting outcomes observed through various characterization techniques, such as UV-Vis spectroscopy and X-Ray Diffraction. Principal Component Analysis (PCA) and Multiple Linear Regression (MLR) provided insights into the synthetic parameters most strongly affecting material properties. While some findings aligned with expectations, others were counterintuitive. For instance, oxidation temperature had a minimal effect on the final material characteristics and may not need to be prioritized in the synthesis process. On the other hand, stirring was found to enhance the homogeneity of the material and promote more uniform oxidation. This study demonstrates the effectiveness of DoE in the controlled production of graphene oxide, offering a reliable framework for manufacturing high-quality GO tailored to specific applications. By minimizing time and resource consumption, this approach is increasingly relevant in the context of materials science, which demands higher quality, safety and sustainability standards. T2 - Joint Regulatory Risk Assessors Summit – Advancing Safety & Sustainability Assessments of Advanced Materials CY - Paris, France DA - 19.06.2025 KW - Graphene oxide KW - Chemometry KW - UV-Vis KW - XRD KW - XPS KW - EDX PY - 2025 UR - https://macrame-project.eu/macrame-meetings-workshops/jointrras/#Agenda AN - OPUS4-63676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Xing, Na A1 - Er, Jasmin A1 - Vidal, Ricardo M. A1 - Khadka, Sandhya A1 - Schusterbauer, Robert A1 - Rosentreter, Maik A1 - Etouki, Ranen A1 - Ahmed, Rameez A1 - Page, Taylor A1 - Nickl, Philip A1 - Bawadkji, Obida A1 - Wiesner, Anja A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Ludwig, Kai A1 - Trimpert, Jakob A1 - Donskyi, Ievgen T1 - Scalable covalently functionalized black phosphorus hybrids for broadspectrum virucidal activity N2 - At the onset of viral outbreaks, broad-spectrum antiviral materials are crucial before specific therapeutics become available. We report scalable, biodegradable black phosphorus (BP) hybrids that provide mutation-resilient virucidal protection. BP sheets, produced via an optimized mechanochemical process, are covalently functionalized with 2-azido-4,6-dichloro- 1,3,5-triazine to form P=N bonds. Fucoidan, a sulfated polysaccharide with intrinsic antiviral activity, and hydrophobic chains are then incorporated to achieve irreversible viral deactivation. The material exhibits strong antiviral inhibition and complete virucidal activity against multiple viruses, including recent severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants. It maintains high biocompatibility, remains effective against viral mutations, and is shelf stable for at least five month. The combination of biodegradability, scalable synthesis, and synergistic antiviral and virucidal mechanisms establishes BP-conjugates as a new class of highly efficient antivirals. They offer a broad spectrum antiviral solutions that could bridge the gap between antiviral medicines and general antiseptics. KW - Black phosphorus KW - Antiviral materials KW - Functionalization KW - Biodegradability KW - Sheets PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652941 DO - https://doi.org/10.48550/arXiv.2510.12854 SN - 2331-8422 SP - 1 EP - 22 PB - Cornell University CY - Ithaca, NY AN - OPUS4-65294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - The role of Critical Raw Materials in Advanced Materials for the Energy Transition N2 - The energy transition needs advanced materials, especially for batteries, solar cells, and fuel cells. Therefore, critical raw materials are necessary. In this presentation the use of critcal raw materials and strategies for the optimisation of their use are discussed. T2 - Critical Raw Material Workshop during VAMAS Annual Meeting CY - Teddington, United Kingdom DA - 17.09.2025 KW - Advanced solar cells KW - Iridium oxide KW - Aerogels KW - Advanced carbon materials PY - 2025 AN - OPUS4-64290 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mrkwitschka, Paul A1 - Mühlbauer, Michaela A1 - Rossi, Andrea A1 - Pellegrino, Francesco A1 - Zurutuza, Amaia A1 - Radnik, Jörg A1 - Meier, Florian A1 - Hodoroaba, Vasile-Dan T1 - Morphological Analysis of Graphene Oxide by Scanning Electron Microscopy and Correlative Field-flow Fractionation Coupled with Multi-angle Light Scattering N2 - In this paper graphene related 2D materials (GR2M) arre investigated by centrifugal field flow fractioning (CF3) and SEM. Three materials were selected as case studies (CS): graphene „HD-G (CS I), graphene oxide UniTo“ (CS II), and graphene oxide „Graphenea“ (CS III). For CS I particles were evaluated as constituent particles in agglomerates, for the other two materials only isolated (non aggregated/agglomerated) flakes were considered for determination of the area equivalent circular diameter (ECD). Size analysis of all three materials was carried out by CF3 coupled with MALS (Multi-Angle Light Scattering). For evaluation, it was found that the data obtained was best suited to a disc model. Results are in good agreement when compared to the sizes obtained before CF3 analysis. CS II material is too heterogenous to accurately determine flake size by imaging. CF3 coupled with MALS enables to assess fractions within the highly heterogenous material of CS II. Imaging of the material in CS III after CF3 measurement indicates that the procedure is non-destructive. This could not be verified for the CS‘s I & II As a next step we plan to analyse the fractionated samples by imaging them within a SEM wet-cell. KW - 2D Materials KW - SEM KW - Centrifugal field flow fractionation (CF3) KW - Imaging KW - Size distribution PY - 2025 DO - https://doi.org/10.1093/mam/ozaf048.222 VL - 31 IS - 7 SP - 442 EP - 443 PB - Oxford Academic AN - OPUS4-63804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Methodologies implemented to measure key properties of graphene and other 2D materials N2 - The key properties and suitable measurement methods for the characterization of graphene-related 2D materials are presented. A case study will be discussed about the chemical characterisation of functionalised graphene used in inks along the production chain. T2 - European-African Graphene Workshop CY - Parys, South Africa DA - 26.11.2025 KW - X-ray photoelectron spectroscoyp KW - Raman spectroscopy KW - Defects KW - Surface Chemistry PY - 2025 AN - OPUS4-64959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Liaison Report ISO/TC 229 Nanotechnology for ISO/TC 202 Microbeam Analysis and vice-versa N2 - The liaison between the ISO technical committees TC 229 Nanotechnologies and TC 202 Microbeam analysis is described in detail with highlight on the projects under development and published since 2024 and which involve input /knowledge from ISO/TC 202. T2 - 32nd Plenary Meeting of ISO/TC 202 Microbeam Analysis CY - London, United Kingdom DA - 28.10.2025 KW - Nanotechnology KW - Microabeam analysis KW - Standardisation KW - ISO PY - 2025 AN - OPUS4-64551 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Energy-Dispersive X-Ray Spectrometry (EDS) on GR2Ms for Routine/Standardized Elemental Analysis N2 - The elemental analysis of solid matter by means of the Energy-Dispersive X-Ray Spectrometry (EDS) is meanwhile posible as a quick (seconds!) and more and more accurate analysis via standardsless (instantaneous) quantification. The sensitivity & quantification accuracy for light elements (C, O,..) has significantly increased in the recent years. The availability via table-top SEMs with incorporated EDS is also enhanced. Further, the EDS analysis at an SEM is well-standardized, see ISO/TC 202 Microbeam Analysis & VAMAS/ TWA 37 Quantitative Microstructural Analysis in good liaisonships with ISO/TC 229 Nanotechnologies. It is demostrated that key parameters such as oxygen-to-carbon atomic-% ratio and impurities can be realibly measured, with XPS as a reference method. Various EDS spectrometers and analysis conditions are tested and the validity of the EDS quantification of an ionic liquid of well-defined chemical composition is demonstrated. Next steps are: launch of a corresponding VAMAS interlaboratory comparison and discussions within ISO/TC 202 Microbeam Analysis. T2 - 32nd Plenary Meeting of ISO/TC 202 Microbeam Analysis CY - London, United Kingdom DA - 28.10.2025 KW - GR2M KW - EDS KW - Quantification KW - XPS KW - Light elements KW - 2D materials PY - 2025 AN - OPUS4-64553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Methodologies implemented to measure key properties of graphene and other 2D materials - EDX N2 - The elemental analysis of solid matter by means of the Energy-Dispersive X-Ray Spectrometry (EDS) is meanwhile posible as a quick (seconds!) and more and more accurate analysis via standardsless (instantaneous) quantification. The sensitivity & quantification accuracy for light elements (C, O,..) has significantly increased in the recent years. The availability via table-top SEMs with incorporated EDS is also enhanced. It is demostrated that key parameters such as oxygen-to-carbon atomic-% ratio and impurities can be realibly measured, with XPS as a reference method. Various EDS spectrometers and analysis conditions are tested and the validity of the EDS quantification of an ionic liquid of well-defined chemical composition is demonstrated. T2 - Advanced Materials Graphene: The implementation of SbD and SSbD CY - Parys, South Africa DA - 26.11.2025 KW - Light elements KW - EDS KW - Quantification KW - Oxygen-to-carbon ratio KW - XPS KW - Graphene-realted 2D materials PY - 2025 AN - OPUS4-64943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Energy Dispersive X Ray Spectrometry (EDS) on GR2Ms for Routine/Standardized Elemental Analysis N2 - The elemental analysis of solid matter by means of