TY - CONF A1 - Güttler, Arne T1 - Certified Reference Materials for the Quantification and Standardization of Fluorescence-based Measurements N2 - The size and shape of photoluminescence signals is affected by wavelength-, polarization-, and time-dependent instrumentspecific contributions and the compound- and environment-specific photoluminescence quantum yield. The former hamper the comparability of fluorescence measurements performed on different measuring devices. The commonly relatively done determination of the performance parameter requires suitable quantum yield standards with well-known. The performance of such measurements is, e.g., described in the written standard IEC 62607 currently revised. T2 - Colloquium für Optische Spektrometrie 2025 CY - Jena, Germany DA - 24.09.2025 KW - Quality assurance KW - Fluorescence KW - Nano KW - Particle KW - Advanced material KW - Calibration KW - Characterization KW - Fluorescence quantum yield KW - Phosphor KW - Absolute KW - Integrating sphere spectroscopy KW - Dye KW - Standardization KW - Reference material KW - Interlaboratory comparison KW - Uncertainty PY - 2025 AN - OPUS4-64213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oskoei, Parastu T1 - Thermoresponsive UCNP@MSN Nanoparticles for Doxorubicin Delivery in Melanoma Cells N2 - Upconversion nanoparticles (UCNPs) possess unique photophysical characteristics, such as excita bility by near infrared (NIR) light, which facilitates deep tissue penetration, multi color emission , long luminescence lifetimes, and an excellent photostability. These features have made UCNPs promising tools for biomedical applications . M esoporous silica nanoparticles (MSNs) functionalized with stimuli responsive nanovalves or specific coatings enable the encapsulation and controlled release of therapeutic agen ts, thereby offering spatiotemporal precision in drug delivery 1 3 ]]. Among drug delivery strategies, photoresponsive systems have attracted growing attention due to their potential for clinical applications . This is especially relevant for melanoma, an aggressive skin cancer with increasing global incidence, for which conventional therapeutic modalities remain largely insufficient in advanced stage 4 In this work, core shell UCNP@MSN nanoparticles were synthetised by coating UCNPs with a mesoporous silica layer, which was subsequently functionalized with thermoresponsive retro Diels Alder nanovalves [ and loaded with the chemotherapeutic agent doxorubicin (DOX). Controlled drug release was effectively achieved under 980 nm NIR i llumination . Treatment with functionalized nanoparticles significantly reduced the viability of melanoma cell lines, with an enhanced cytotoxicity being observed upon combined nanoparticle exposure and NIR illumination . Mechanistic analyses revealed that neither UCNPs nor NIR i llumination alone could induce the production of reactive oxygen species (ROS); however, their combination induced a marked increase in ROS levels in two of the three tested cell lines. Furthermore, this dual treatment promoted substantial apoptotic and/or necrotic responses across all cell models. These findings underscore the potential of UCNP@MSN nanoplatforms, equipped with thermoresponsive ga tes , as efficient photoactivated drug delivery systems for melanoma therapy. T2 - Conference Jornadas CICECO CY - Aveiro, Portugal DA - 09.10.2025 KW - Nano KW - Particle KW - Lanthanide KW - Upconversion KW - Surface chemistry KW - Mesoporous silica KW - Doxorubicin KW - Nanomedicine KW - Triggered release KW - pH KW - Cellular uptake KW - Toxicity KW - Folate KW - Ligand PY - 2025 AN - OPUS4-64371 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Quantifying the total and accessible amount of surface functionalities and ligands on nanomaterials N2 - Engineered nanomaterials (NMs) of various chemical composition and surface functionalization are routinely fabricated for industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, opto-electronics, and information storage. NM dispersibility, stability, processability, and function as well as the interaction with biological species and environmental fate are largely determined by NM surface functionalities, i.e., functional groups (FGs) and ligands. Therefore, reliable, reproducible, and eventually standardized surface characterization methods are vital for quality control of NMs, and mandatory to meet increasing concerns regarding their safety. Suitable methods for determining surface functionalities on ligand-stabilized core and core/shell NPs include advanced techniques such as traceable quantitative nuclear magnetic resonance (qNMR) as well as X-ray electron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF-SIMS), and simpler optical and electrochemical methods.