the Energy-Dispersive X-Ray Spectrometry (EDS) is meanwhile posible as a quick (seconds!) and more and more accurate analysis via standardsless (instantaneous) quantification. The sensitivity & quantification accuracy for light elements (C, O,..) has significantly increased in the recent years. The availability via table-top SEMs with incorporated EDS is also enhanced. Further, the EDS analysis at an SEM is well-standardized, see ISO/TC 202 Microbeam Analysis & VAMAS/ TWA 37 Quantitative Microstructural Analysis in good liaisonships with ISO/TC 229 Nanotechnologies. It is demostrated that key parameters such as oxygen-to-carbon atomic-% ratio and impurities can be realibly measured, with XPS as a reference method. Various EDS spectrometers and analysis conditions are tested and the validity of the EDS quantification of an ionic liquid of well-defined chemical composition is demonstrated. Next steps are: launch of a corresponding VAMAS interlaboratory comparison and discussions within ISO/TC 202 Microbeam Analysis. T2 - ISO/TC 229 Nanotechnologies Meeting Week CY - Stockholm, Sweden DA - 19.05.2025 KW - Graphene-related 2D materials (GR2M) KW - Energy-Dispersive X-Ray Spectrometry (EDS) KW - Elemental analysis KW - Quantification KW - ISO/TC 229 Nanotechnologies PY - 2025 AN - OPUS4-63190 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Report VAMAS/TWA 37 "Quantitative Microstructural Analysis" & Liaison with ISO/TC 202 "Microbeam Analysis" N2 - The progress in activities on Quantitative MicroStructural Analysis under VAMAS/TWA 37 is reviewed. Particularly the liaison with the new projects within the ISO technical committee TC 202 Microbeam Analysis is presented and discussed with respect to the identification and launching corresponding VAMAS projects. The ongoing projects "Development of guidelines for reproducible TEM specimen preparation by FIB processing", "Measurement of dislocation density in metallic materials by Transmission Electron Microscope (TEM)", "Repeatability of high angular resolution electron backscatter diffraction (HR-EBSD) analysis for elastic strain measurements", "Measurement of grain size and distribution of nanocrystalline nickel by using Transmission Kikuchi Diffraction (TKD) in SEM" and the just started project "Evaluation Method of Surface Layer Quality of TEM Specimen Prepared by focused Ion Beam Processing" are presented in detail. T2 - Versailles Project on Advanced Materials and Standards (VAMAS) 50th Steering Committee Meeting CY - London, United Kingdom DA - 15.09.2025 KW - VAMAS KW - Interlaboratory comparison KW - Microbeam Analysis KW - Electron Microscopy KW - ISO/TC 202 KW - Sample preparation PY - 2025 AN - OPUS4-64231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Deep Insights into Functionalised Nanoparticles with Photoelectron Spectroscopy N2 - Modern instrumentation X-ray photoelectron instrumentation combines soft and hard X-rays. Additonally, in the last years methods were developed for the analysis of the measurement data to elucidate the composition and thickness of coatings of nanoparticles. In this presentation four examples will be presented: quantum dots, silica-coated iron-oxide nanoparticles, mixed Fe-Ni-O nanoparticles and amine-functionalized silica nanoparticles. These different nanoparticles are used for displays, for biomedicine, for water splitting, and as additives and fillers. T2 - United Kingdom Surface Analysis Forum Meeting 2025 CY - Teddington, UK DA - 15.07.2025 KW - Simulation KW - Oxygen evolution reaction KW - Transmission electron microscopy KW - Quantitative nuclear magnetic resonance (qNMR) PY - 2025 AN - OPUS4-63733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Analysis of Nanoparticles N2 - The determination of the thickness and composition of the coating is crucial for the understanding of the properties of nanoparticles. Four different approaches will be presented: (i) numerical methods, (ii) descriptive formulae, (iii) the simulation of spectra with Monte-Carlo methods, and (iv) inelastic background analysis. The advantages and limits of these methods will be discussed. T2 - XPS Workshop CY - Teddington, United Kingdom DA - 14.07.2025 KW - Numerical simulation KW - Emperical formulae KW - Simulation KW - Inelastic background analysis PY - 2025 AN - OPUS4-63732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Interlaboratory comparisons for validated measurements of the surface chemistry of nanomaterials N2 - Interlaboratory comparisons are essential tools for validating new protocols or methods. The properties of advanced materials are largely determined by surface chemistry. Using a VAMAS interlaboratory comparison on the surface functionalization of GR2DM, it is explained what insights can be gained from such a comparison.” T2 - Nanomesure France Journee technique CY - Paris, France DA - 04.11.2025 KW - VAMAS KW - Functionalized graphene KW - X-ray photoelectron spectroscopy PY - 2025 AN - OPUS4-65002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altmann, Korinna A1 - Wimmer, Lukas A1 - Alcolea-Rodriguez, Victor A1 - Waniek, Tassilo A1 - Wachtendorf, Volker A1 - Matzdorf, Kay A1 - Ciornii, Dmitri A1 - Fengler, Petra A1 - Milczewski, Frank A1 - Otazo-Aseguinolaza, Itziar A1 - Ferrer, Manuel A1 - Bañares, Miguel A. A1 - Portela, Raquel A1 - Dailey, Lea Ann T1 - Quality-by-design and current good practices for the production of test and reference materials for micro- and nano-plastic research N2 - Understanding the environmental and human health impacts of micro- and nanoplastic pollutants is currently a high priority, stimulating intensive methodological research work in the areas of sampling, sample preparation and detection as well as intensive monitoring and testing. It is challenging to identify and quantify microplastics in complex organic matrices and concepts for nanoplastic detection are still in their infancy. All analytical techniques employed in studying micro- and nanoplastics require suitable reference materials for validation measurements, with requirements as diverse as the analytical tools used, ranging from different polymer types, size distributions and shapes of the material to the concentrations employed in different experimental set ups (ng to g amounts). The aim of this manuscript is to outline current good practices for small-scale laboratory production and characterization of suitable test and reference materials. The focus is placed on top-downfragmentation methods as well as bottom-up precipitation methods. Examples using polyethylene, polypropylene, polystyrene and polyethylene terephthalate with size distribution classes of mainly 10–1000, 1–10 and <1 μm particles will be provided. Experiences and suggestions on how to produce well-characterized micro- and nano-plastics for internal research needs will ensure that studies using the materials have robust and informative outcomes. KW - Mmicroplastics KW - Nanoplastics KW - Reference materials KW - Standard validation method PY - 2025 DO - https://doi.org/10.1016/j.jhazmat.2025.139595 SN - 0304-3894 VL - 497 SP - 1 EP - 20 PB - Elsevier B.V. AN - OPUS4-63958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cosimi, Andrea A1 - Stöbener, Daniel D. A1 - Nickl, Philip A1 - Schusterbauer, Robert A1 - Donskyi, Ievgen A1 - Weinhart, Marie T1 - Interfacial nanoengineering of hydrogel surfaces via block copolymer self-assembly N2 - Synthetic polymer hydrogels are valuable matrices for biotransformations, drug delivery, and soft implants. While the bulk properties of hydrogels depend on chemical composition and network structure, the critical role of interfacial features is often underestimated. This work presents a nanoscale modification of the gel−water interface using polymer brushes via a straightforward “grafting-to” strategy, offering an alternative to more cumbersome “grafting-from” approaches. Functional block copolymers with photoreactive anchor blocks are successfully self-assembled and UV-immobilized on hydrogel substrates despite their low solid content (<30 wt %). This versatile technique works on both bulk- and surface-immobilized hydrogels, demonstrated on poly(hydroxypropyl acrylate), poly(N-isopropylacrylamide), and alginate gels, allowing precise control over grafting density. X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry revealed a homogeneous bilayered architecture. By “brushing-up”, the hydrogels’ interface can be tailored to enhance protein adsorption, improve cell adhesion, or impair the diffusive uptake of small molecules into the bulk gels. This effective interfacial nanoengineering method is broadly applicable for enhancing hydrogel performance across a wide range of applications. KW - Brushing-up KW - Benzophenone KW - LCTS-type polymer KW - Poly(glycidyl ether) (PGE) KW - Fibroblast adhesion KW - XPS KW - ToF-SIMS PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652966 DO - https://doi.org/10.1021/acsami.4c18632 SN - 1944-8244 VL - 17 IS - 6 SP - 10073 EP - 10086 PB - American Chemical Society (ACS) CY - Washington, DC AN - OPUS4-65296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Standardized Chemical Composition Analysis of Graphene Oxide Flakes with SEM/EDS and XPS Works Reliably N2 - Reliable quantification of the chemical composition of graphene-related 2D materials (GR2M) as powders and liquid suspensions is a challenging task. Analytical methods such as XPS, ICP-MS, TGA and FTIR are recommended in projects at standardization bodies. The parameters to be measured are also defined, e.g. the oxygen-to-carbon (O/C) concentration ratio, the trace metal impurities, or the functional groups present. In this contribution, for the first time, the capability of SEM/EDS to reliably quantify the O/C ratio in a well-characterized graphene oxide (GO) material is evaluated. The robustness of the SEM/EDS results under various measurement conditions is tested by comparison to the established XPS analysis. A crucial step is the sample preparation from liquid suspension with GO flakes onto a substrate for analysis with both EDS and XPS. It is demonstrated that if a closed and enough thick drop-cast spot is deposited on a substrate, both surface-sensitive XPS analysis and bulk-characterizing EDS result in very similar elemental composition of oxygen and carbon. Hence, the theoretical, expected O/C atomic ratio values for pure GO of ~0.5 are achieved with both methods. Further, the effect of untight deposited material causing co-analysis of the silicon substrate, is evaluated for both methods, XPS and EDS. Note that all the EDS results in this study have been quantified standardless. The standard measurement procedure including the GO material considered here as a candidate reference material will make a significant contribution to analyse reliably the chemical composition of GR2M with SEM/EDS as one of the most widely used methods in analytical laboratories. T2 - Graphene Week 2025 CY - Vicenza, Italy DA - 22.09.2025 KW - EDX KW - Graphene-related 2D materials KW - O/C ratio KW - Standardisation KW - Samle preparation KW - XPS PY - 2025 AN - OPUS4-64261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mrkwitschka, Paul A1 - Sahre, Mario A1 - Corrao, Elena A1 - Pellegrino, Francesco A1 - Hodoroaba, Vasile-Dan T1 - Wire-Print as a Sample Preparation Procedure Suitable for Accurate Morphological Characterization of Constituent Particles for Graphene-Related 2D-Materials N2 - In this study we have systematically tested the efficacy of a new deposition procedure for graphene-related 2D materials (GR2M’s) from liquid suspension onto a substrate for quantitative analysis of their size and shape distribution with electron microscopy. The technique is an extension of the conventional drop-casting method, and we have designated it “wire-print” deposition. It consists of two steps, first one being usual drop-casting on a copper substrate and second one involving a thin copper wire with a sub-mm diameter being dipped into the deposited droplet and retracted with a corresponding half-spherical droplet attached on its tip and final deposition of this entire nL-amount of suspension onto e.g. a silicon wafer for microscopical, detailed analysis. 11 series of such a wire-print deposition for a graphene-based ink have been considered, whereby various conditions (treatment of the starting suspension) have been experimented with a repetition of up to 10 times per condition, all together 86 spots on a silicon wafer of 10 mm x 10 mm. The evaluation of one series of 8 repeated wire-print depositions reveal that the deposited spots are visualized with SEM. The weak presence of coffee-rings, irregular spot shape, and presence of agglomerates should be noticed. Both the mean value of the 8 ECD distributions and the total number of flakes deposited in each spot show a variance in the range of 17% and 22%, respectively. In the context of accurate analysis of such challenging complex materials these numbers can be considered as excellent and demonstrate the high benefit of the wire-print deposition for accurate morphological measurements on GR2M’s. KW - Sample preparation KW - Imaging KW - 2D materials KW - Morphology KW - Size distribution PY - 2025 DO - https://doi.org/10.1093/mam/ozaf048.219 VL - 31 IS - 7 SP - 436 EP - 437 PB - Oxford Academic AN - OPUS4-63821 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Habibimarkani, Heydar A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - John, Elisabeth T1 - Probing Surface Changes in Fe–Ni Oxide Nanocatalysts with a ToF-SIMS-Coupled Electrochemistry Setup and Principal Component Analysis N2 - Understanding catalyst surface dynamics under operating conditions is essential for improving electrocatalytic performance. Here, we present a novel approach combining electrochemical treatment with contamination-free transfer to Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), followed by principal component analysis (PCA), to probe surface and interfacial changes in Ni–Fe oxide nanoparticles stabilized by polyvinylpyrrolidone (PVP) during the oxygen evolution reaction (OER). The surface analysis at three distinct treatment stages revealed distinct chemical fingerprints across pristine nanoparticles, after exposure to 1 M KOH electrolyte, and after cyclic voltammetry treatment. The results highlight a progressive transition from ligand-rich to ligand-depleted interfaces, with PVP-related fragments dominant in the early stages and metal- and electrolyte-derived species emerging after activation. Complementary ToF-SIMS analysis of electrolyte deposited on Si wafers after each treatment step confirms the concurrent leaching of PVP and Fe–Ni-based fragments during OER. These findings underscore the dynamic nature of catalyst–electrolyte interfaces and demonstrate a robust strategy for monitoring surface-sensitive chemical changes associated with the nanoparticles, especially during the initial cycles of the OER. KW - Fe-Ni oxide KW - Nanocatalysts KW - ToF-SIMS KW - Electrochemistry KW - PCA (principal component analysis) KW - OER PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652667 DO - https://doi.org/10.1021/acs.analchem.5c03894 SN - 0003-2700 SP - 1 EP - 8 PB - American Chemical Society (ACS) AN - OPUS4-65266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - Nano and Advanced Materials - Competences at BAM and perspectives N2 - This presentation gives an overview about the competencies and the characterization possibilities of nanoparticles at BAT, based on this the development of the OECD TG 125 at BAM. It further describes research activities at BAM concerning the characterization of nanoparticles and the way to the digital representation of these characterization possibilities. It concludes with the challenges of a digital product passport (DPP) for nanomaterial based products and the need of a digital materials passport (DMP). Finally, the activities of BAM are presented which address the former mentioned challenges from ESRP and DPP. T2 - Austausch Helmholtz Hereon / Digipass & BAM CY - Berlin, Germany DA - 07.07.2025 KW - Nanomaterials KW - ESPR KW - DPP KW - Nano KW - Advanced Materials PY - 2025 AN - OPUS4-64974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Campos de Oliveira, Paula A1 - Markötter, Henning A1 - Zhang, Wen A1 - Eddah, Mustapha A1 - Widjaja, Martinus Putra A1 - Remacha, Clément A1 - Bruno, Giovanni T1 - Enhanced image segmentation of refractories using synchrotron X-ray computed tomography and machine learning techniques N2 - The microstructure of refractory materials is complex, featuring a variety of mineral phases, agglomerates, defects, and controlled porosity. The behavior of refractories at high temperatures adds another layer of complexity, as phase transitions and particle rearrangements can strongly affect their properties. To analyze such intricate microstructure, advanced imaging techniques such as Synchrotron X-ray Computed Tomography (SXCT) allow detailed 3D visualization and quantification of features up to 1 μm. However, the intricacy of these microstructures makes phase identification (known as image segmentation) in digital images a challenging process. X-ray images often contain noise and image artifacts, making the analysis more difficult. Therefore, this work describes image segmentation and artifact reduction methods to characterize refractories using X-ray imaging. We studied refractory ceramics used in the aerospace industry, primarily composed of fused silica. For image segmentation, the traditional approach of greyscale thresholding was compared with machine learning. Greyscale thresholding relies on predefined algorithms to assign phases based on intensity values. In contrast, machine learning extracts patterns from large datasets, enabling more adaptive and accurate segmentation. By combining high-resolution SXCT and machine learning analysis algorithms, we successfully segmented previously uncharacterized 3D microstructural key features of refractories, including agglomerates, grain boundaries, pore size distribution and interconnectivity. Compared to traditional methods, the machine learning-enhanced segmentation presented a more accurate quantification of porosity and defects. The integration of advanced imaging techniques with machine learning segmentation significantly improves the characterization of refractory materials, providing a more precise understanding of the relationship between microstructure and material performance, supporting the development of innovative industrial solutions. T2 - The 19th Biennial International Technical Conference on Refractories (UNITECR 2025) CY - Cancún, Mexiko DA - 27.10.2025 KW - Synchrotron X-ray Tomography KW - Machine learning KW - Image segmentation KW - Ceramics KW - Refractories PY - 2025 SP - 478 EP - 481 AN - OPUS4-64803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ren, L. A1 - Pollard, A. A1 - Hodoroaba, Vasile-Dan T1 - Measurement of Lateral Size of Graphene Oxide Flakes by SEM - An Update of the VAMAS TWA 41 Project P13 N2 - The progress of the VAMAS interlaboratory comparison Project P13 "Lateral size of graphene oxide flakes by SEM" within the Technical Working Area 41 "Graphene and Related 2D Materials" is presented. The challenges at sample preparation on substrates for accurate measurement and image analysis as well as two different image analysis approaches, containing exact guidance how to measure the main descriptors for the lateral size measurement of the imaged graphene oxide flakes with Scanning Electron Microscopy are described. Discrepancies