[1] The latter less costly and fast methods, which can be automated, are often used by NM producers for process and quality control.[1,2] To validate methods, establish measurement uncertain-ties, test reference materials, and produce reference data, multi-method characterization studies are needed.[3,4] as well as interlaboratory comparisons (ILC) on determining NM surface chemistry and well characterized test and reference NMs providing benchmark values.[5,6] Here, we present examples for quantifying common surface FGs such as amino and carboxyl groups on functional NMs of different chemical composition such as silica, polymer, iron oxide, and lanthanide-based upconversion nanoparticles with optical assays, electrochemical titration methods, qNMR, and chromatographic separation techniques. In addition, ongoing interlaboratory comparisons will be presented. T2 - Yucomat 2025 CY - Herec Novi, Montenegro DA - 01.09.2025 KW - Quality assurance KW - Fluorescence KW - Nano KW - Particle KW - Synthesis KW - Characterization KW - Advanced material KW - Surface KW - Standardization KW - Reference material KW - Functional group KW - Quantification KW - Coating KW - Interlaboratory comparison KW - Uncertainty PY - 2025 AN - OPUS4-64182 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Measurements of Photoluminescence Quantum Yields of Scattering LED Converter Materials N2 - How to Get it Right with the Absolute Measurement of Photoluminescence Quantum Yields of Scattering LED Converter Materials Saskia Fiedler+,a, Florian Frenzel+,a, Christian Würth a, Isabella Tavernaro a, Michelle Grüne c, Stefan Schweizer c,d, Axel Engel e, and Ute Resch-Genger a* a Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Strasse 11, D-12489 Berlin, Germany; email: ute.resch@bam.de b Present address: Photonic Materials, NWO-Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands c Faculty of Electrical Engineering, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494, Soest, Germany d Fraunhofer Application Center for Inorganic Phosphors, Branch Lab of Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Lübecker Ring 2, 59494, Soest, Germany e Schott AG Technical Services, Hattenbergstrasse 10, D-55122 Mainz, Germany Optical measurements of scattering materials such as luminescent nano- and microparticles and phosphors dispersed in liquid and solid matrices play an important role in energy conversion, solid-state lighting, medical diagnostics, and security barcoding. A key performance parameter is the photoluminescence quantum yield QY, i.e., the number of emitted per number of absorbed photons. QY of transparent luminophore solutions can be obtained relative to a fluorescence QY standard of known QY, meanwhile available as certified reference materials.[1] The determination of QY of scattering liquid and solid samples like nanoparticle dispersions, phosphors, and optoceramics requires, however, absolute measurements with an integrating sphere setup. Despite the need for reliable absolute QY measurements, no interlaboratory comparison (ILCs) on measurement uncertainties has been performed and scattering standards with known QY are not available. We present the results of an ILC of 3 labs from academia and industry on measurements of transparent and scattering dye solutions and solid phosphors and converter materials like YAG:Ce optoceramics with commercial stand-alone integrating sphere setups of different illumination and detection geometries. Special emphasis was dedicated to the influence of measurement geometry, optical properties of the blank for determining the number of incident photons absorbed by the sample, and sample-specific surface roughness. Matching QY values could be obtained for transparent dye solutions and scattering dispersions with a blank with scattering properties closely matching those of the sample, QY measurements of optoceramic samples with different blanks revealed substantial differences of more than 20 %. Based on our data, we recommend non-absorbing blank materials with a high reflectivity (>95 %) such as a 2 mm-thick PTFE target placed on the sample holder as blanks. T2 - eMRS CY - Strasbourg, France DA - 26.05.2025 KW - Quality assurance KW - Fluorescence KW - Nano KW - Particle KW - Quantum yield KW - NIR KW - Characterization KW - Electron microscopy KW - Film KW - Integrating sphere spectroscopy KW - Calibration KW - Lifetime KW - Advanced materials KW - LED converter KW - YAG:Ce KW - ILC KW - Measurement uncertainty KW - Absolute quantum yield PY - 2025 AN - OPUS4-63327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rezvani, A. A1 - Wang, Z. A1 - Wegner, Karl David A1 - Soltanmoradi, H. A1 - Kichigin, A. A1 - Zhou, X. A1 - Gantenberg, T. A1 - Schram, J. A1 - Zubiri, B. A. A1 - Spiecker, E. A1 - Walter, J. A1 - Resch-Genger, Ute A1 - Segets, D. T1 - Separation of Indium Phosphide/Zinc Sulfide Core−Shell Quantum Dots from Shelling Byproducts through Multistep Agglomeration N2 - Semiconductor quantum dots (QDs) possess unique electronic and optical properties, making them promising candidates for applications in lightemitting diodes, solar cells, bioimaging, and photocatalysis. Precise control over their size, shape, and chemical and electronic structure is crucial to ensure the desired functional properties and optimize device performance. However, challenges in QD synthesis and post-synthesis modification persist, especially in large-scale production. This study addresses the classification of QDs synthesized in a tubular flow reactor consisting of a mixture of the desired InP/ZnS core−shell QDs and QDs made from the shell material, i.e., here ZnS QDs formed as a byproduct during the formation step of the ZnS shell. The homogeneous nucleation of ZnS nanoparticles from the shelling material introduces a heterogeneity in size and composition and affects the optical properties of the resulting QDs. To address this issue, we developed a size-selective agglomeration (SSA) technique by incrementally introducing ethanol as a poor solvent and classified the synthesized QDs into 13 distinct fractions. These 13 fractions are sorted into three distinct groups: (i) larger InP/ZnS QDs, (ii) a combination of smaller InP/ZnS QDs and larger ZnS QDs, and (iii) predominant ZnS QDs with some very tiny InP/ZnS QDs. The comprehensive characterization of the fractions was conducted using UV−visible absorption spectroscopy, photoluminescence spectroscopy, high-resolution scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, total reflection X-ray fluorescence, and analytical ultracentrifugation. We could demonstrate that our method effectively separated unwanted ZnS QDs from the target InP/ZnS QDs. In addition, the fractions enriched in smaller InP/ZnS QDs exhibited a higher photoluminescence quantum yield compared to the fractions with larger QDs. This demonstrates the efficacy of SSA in finetuning the composition of QD mixtures produced on a larger scale to improve their functional properties. This approach provides fundamental understanding toward the development of a scalable two-dimensional classification process for such ultrasmall nanoparticles by particle size and composition. KW - Quality assurance KW - Reference material KW - Nano KW - Particle KW - Quantum dot KW - Synthesis KW - Flow reactor KW - InP KW - Shell KW - ZnS KW - Surface chemistry KW - Method KW - Fluorescence KW - Quantum yield KW - TEM PY - 2025 DO - https://doi.org/10.1021/acsnano.4c18530 SN - 1936-086X VL - 19 IS - 20 SP - 19080 EP - 19094 PB - ACS Publications AN - OPUS4-63215 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oskoei, Párástu T1 - Cell mechanisms induced by doxorubicin-loaded UCNP@MSN nanoparticles with a thermosresponsive nanovalve in melanoma cells N2 - Upconversion nanoparticles (UCNPs) exhibit several remarkable optical properties, including excitation by near infrared (NIR) light, which enables deep tissue penetration, multiple distinct emission bands across a wide range of wavelengths, long luminescen ce lifetimes, and high photostability. These features make them particularly attractive for various biomedical applications. Mesoporous silica nanoparticles (MSNs), functionalized with nanovalves or specific coatings, have been explored for controlled and targeted drug delivery, where therapeutic agents are encapsulated within the nanopores, allowing spatiotemporal release 1 3 ]]. Among the promising approaches, photoactivated drug delivery systems have drawn considerable interest due to their versatility and potential. One relevant application is in the treatment of