are explained. The inclusion of the results into the corresponding ISO technical specification CD/TS 23879 is also discussed and planned, in relation with the AFM part. T2 - Versailles Project on Advanced Materials and Standards (VAMAS) 50th Steering Committee Meeting CY - London, United Kingdom DA - 15.09.2025 KW - VAMAS KW - Interlaboratory comparison KW - Electron microscopy KW - Lateral size KW - Graphene oxide flakes PY - 2025 UR - https://www.vamas.org/twa41/documents/2023_vamas_twa41_project13_GO_SEM.pdf AN - OPUS4-64228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Hodoroaba, Vasile-Dan T1 - Wire-Print as a Novel Sample Preparation Approach for Accurate Morphological Characterization of Constituent Particles of Graphene-Related 2D-Materials N2 - Graphene and graphene-oxide (GO) are used for instance in catalysis, biomedical applications, in inks and as composite materials. To ensure product quality and safe-by-design principles within the various application fields, the commercial material must be characterized and specified through well-known and standardized procedures. The accurate morphological characterization of 2D materials is a challenging task, requiring careful sample preparation on a substrate either as a powder or from liquid suspension. These must be isolated, homogeneously distributed, with good statistics of the counted particles. Various sample preparation approaches have been reported in the literature, e.g. electrospray, substrate surface treatment, embedding the particulate material and polishing the cross-section, or addition of ligands to the suspended nanostructures. In this study, a novel deposition procedure for graphene-related 2D materials (GR2Ms) was systematically tested for its efficacy. The quantitative analysis of the size and shape distribution of the materials was conducted using electron microscopy and was successfully tested in XPS and EDS experiments. The technique is an extension of the conventional drop-casting method and has been designated "wire-print" deposition. The result of such a wire-print deposition for a graphene-based suspension is shown in Figure, where various treatment conditions have been tested with a repetition of up to 10 times per condition, all together 86 spots on a silicon wafer of 10 mm². T2 - Graphene Week 2025 CY - Vicenza, Italy DA - 22.09.2025 KW - Graphene-related 2D materials (GR2M) KW - Sample peparation KW - Imaging KW - Electron Microscopy KW - Wire-print deposition method PY - 2025 AN - OPUS4-64248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Florian, Camilo T1 - Optical thickness-profiling for fs-laserinduced superficial amorphization and oxide removal on silicon N2 - Amorphization and re-crystallization of polished silicon wafers cut in <111> and <100> orientation were studied after irradiation by single Ti:sapphire femtosecond laser pulses (790 nm, 30 fs) using optical imaging, topographic characterization, and transmission electron microscopy. Spectroscopic imaging ellipsometry (SIE) enabled fast data acquisition at multiple wavelengths and provided experimental data for calculating the amorphous layer thickness profiles with lateral resolution in the micrometer and vertical resolution in the nanometer range based on a thin-film layer model including the topmost native oxide. For a radially Gaussian shaped laser beam and at moderate peak laser fluences above the melting but below the ablation threshold, laterally parabolic amorphous layer profiles with maximum thicknesses of some tens of nanometers were quantitatively derived. Moreover, the threshold fluence of the native oxide removal was quantified. At laser peak fluences closely below the ablation threshold of silicon, SIE is capable to reveal even the laser-induced removal and formation of the native oxide covering the Si wafers under ambient air conditions. The accuracy of these all-optical, non-destructive SIE-based layer thickness assessments is verified experimentally through high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (STEM-EDX). Along with topographic information obtained by atomic force microscopy (AFM), a comprehensive picture of the oxide removal and superficial re-solidification of silicon after local melting by femtosecond laser pulses can be drawn. T2 - E-MRS Spring Meeting 2025 CY - Strasbourg, France DA - 26.05.2025 KW - Femtosecond laser KW - Laser-induced amorphization KW - Native oxide layer KW - Spectroscopic imaging ellipsometry KW - Transmission electron microscopy PY - 2025 AN - OPUS4-63275 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Bacterial adhesion on ultrashort pulse laser processed surfaces ― more than size matters! N2 - Bacterial biofilms are aggregates of bacterial cells, often attached to a surface and enclosed by a self-produced extracellular matrix which confers increased stress tolerance and resistance to cleaning. Biofilm formation leads to biofouling which gives rise to high costs in numerous technical settings due to biocorrosion and biodegradation. However, biofilms can also be attractive for industrial settings such as wastewater treatment systems or for soil bioremediation processes. Hence, the control of bacterial adhesion to a surface is of major concern. Surface topography strongly influences bacterial adhesion. Therefore, one promising way to achieve bacteria-guiding surfaces lies in the contactless and aseptic large-area laser processing of technical surfaces. We used short and ultrashort pulsed laser systems to generate different surface textures, mainly high-spatial-frequency and low-spatial-frequency laser-induced periodic surface structures, LIPSS (HFSL and LFSL), on Ti, Ti-alloy, steel, and polymers (PET and PE). Pristine (polished) and laser processed samples were subjected to bacterial adhesion experiments with two different Escherichia coli strains and Staphylococcus aureus as test organisms. The bacterial strains differed in their cell wall structure (grampositive vs. gramnegative strains), in size, shape, the occurrence of cell appendages, and in their biofilm forming capabilities. Adhesion patterns were analyzed microscopically and compared regarding the respective test strain and surface topography. Our results revealed that adhesion behavior strongly depends not only on the material’s topography and chemistry, but also on the specific bacterial strain, the presence of cell appendages, and ambient growth conditions. T2 - 13th International Conference on Photoexcited Processes and Applications, ICPEPA-13 CY - Lecce, Italy DA - 14.09.2025 KW - Biofilm KW - Bacterial adhesion KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser pulses PY - 2025 AN - OPUS4-64166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martínez, E. A1 - Lejeune, N. A1 - Frechilla, J. A1 - Porta-Velilla, L. A1 - Forneau, E. A1 - Angurel, L. A. A1 - de la Fuente, G. F. A1 - Bonse, Jörn A1 - Silhanek, A. V. A1 - Badía-Majós, A. T1 - Laser engineered architectures for magnetic flux manipulation on superconducting Nb thin films N2 - Custom shaped magnetic flux guiding channels have been fabricated on superconducting Nb thin films by laser nanopatterning of their surface. Preferential pathways are defined by suitable combination of imprinted anisotropic pinning domains through laser-induced periodic surface structures (LIPSS). Generated by the selective energy deposition of femtosecond UV laser pulses, quasi-parallel ripple structures are formed under optimized irradiation conditions. On average, each domain is formed by grooves with a lateral period of 260–270 nm and a depth about 80 nm. By combination of scanning and transmission electron microscopy, magneto-optical imaging, and conductive atomic force microscopy techniques, we conclude that the boundaries of the LIPSS-covered domains play a prominent role in the magnetic flux diversion process within the film. This is confirmed by dedicated modeling of the flux dynamics, combined with the inversion of the magneto-optical signal. The created metasurfaces enable control of the flux penetration process at the microscale. KW - Laser-induced periodic surface structures (LIPSS) KW - Magnetic flux KW - Magneto-optical imaging (MOI) KW - Critical current density PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-611243 UR - https://www.sciencedirect.com/science/article/pii/S0169433224019287 DO - https://doi.org/10.1016/j.apsusc.2024.161214 SN - 1873-5584 (Online) SN - 0169-4332 (Print) VL - 679 SP - 1 EP - 12 PB - Elsevier AN - OPUS4-61124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wonneberger, R. A1 - Gräf, S. A1 - Bonse, Jörn A1 - Wisniewski, W. A1 - Freiberg, K. A1 - Hafermann, M. A1 - Ronning, C. A1 - Müller, F. A. A1 - Undisz, A. T1 - Tracing the Formation of Femtosecond Laser-Induced Periodic Surface Structures (LIPSS) by Implanted Markers N2 - The generation of laser-induced periodic surface structures (LIPSS) using femtosecond lasers facilitates the engineering of material surfaces with tailored functional properties. Numerous aspects of their complex formation process are still under debate, despite intensive theoretical and experimental research in recent decades. This particularly concerns the challenge of verifying approaches based on electromagnetic effects or hydrodynamic processes by experiment. In the present study, a marker experiment is designed to conclude on the formation of LIPSS. Well-defined concentration depth profiles of 55Mn+- and 14N+-ions were generated below the polished surface of a cast Mn- and Si-free stainless steel AISI 316L using ion implantation. Before and after LIPSS generation, marker concentration depth profiles and the sample microstructure were evaluated by using transmission electron microscopy techniques. It is shown that LIPSS predominantly formed by material removal through locally varying ablation. Local melting and resolidification with the redistribution of the material occurred to a lesser extent. The experimental design gives quantitative access to the modulation depth with a nanometer resolution and is a promising approach for broader studies of the interactions of laser beams and material surfaces. Tracing LIPSS formation enables to unambiguously identify governing aspects, consequently guiding the path to improved processing regarding reproducibility, periodicity, and alignment. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser processing KW - Ion implantation KW - Transmission Electron Microscopy (TEM) KW - Stainless steel PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-623990 DO - https://doi.org/10.1021/acsami.4c14777 SN - 1944-8244 (Print) SN - 1944-8252 (Online) VL - 17 IS - 1 SP - 2462 EP - 2468 PB - ACS Publications AN - OPUS4-62399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Laser Nanotexturierung von Metalloberflächen zur Reduktion von Reibung und Verschleiß N2 - Die Reduktion von Reibung und Verschleiß in technischen Systemen bietet ein großes Potenzial zur Reduktion von CO2-Emissionen. Dieser Beitrag diskutiert die Erzeugung und tribologische Charakterisierung von Ultrakurzpuls-generierten Nanostrukturen auf Metallen (Stahl, Titan). Besonderes Augenmerk wird dabei auf die Rolle der laserinduzierten Oxidschicht im Zusammenspiel mit verschleißreduzierenden Additiven in ölbasierten Schmiermitteln gerichtet. T2 - Online Abendvortrag beim AWT Härterei- und Werkstoffkreis Bodensee der Arbeitsgemeinschaft Wärmebehandlung + Werkstofftechnik e.V. CY - Online meeting DA - 16.01.2025 KW - Additive KW - Laser-induzierte periodische Nanostrukturen KW - Reibungsreduktion KW - Verschleißreduktion PY - 2025 AN - OPUS4-62432 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Voss, Heike T1 - Morphology and regularity of high-spatial frequency laser-induced periodic surface structures (HSFL) on titanium materials N2 - Titanium and its alloys are known to allow the straightforward laser‐based manufacturing of ordered surface nanostructures, so‐called high spatial frequency laser‐induced periodic surface structures (HSFL). These structures exhibit sub‐100 nm spatial periods – far below the optical diffraction limit. The resulting surface functionalities are usually enabled by both, topographic and chemical alterations of the nanostructured surfaces. For exploring these effects, HSFL were processed on different titanium materials (bulk, film) upon irradiation with near‐infrared ps‐laser pulses (1030 nm wavelength, ≈ 1 ps pulse duration) under different laser scan processing conditions. Here we extend our previous work on chemical analyses of HSFL on titanium materials towards a more detailed morphological and topographical surface characterization. For that, scanning electron and atomic force microscopic images are subjected to a regularity analysis using our self-developed ReguΛarity software. The regularity of the HSFL is assessed with respect to the influences of sample- and laser-related parameters, as well as the imaging method used. T2 - 13th International LIPSS Workshop CY - Enschede, Netherlands DA - 29.10.2025 KW - Laser-induced periodic surface structures (LIPSS) KW - Titanium KW - Ultrashort laser pulses KW - Laser processing PY - 2025 AN - OPUS4-64631 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Laser Nanotexturierung von Metalloberflächen zur Reduktion von Reibung und Verschleiß N2 - Die Reduktion von Reibung und Verschleiß in technischen Systemen bietet ein großes Potenzial zur Reduktion von CO2-Emissionen. Dieser Beitrag diskutiert die Erzeugung und tribologische Charakterisierung von Ultrakurzpuls-generierten Nanostrukturen auf Metallen (Stahl, Titan). Besonderes Augenmerk wird dabei auf die Rolle der laserinduzierten Oxidschicht im Zusammenspiel mit verschleißreduzierenden Additiven in ölbasierten Schmiermitteln gerichtet. T2 - Internationale Bodensee Fachtagung „Wärmebehandlung und Oberflächentechnik zur Verbesserung von Tribologie und Verschleissbeständigkeit" CY - Feldkirch, Austria DA - 20.03.2025 KW - Additive KW - Laser-induzierte periodische Nanostrukturen KW - Reibungsreduktion KW - Verschleißreduktion PY - 2025 AN - OPUS4-62757 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Generation and characterization of anisotropic nanostructures using ultrashort pulsed lasers N2 - The lecture gives an overview of the generation and characterization of anisotropic nanostructures using ultrashort pulsed laser radiation. Special attention will be paid to the phenomenon of so-called laser-induced periodic surface structures (LIPSS) on various materials. One focus will be on dielectrics and the dynamics of nanostructure formation. Further examples of bulk nanostructures from the literature will be discussed. T2 - 8th UKP-Workshop: Ultrafast Laser Technology CY - Aachen, Germany DA - 08.04.2025 KW - Laser-induced Periodic Surface Structures (LIPSS) KW - Dielectrics KW - Surface Nanostructures KW - Volume Nanostructures PY - 2025 AN - OPUS4-62947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Ultrafast optical probing of laser-induced formation of periodic surface nanostructures N2 - Laser-induced Periodic Surface Structures (LIPSS, ripples) are a universal phenomenon and can be generated in a contactless, single-step process on almost any type of solid upon irradiation with intense laser pulses. They represent a (quasi-)periodic modulation of the surface topography in the form of a linear grating and are typically formed in a “self-ordered” way in the focus of a coherent laser beam. Thus, they are often accompanying laser material processing applications. The structural sizes of LIPSS typically range from several micrometers down to less than 100 nanometers – far beyond the optical diffraction limit – while their orientations exhibit a clear correlation with the local polarization direction of the laser radiation. From a theoretical point of view, a controversial debate has emerged during the last decades, whether LIPSS originate from electromagnetic effects (seeded already during the laser irradiation) – or whether they emerge from matter-reorganization processes (distinctly after the laser irradiation). From a practical point of view, however, LIPSS represent a simple and robust way for the nanostructuring of solids that allows creating a wide range of different surface functionalities featuring applications in optics, tribology, medicine, energy technologies, etc. The presentation provides an overview of current theories on LIPSS and the quest to achieve ever smaller surface nanostructures. The historical development of the fundamental ideas behind LIPSS is presented, together with experimental approaches that make it possible to distinguish between the various LIPSS formation scenarios. Time-resolved experimental methods are required to investigate the dynamics of their formation. The presentation focuses on ultrafast time-resolved optical (pump-probe) techniques that can be used for localized point measurements or microscopic imaging, utilizing the reflection, diffraction, or coherent scattering of the probe radiation at the emerging LIPSS, while simultaneously capturing information about rapid melting, ablation, and solidification phenomena. However, given the sub-micrometric spatial periods of LIPSS, their analysis using optical radiation employed in far-field techniques remained a challenge. Therefore, short wavelengths of the probe beam in the UV range or even below are required to overcome the diffraction limit imposed in the optical spectral range. Fourth-generation light sources, namely short-wavelength (XUV or X-ray) short-pulse free-electron lasers (FELs), offer new and fascinating possibilities for resolving laser-induced structure formation on surfaces in the sub-micrometer to nanometer range and in time domains from picoseconds to several nanoseconds with a resolution in the sub-picosecond regime. On laser-irradiated semiconductor surfaces, this unique spatio-temporal resolution enables the detection of early signs of coherent/plasmonic electromagnetic scattering effects, followed by the excitation of hydrodynamic capillary waves – providing new insights into the above-mentioned debate. Recent experiments at the European XFEL used fs-time-resolved small-angle X-ray scattering (fs-SAXS) and even fs-time-resolved grazing incidence small-angle X-ray scattering (fs-GISAXS), combined with grazing-incidence diffraction (fs-GID), to reveal the dynamics of the formation of nanometric LIPSS on metals. T2 - CINSaT Herbstkolloquium 2025 CY - Kassel, Germany DA - 05.11.2025 KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser pulses KW - Pump-probe measurements KW - Free-electron laser KW - Small angle X-ray scattering (SAXS) PY - 2025 AN - OPUS4-64633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hassenstein, Christian T1 - Robotergestützte Ultraschallprüfung von Objekten mit komplexen Geometrien N2 - Durch den Einsatz moderner digitaler Design- und Fertigungsmethoden wachsen einerseits die Komplexität von Bauteilen, andererseits der Bedarf an Informationen über deren Qualität und Zustand. Damit steigen auch die Anforderungen an die zerstörungsfreie Prüfung, die im Zuge von ZfP 4.0 automatisierte und flexible, innovative Prüfmethoden erfordert. Das gilt insbesondere für Objekte, deren Oberflächengeometrien über plane Flächen und eindimensionale Krümmungen hinausgehen. Um zu zeigen, wie eine Ultraschallprüfung von Objekten mit komplexer Oberflächengeometrie realisiert werden kann, wurde an der BAM eine roboterbasierte Demonstratoranlage entwickelt. Dabei führt ein Roboterarm einen Array-Prüfkopf in Tauchtechnik senkrecht über die Prüffläche. Die