melanoma, an aggressive form of skin cancer with a rising global incidence. In advanced stages, conventional therapies often fail to achieve complete tumour eradication, resulting in poor prognose s 4 In this study, UCNPs were coated with a mesoporous silica shell to form core shell UCNP@MSN nanoparticles, which were further functionalized with thermoresponsive retro Diels Alder nanovalves and loaded with doxorubicin (DOX), a chemotherapeutic drug used in melanoma treatment. Upon exposure to 980 nm NIR light, DOX release was successfully triggered in the culture medium. Exposure to functionalized UCNPs decreased the viability of the tested melanoma cell lines, with further reductions observed when the ex posure to the nanoparticles was combined with irradiation. Subsequently, t he toxicity mechanisms were evaluated and showed that w hile individual treatments with either the functionalized UCNPs or NIR irradiation alone had no effect on reactive oxygen species (ROS) production, their combination significantly increased ROS levels in two of the three tested cell lines. This combined treatment also led to notable increases in apoptotic , necrotic or both type of cells’ percentages on all cell lines. Overall, these findings highlight the potential of these nanoparticles with thermoresponsive gating mechanisms as effective platforms for targeted drug delivery in melanoma therapy. T2 - EUROTOX 2025 CY - Athens, Greece DA - 14.09.2025 KW - Nano KW - Particle KW - Lanthanide KW - Upconversion KW - Surface chemistry KW - Mesoporous silica KW - Doxorubicin KW - Nanomedicine KW - Triggered release KW - pH KW - Cellular uptake KW - Toxicity KW - Folate KW - Ligand PY - 2025 AN - OPUS4-64372 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tavernaro, Isabella A1 - Simon, Fabian A1 - Gehrenkemper, Lennart A1 - Tobias, Charlie A1 - Resch-Genger, Ute A1 - Meermann, Björn T1 - Quantification of the amount of surface groups of aminated silica nano- and microparticles utilizing a fluorine tag and HR-CS-GFMAS N2 - The performance, bioavailability, and safe use of engineered nanomaterials (NMs) depends not only on properties such as size, shape, and surface area, but largely on surface chemistry. While many sizing methods have been established, there is still a lack of validated screening methods for determining NM surface functional groups (FGs). In this context, we present a fast and simple method for FG quantification using high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) and assess its applicability for the surface analysis of representatively chosen aminated silica nanoparticles (NPs) and microparticles (MPs) in conjunction with amino FG labeling with a fluorine tag. For this proof-of-concept study, first surface amino FG screening of the silica NPs and MPs was done with a potentiometric back titration method, providing the total amount of protonatable surface FGs, and two optical assays relying on reporter dyes with sizes and spatial requirements, i.e., surface binding areas smaller or larger than that of the fluorine tag to estimate the maximum and reporter-accessible number of amino FGs. Subsequently, the surface amino FGs were labeled with the fluorine tag 4-(trifluoromethyl)benzoic acid (TFMB) and the amount of fluorine originating from the bound TFMB molecules was quantified by HR-CS-GFMAS in two common organic solvents, i.e., dimethyl sulfoxide (DMSO) or ethanol (EtOH) to assess possible interferences from organic matrices. Our study revealed limits of detection (LODs) and quantification (LOQs) for fluorine of 1.0 µg/L and 3.5 µg/L in EtOH and 1.5 µg/L and 5.0 µg/L in DMSO, respectively. Overall, a quick and simple method for analyzing surface FGs on NPs and MPs was presented utilizing broadly available fluorine tags and HR-CS-GFMAS for fluorine quantification, which can be applied, e.g., for homogeneity, stability, and aging studies of surface-modified particles. This could contribute to ease the understanding of property-safety relationships for surface-functionalized NMs. KW - Fluorine Analysis KW - Nano- and microparticles KW - Surface group quantification PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-641965 DO - https://doi.org/10.1007/s00216-025-06107-4 SN - 1618-2642 SP - 1 EP - 11 PB - Springer Science and Business Media LLC CY - Berlin ; Heidelberg AN - OPUS4-64196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oskoei, Párástu T1 - Effects of upconversion nanoparticles