dafür erforderliche Prüfbahn kann entweder anhand der CAD-Geometrie oder mithilfe einer Punktewolke der Prüffläche, die vorab mit einem am Roboter angebrachten Laser-Profilometer erfasst wird, ermittelt werden. Zur Erhöhung der Genauigkeit werden der Lasersensor und der Ultraschallprüfkopf automatisiert mit dafür entwickelten Routinen am Roboter eingemessen. Durch bildgebende Verfahren und eine automatische Auswertung der Bilder kann die in Tauchtechnik auftretende Brechung des Schallbündels an der Prüfteiloberfläche berücksichtigt werden, was die ortsrichtige Rekonstruktion von Anzeigen aus dem Prüfteilinneren bzw. der Rückwand ermöglicht. Durch Rückführung der Anzeigen in ein gemeinsames Koordinatensystem entsteht eine 3D-Rekonstruktion des Prüfteils. Der vorliegende Beitrag stellt die Demonstratoranlage und die angewendeten Methoden im Detail vor und nennt Anwendungsbeispiele. T2 - DGZfP Jahrestagung 2025 CY - Berlin, Germany DA - 26.05.2025 KW - Ultraschall KW - Robotik KW - Turbinenschaufel KW - Wanddicke KW - Defekterkennung PY - 2025 AN - OPUS4-63417 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Voss, Heike T1 - ReguΛarity - A free software for the objective quantification of the regularity of periodic surface structures generated by femtosecond laser irradiation N2 - The precise laser-based surface structuring on the micro- and nanoscale allows to create functional properties for innovative applications, e.g., in medicine, optics and biology. Among the various types of surface structures, laser-induced periodic surface structures (LIPSS) are characterized by their versatility and the relatively simple manufacturing process. However, the fabrication of highly regular LIPSS patterns remains challenging. The systematic investigation of LIPSS formation, as well as of the resulting functional properties requires a precise evaluation of the surface morphology, especially with regard to periodicity and regularity. Existing quantification methods such as Fast Fourier Transformation (FFT) tend to lack automation and objectivity, especially when dealing with large data sets and multi-scale structures. Although automated approaches exist with the Gini coefficient and the P³S method, their limited availability restricts a broader scientific use. We therefore introduce ReguΛarity as an innovative open-source software solution for objective, rapid and reproducible evaluation of structured surfaces concerning their regularity. In order to provide comprehensive surface morphological analysis, our software uses advanced image-processing techniques and integrates the already developed tools such as P³S method, Gini coefficient, FFT analysis, and the calculation of DLOA (Dispersion of LIPSS Orientation Angle). The software allows to evaluate any relevant image format as provided, e.g., by standard scanning electron micrographs. An intuitive PyQt5-based interface, enhanced by multi-threading capabilities, facilitates efficient data processing. Interactive features such as region-of-interest selection and plotting provide flexible adaptation to diverse applications. ReguΛarity offers a robust analysis tool that will contribute to the further development of precise laser-based surface structuring and to the optimization of the desired functional properties in both research and industry. T2 - 13th International Conference on Photoexcited Processes and Applications, ICPEPA-13 CY - Lecce, Italy DA - 14.09.2025 KW - Laser-induced periodic surface structures (LIPSS) KW - Laser processing KW - Fourier transformation KW - Regularity PY - 2025 AN - OPUS4-64176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rahner, E. T1 - From nightmare to numbers - A novel software tool for objective regularity analysis of LIPSS N2 - The precise laser-based surface structuring on the micro- and nanoscale allows for the creation of functional properties for innovative applications, e.g., in medicine, optics and biology. Among the various types of surface structures, laser-induced periodic surface structures (LIPSS) are distinguished by their versatility and the comparatively simple manufacturing process. Nevertheless, the fabrication of highly regular LIPSS patterns remains challenging. The systematic investigation of LIPSS formation, as well as of the resulting functional properties demands accurate and objective evaluation of surface morphology, especially regarding periodicity and regularity. Existing quantification methods such as Fast Fourier Transformation (FFT) tend to lack automation and objectivity, especially when dealing with large data sets and multi-scale structures. Although automated approaches, such as those based on the Gini coefficient or the P³S method, have been proposed, their limited availability hinders a broader scientific use. To overcome these limitations, we introduce ReguΛarity, a novel, freely available Python-based software tool featuring a graphical user interface for automated and quantitative assessment of regularity in period and (quasi-)periodic surface patterns including LIPSS. The software processes microscopic images obtained from optical, scanning electron microscopy (SEM), or atomic force microscopy (AFM), combining image segmentation with one- and two-dimensional Fourier analyses (1D-FT, 2D-FT), phase evaluation, and gradient-based orientation determination to facilitate a comprehensive regularity analysis of (quasi-)periodic surface patterns with spatial periods Λ. Regularity is quantified by the newly proposed five-dimensional regularity tuple R comprising the normalized spread of spatial periods from 2D-FT, the normalized local variation of the dominant spatial period from 1D-FT, the Gini coefficient G, the Dispersion of the LIPSS Orientation Angle (DLOA), and the mean phase deviation. The demonstration of the software’s capabilities is achieved by comparing idealized sinusoidal test patterns with SEM micrographs of fs-laser-generated LIPSS on stainless steel (AISI 316L) and aluminum alloy (AlMg5). This comparison highlights ReguΛarity’s objective differentiation between varying levels of structural regularity. The software facilitates high-throughput analysis and data-driven optimization in laser surface engineering processes. T2 - 13th International LIPSS Workshop CY - Enschede, Netherlands DA - 29.10.2025 KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - Fourier transform KW - Gini coefficient PY - 2025 AN - OPUS4-65047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gräf, S. T1 - Ion marker implantation as key to understand the formation of femtosecond LIPSS on steel N2 - Ultrashort laser (fs-laser) pulses can be used to generate laser-induced periodic surface structures (LIPSS, ripples) on different types of materials. A variety of potential applications of these grating-like LIPSS have already been demonstrated in the field of surface functionalization. Examples include structural colours (e.g. for optical effects or safety features), beneficial friction and wear reduction, modification of the wetting behaviour of surfaces, and antibacterial or cell adhesion promoting properties for medical implants. Despite decades of research, however, some aspects regarding the formation mechanism are still unclear and the subject of controversial debate. This involves the two main models of coherent electromagnetic scattering and matter reorganization, which are used for explaining aspects of LIPSS formation and phenomenology. One major issue is to quantify the actual amount of material removal during the fs-laser processing due to the lack of an independent depth reference and to visualize the so-called heat-affected zone accompanying intense fs-laser irradiation. In the present study, near-surface implantation of Mn and N ions into different material depth of Mn-free austenitic stainless steel alloy FeCrNiMo18-12-2 was used to create reference layers of a defined thickness containing the respective elements. LIPSS (type low-spatial frequency LIPSS, LSFL) were fabricated on the polished substrate surfaces in an air environment by fs-laser irradiation (λ = 1025 nm, τ = 300 fs, frep = 100 kHz, F = 1.5 J/cm2). The implanted layers subsequently served as a kind of coordinate system to assess the material removal during the formation process via cross-sectional Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Spectroscopy (EDXS). Using both analysis methods enabled in particular to determine the position of peaks and valleys of the LIPSS topography in relation to the initial surface before fs-laser irradiation. This confirmed the selective ablation in the LIPSS valleys. Moreover, linking changes in the material’s microstructure, e.g., the crystallinity and near surface elemental composition before and after fs-laser treatment, gave additional insights regarding the transient cooling rates, as recently shown for NiTi alloys. T2 - 13th International LIPSS Workshop CY - Enschede, Netherlands DA - 29.10.2015 KW - Energy dispersive X-ray analysis (EDX) KW - Ion implantation KW - Laser-induced periodic surface structures (LIPSS) KW - Steel KW - Transmission electron microscopy (TEM) PY - 2025 AN - OPUS4-64900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Bacterial adhesion on ultrashort pulse laser processed surfaces ― more than size matters! N2 - Bacterial biofilms are aggregates of bacterial cells, often attached to a surface, and enclosed by a self-produced extracellular matrix which confers increased stress tolerance and resistance to cleaning. Biofilm formation leads to biofouling which gives rise to high costs in numerous technical settings due to biocorrosion and biodegradation. However, biofilms can also be attractive for industrial settings such as wastewater treatment systems or for soil bioremediation processes. Hence, the control of bacterial adhesion to a surface is of major concern. Surface topography strongly influences bacterial adhesion. Therefore, one promising way to achieve bacteria-guiding surfaces lies in the contactless and aseptic large-area laser processing of technical surfaces. We used short and ultrashort pulsed laser systems to generate different surface textures, mainly high-spatial-frequency and low-spatial-frequency laser-induced periodic surface structures, LIPSS (HFSL and LFSL), on Ti, Ti-alloy, steel, and polymers (PET and PE). Pristine (polished) and laser processed samples were subjected to bacterial adhesion experiments with two different Escherichia coli strains and Staphylococcus aureus as test organisms. The bacterial strains differed in their cell wall structure (grampositive vs. gramnegative strains), in size, shape, the occurrence of cell appendages, and in their biofilm forming capabilities. Adhesion patterns were analyzed microscopically and compared regarding the respective test strain and surface topography. Our results revealed that adhesion behavior strongly depends not only on the material’s topography and chemistry, but also on the specific bacterial strain, the presence of cell appendages, and ambient growth conditions. T2 - 13th International LIPSS Workshop CY - Enschede, Netherlands DA - 29.10.2025 KW - Bacterial adhesion KW - Biofilm KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser pulses PY - 2025 AN - OPUS4-64632 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Voss, Heike T1 - Morphology and regularity of high-spatial frequency laser-induced periodic surface structures (HSFL) on titanium materials N2 - Titanium and its alloys are known to enable the straightforward laser‐based manufacturing of ordered surface nanostructures, so‐called high-spatial frequency laser‐induced periodic surface structures (HSFL). These structures exhibit sub‐100 nm spatial periods – far below the optical diffraction limit. The resulting surface functionalities are usually enabled by both, topographic and chemical alterations of the nanostructured surfaces. For exploring these effects, HSFL were processed on different titanium materials (bulk, film) upon irradiation with near‐infrared ps‐laser pulses (1030 nm wavelength, ≈1 ps pulse duration) under different laser scan processing conditions in normal air atmosphere. Here, we extend our previous work on chemical analyses of HSFL on titanium materials towards a more detailed large-area morphological and topographical surface characterization. For this purpose, scanning electron or atomic force microscopic images are subjected to a regularity analysis using our ReguΛarity software. The results are assessed with respect to the influences of sample- or laser-related parameters on the regularity of the HSFL. T2 - 13th International Conference on Photoexcited Processes and Applications, ICPEPA-13 CY - Lecce, Italy DA - 14.09.2025 KW - Laser-induced periodic surface structures (LIPSS) KW - Laser processing KW - Ulltrashort laser pulses KW - Titanium PY - 2025 AN - OPUS4-64173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gräf, S. T1 - Ion marker implantation for tracing the formation of femtosecond LIPSS on steel N2 - An ion marker experiment is conducted to investigate the formation of low spatial frequency laser-induced periodic surface structures (LIPSS) on stainless steel surfaces upon scan-processing with femtosecond laser pulses (300 fs, 1025 nm, 100 kHz) focussed to a spot diameter of ~20 µm. Defined concentration depth profiles of 14N^+- and 55Mn^+-ions were implanted below the polished surface of a cast Mn- and Si-free stainless steel AISI 316L using an acceleration energy of 380 keV. This generated two distinct “depth-tracer-layers” ~135 nm (55Mn) and ~340 nm (14N) below the sample surface. The sample morphology and microstructure were evaluated before and after LIPSS-processing using scanning and transmission electron microscopy techniques in top-view and cross-sectional geometry. Energy-dispersive X-ray spectroscopy (EDXS) allowed to visualize the depth distribution of the marker elements, the steel constituents, and of oxygen involved through the laser processing in ambient air. These experiments revealed that the LIPSS on this metal are predominantly formed by material removal through locally varying ablation and, to a lesser extent, by local melt displacement effects prior to the re-solidification. Moreover, the processing in air leads to the formation of a less than 10 nm thick laser-induced oxide layer covering the steel surface. Our new tracer ion approach contributes to the ongoing debate on the relevance of electromagnetic or hydrodynamic effects during the formation of LIPSS. T2 - E-MRS Spring Meeting 2025 CY - Strasbourg, France DA - 26.05.2026 KW - Laser-induced periodic surface structures (LIPSS) KW - Steel KW - Ion implantation KW - Transmission electron microscopy (TEM) KW - Energy dispersive X-ray analysis (EDX) PY - 2025 AN - OPUS4-63274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Obenlüneschloß, Jorit A1 - Boysen, Nils A1 - Rönnby, Karl A1 - Muriqi, Arbresha A1 - Hoffmann, Volker A1 - Abad Andrade, Carlos Enrique A1 - Rogalla, Detlef A1 - Brokmann, Ulrike A1 - Rädlein, Edda A1 - Nolan, Michael A1 - Devi, Anjana T1 - Ein seltener mononuklearer Lithium‐Carben‐Komplex für die Atomlagenabscheidung von lithiumhaltigen Dünnschichten N2 - KurzfassungLithium ist das zentrale Element moderner Batterietechnologien, und die Herstellung von lithiumhaltigen Materialien mittels Atomlagenabscheidung (engl. Atomic Layer Deposition, ALD) bietet erhebliche Vorteile bei der Kontrolle der Schichtdicke und ‐zusammensetzung. In dieser Studie wird ein neuer mononuklearer, durch ein N‐heterocyclisches Carben (NHC) stabilisierter Lithiumkomplex, [Li(tBuNHC)(hmds)], als vielversprechender Präkursor für die ALD von lithiumhaltigen Dünnschichten vorgestellt. Die strukturelle Charakterisierung erfolgt durch den Vergleich von Dichtefunktionaltheorie (DFT) und Einkristall‐Röntgenbeugung (engl. Single‐Crystal X‐ray Diffraction, SC‐XRD), wobei die seltene mononukleare Struktur bestätigt wird. Thermogravimetrische Analysen (TGA) zeigen vorteilhafte thermische Eigenschaften für ALD‐Anwendungen. Die Verbindung weist einen niedrigen Schmelzpunkt, saubere Verdampfung und ermutigende Volatilitätsparameter im Vergleich zu anderen Lithium‐Präkursoren auf. ALD‐Experimente mit [Li(tBuNHC)(hmds)] und Ozon zeigen dessen Effektivität bei der Abscheidung von LiSixOy‐Filmen. Der ALD‐Prozess zeigt ein gesättigtes Wachstum pro Zyklus (engl. Growth per Cycle, GPC) von 0,95 Å. Die Zusammensetzung, analysiert mittels Rutherford‐Rückstreu‐Spektrometrie/Kernreaktionsanalyse (engl. Rutherford Backscattering Spectrometry/Nuclear Reaction Analysis, RBS/NRA), Röntgenphotoelektronenspektroskopie (engl. X‐ray Photoelectron Spectroscopy, XPS) und Glimmentladungsspektroskopie (engl. Glow Discharge Optical Emission Spectrometry, GD‐OES), bestätigt das Vorhandensein von Lithium und Silizium in den erwarteten Verhältnissen. Diese Arbeit stellt nicht nur einen neuen ALD‐Präkursor vor, sondern trägt auch zum Verständnis der Lithiumchemie bei und bietet Einblicke in die faszinierende Koordinationschemie und das thermische Verhalten von durch NHC‐Liganden stabilisierten Lithiumkomplexen. KW - Atomlagenabscheidung KW - N-heterozyklischer-Carben-(NHC)-stabilisierter Lithium-Präkursor KW - Mononuklearer Li–Carben-Komplex KW - Lithiumsilicat-Dünnfilme KW - Filmanalytik/-Charakterisierung PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-644045 DO - https://doi.org/10.1002/ange.202513066 SN - 0044-8249 N1 - Es gibt eine parallele Sprachausgabe (englisch), ein Link befindet sich im Feld zugehöriger Identifikator - There is a parallel language edition (English), a link is in the field related identifier SP - 1 EP - 12 PB - Wiley-VCH CY - Weinheim AN - OPUS4-64404 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Obenlüneschloß, Jorit A1 - Boysen, Nils A1 - Rönnby, Karl A1 - Muriqi, Arbresha A1 - Hoffmann, Volker A1 - Abad Andrade, Carlos Enrique A1 - Rogalla, Detlef A1 - Brokmann, Ulrike A1 - Rädlein, Edda A1 - Nolan, Michael A1 - Devi, Anjana T1 - Rare Mononuclear Lithium-Carbene Complex for Atomic Layer Deposition of Lithium Containing Thin Films N2 - Lithium is the core material of modern battery technologies and fabricating the lithium‐containing materials with atomic layer deposition (ALD) confers significant benefits in control of film composition and thickness. In this work, a new mononuclear N‐heterocyclic carbene (NHC) stabilized lithium complex, [Li(tBuNHC)(hmds)], is introduced as a promising precursor for ALD of lithium‐containing thin films. Structural characterization is performed, comparing density functional theory (DFT) and single‐crystal X‐ray diffraction (SC‐XRD), confirming a rare mononuclear structure. Favorable thermal properties for ALD applications are evidenced by thermogravimetric analysis (TGA). The compound exhibits a low melting point, clean evaporation, and its volatility parameters are encouraging compared to other lithium precursors. ALD trials using [Li(tBuNHC)(hmds)] with ozone demonstrate its effectiveness in depositing LiSixOy films. The ALD process exhibits a saturated growth per cycle (GPC) of 0.95 Å. Compositional analysis using Rutherford backscattering spectrometry/nuclear reaction analysis (RBS/NRA), X‐ray photoelectron spectrometry (XPS), and glow discharge optical emission spectrometry (GD‐OES), confirms the presence of lithium and silicon in the expected ratios. This work not only presents a new ALD precursor but also contributes to the understanding of lithium chemistry, offering insights into the intriguing coordination chemistry and thermal behavior of lithium complexes stabilized by