with a thermo-responsive nanovalve loaded with doxorubicin in melanoma cells N2 - Melanoma skin cancer has an increasingly higher incidence , and w hen detected in advanced stages, tumour eradication is often incomplete, contributing to poor prognosis with conventional treatments. Upconversion nanoparticles (UCNPs) have unique properties, such as excitability under near infrared (NIR) excitation light, which confers a relatively high penetration depth in tissue that allow their effective use in several biomedical applications Mesoporous silica nanoparticles (MSN) with nanovalves or derived coatings have widely been used for triggered and targeted drug delivery in the past. Anticancer drugs can be loaded into the pores of MSN, enabling controlled drug release. In this work, UCNPs were coated with a mesoporous silica shell yielding UCNP@MSN core shell nanoparticles which were equipped with thermoresponsive retro Diels Alder nanovalves and then loaded with DOX , a chemotherapeutic agent for melanoma treatmen t (UCNP@MSN DOX) Subsequent DOX release from this drug delivery system was triggered by 980 nm NIR light. Melanoma cells exposed to UCNP@MSN DOX or the NIR laser exhibited no change in ROS production , while the combination of both induced an increase in ROS production. This combination of conditions also induced changes on apoptosis and necrosis levels. These findings underscore the potential use of UCNP @MSN drug delivery systems with thermoresponsive caps as effective drug delivery platforms for melanoma therapy. T2 - VII iBiMED Symposium CY - Aveiro, Portugal DA - 23.05.2025 KW - Nano KW - Particle KW - Lanthanide KW - Upconversion KW - Surface chemistry KW - Mesoporous silica KW - Doxorubicin KW - Nanomedicine KW - Triggered release KW - pH KW - Cellular uptake KW - Toxicity KW - Folate KW - Ligand PY - 2025 AN - OPUS4-64373 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Resch-Genger, Ute A1 - Richter, Maria A1 - Güttler, Arne A1 - Pauli, Jutta A1 - Vogel, K. A1 - Homann, Christian A1 - Würth, Christian T1 - Extending Certified Spectral Fluorescence Standards for the Calibration and Performance Validation of Fluorescence Instruments to the NIR – Closing the Gap from 750 nm to 940 nm with Two Novel NIR Dyes N2 - Fluorescence methods provide spectral, intensity, polarization, and lifetime information, which contain sample- and instrument-specific contributions. Fluorescence data, comparable across instruments and laboratories, require validated calibration procedures and certified fluorescence standards. KW - Quality assurance KW - Reference material KW - Fluorescence KW - Dye KW - Traceability KW - Metrology KW - Calibration KW - Reference data KW - Reference product KW - Digital certificate KW - NIR KW - Instrument performance validation PY - 2025 SP - 1 EP - 4 PB - Springer Nature CY - London AN - OPUS4-62739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Andreato, E. A1 - Panov, N. A1 - Artiga, A. A1 - Osipova, Viktoriia A1 - Resch-Genger, Ute A1 - Ximendes, E. A1 - Molina, P. A1 - Canton, P. A1 - Marin, R. T1 - Indium-Based Fluoride Nanoparticles Doped with Chromium for Near-Infrared Luminescence N2 - Transition metal (TM) and rare earth (RE) ion-doped nanoparticles (NPs) are photoluminescent materials of technological relevance in bioimaging, sensing, and light conversion. Fluoride NPs are particularly attractive in this context, since they combine low-energy phonons, high chemical stability, optical transparency, size, and architecture tunability. Yet, nearly all reported colloidal fluoride NPs (e.g., NaYF4 and LiYF4) can only be efficiently doped with RE3+ and not with luminescent TM ions. Herein, we contribute to filling this gap in materials science by reporting Na3InF6 NPs doped with Cr3+ as a model luminescent TM ion. We unveil the heat-driven NP formation mechanism, which involves a cubic-to-monoclinic phase conversion, similarly to the cubic-tohexagonal phase conversion in NaYF4. Reaction temperatures above 225 °C and reaction time have a limited impact on the NP morphology, while the amount of fluoride precursor and oleylamine grants control over the NP size. After verifying that Na3InF6 NPs show negligible cytotoxicity toward U-87 cell line, we study the optical properties of these NPs upon Cr3+ doping. Temperature-dependent photoluminescence measurements indicate that Cr3+ ions experience a weak crystal field in the Na3InF6 host lattice, while their photoluminescence