NHC ligands. KW - Atomic layer deposition (ALD) KW - N-heterocyclic carbene (NHC) ligands KW - Lithium ALD precursor chemistry KW - Mononuclear Li–carbene complex [Li(tBuNHC)(hmds)] KW - Li-silicate thin films (LiSixOy) KW - Thermal properties & TGA/volatility KW - Compositional analysis (RBS/NRA, XPS, GD-OES) PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-643790 DO - https://doi.org/10.1002/anie.202513066 SN - 1433-7851 N1 - Es gibt eine parallele Sprachausgabe (deutsch), ein Link befindet sich im Feld zugehöriger Identifikator - There is a parallel language edition (German), a link is in the field related identifier SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim AN - OPUS4-64379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Campos de Oliveira, Paula T1 - Advancing microstructural characterisation of ceramic cores for aerospace: from state-of-the-art to in-situ synchrotron X-ray computed tomography N2 - Ceramic cores are crucial for manufacturing turbine blades in aircraft engines, creating intricate cooling channels that improve engine efficiency and reduce emissions. During high-temperature casting, the cores undergo significant microstructural changes, including phase transitions, particle rearrangements, and porosity transformations, which can affect their properties and must be carefully controlled. State-of-the-art characterisation techniques for ceramic cores mostly rely on 2D methods, such as scanning and transmission electron microscopy. While valuable, these methods are limited in capturing the 3D complexity of the material. Advances in X-ray computed tomography (XCT) offer a more comprehensive perspective on 3D microstructures, but conventional XCT often lacks the resolution and in-situ capabilities to study microstructural evolution under casting conditions. Synchrotron XCT (SXCT) addresses these limitations, offering high spatial and temporal resolution with features down to 1 µm, enabling in-situ investigations. This study highlights the potential of SXCT, revealing previously unseen 3D microstructural features in ceramic cores, such as agglomeration, porosity evolution, surface reactions, microcracking, and particle orientation. These findings provide a more realistic view of dynamic changes during casting, advancing the understanding of core behaviour. Despite its advantages, SXCT is still rarely used in the field due to challenges such as limited access to synchrotron facilities and sample movement artifacts. Future developments, including high-temperature and vacuum compatible CT setups, could enhance this technique, leading to a better optimisation of ceramics performance. T2 - XIXth Conference of the European Ceramic Society (ECERS 2025) CY - Dresden, Germany DA - 31.08.2025 KW - Synchrotron KW - X-ray Computed Tomography KW - Ceramic core KW - Aerospace KW - Microstructure PY - 2025 AN - OPUS4-64050 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul T1 - Morphological Analysis of Graphene Oxide by SEM and Correlative Field-Flow Fractionation Coupled with Multi-Angle Light Scattering N2 - Since the first free-standing monolayer graphene sheet was successfully prepared in 2004 [1], graphene and graphene oxide materials achieved the necessary technical readiness level to be considered for use in commercial products. Moreover, the focus has shifted from fundamental research towards expanding the applicability of graphene-related 2D materials (GR2M) and to improve their competitiveness with established materials [2]. Significant advances have been made especially in applications regarding optoelectronics, energy storage materials, chemical additives, sensor applications etc. [3]. Composite products containing graphene and functionalized graphene such as inks and dyes have shown enhanced performance regarding longevity, wettability, and can be tailored for specific purposes through dedicated functionalization. For accurate physico-chemical characterization, GR2M products in their raw form or as part of composites present challenges in terms of sample preparation, choice of analytical method and evaluation of data. For instance, in the context of imaging, these challenges encompass: (a) the selection of images magnifications being representative for all the flakes ranging in size from hundreds of nanometers to micrometers; (b) the selection of representative flakes for adequate statistics, which may involve the separation of overlapping/agglomerating flakes by segmentation; and (c) the classification of diverse morphologies such as irregularly shaped/crumpled flakes, porous flakes and particulate features present in the sample. The complexity of the analytical task has needed the introduction of specific ontology for 2D materials to identify the proper descriptors characterizing confidently the morphological features of interest. Regarding light scattering techniques such as Dynamic Light Scattering (DLS) and Multi-Angle Light Scattering (MALS) commonly used for process control in industry as a first measure, an alternative approach would be necessary. This is in part due to the use of the standard sphere-model for 2D materials as appearing to be inappropriate, whilst a disc-shape model potentially yields more suitable results. Standardization efforts are underway to establish a baseline for accurate characterization of aimed measurands with sufficient statistics. To date, the measurement methods recommended by standardization bodies for the morphological-structural characterization of GR2M’s are AFM, Raman Spectroscopy and SEM and/or TEM. The acquisition of statistically relevant numbers of flakes for a thorough characterization using TEM and AFM is particularly time-consuming. The size distribution of graphene oxide- and graphene-containing inks was investigated by using a correlative approach coupling Centrifugal Field-Flow Fractionation (CF3) [4] with MALS. Up to now, promising results for Field-Flow Fractionation have been achieved only with respect to the separation into size classes of GO samples as well as of graphene oxide mixed with graphene by Asymmetrical Field-Flow Fractionation (AF4) [5], [6]. Besides the online characterization by MALS, the eluting size fractions obtained by CF3 were also collected and subsequently measured by SEM. Successful separation into size fractions allows us to apply ensemble techniques such as MALS to samples that were previously not measurable according to best-practices. In this study, the following material sub-classes have been observed with SEM: (i) nano-graphite mixed with graphene flakes, (ii) graphene oxide few- and multi-layer flakes with diverse and highly complex morphology, and (iii) graphene oxide of well-defined size and shape with >95% single- and bilayer content were investigated. Data on the class size ranges was obtained by MALS after separation with CF3 and consideration of a disc-shape model. Significant effort was invested into the sample preparation for CF3 measurements to achieve a recovery rate of >80%, well above the recommended 70% by ISO/TS 21362:2018 for validation purposes. The material fractions collected after the CF3 measurement were separately deposited on a silicon wafer and the size results of the SEM analysis were correlated with the corresponding mean sizes obtained with MALS. T2 - Microscopy and Microanalysis 2025 CY - Salt Lake City, UTAH, USA DA - 27.07.2025 KW - Advanced Material KW - CF3 KW - SEM KW - Morphology PY - 2025 AN - OPUS4-64084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Correlative chemical imaging to reveal the nature of different commercial graphene materials N2 - Different synthesis techniques were developed which led to other graphene-related materials such as graphene oxide (GO) or elemental-doped graphene. Further chemical functionalization can enhance but also alter or reduce specific properties of the graphene. To reveal the nature of these materials a proper physico‑chemical characterization with different analytical techniques is crucial. Single-layer GO flakes provided by Graphenea (Spain) were prepared for systematic image analysis. These flakes were disposed on an alignment-marked SiO2 substrate and correlatively imaged by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and Raman spectroscopy. The high lateral resolution and/ or extreme surface sensitivity of the mentioned techniques is necessary to explore monolayers. The ToF-SIMS images match well with the SEM and AFM images and provide information about the chemistry. With 2D Raman spectroscopy it is possible to differentiate between the number of stacked single-layer flakes. This is visualized in a 3D image. Well-defined GO flakes could be used as a reference material for imaging of graphene-like structures but also of other types of 2D materials. In addition to these monolayer GO flakes, commercial graphene-containing inks (Haydale) with a more complex morphology were also correlatively imaged. ToF-SIMS and SEM images were merged to identify the origin of different chemical fragments. The findings correlate closely with the expectation that the specific functionalizations (with fluorine and nitrogen as marker elements) are present only on the graphene flakes as presumed from the SEM images. Energy-dispersive X-ray spectroscopy (EDX) supports these results, yet with a much lower sensitivity compared to ToF-SIMS. T2 - Joint Regulatory Risk Assessors Summit – Advancing Safety & Sustainability Assessments of Advanced Materials CY - Paris, France DA - 19.06.2025 KW - ToF-SIMS KW - Imaging KW - Graphene-related 2D materials KW - SEM/EDX KW - Auger electron spectroscopy KW - Raman spectroscopy PY - 2025 UR - https://macrame-project.eu/macrame-meetings-workshops/jointrras/#Agenda AN - OPUS4-63656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -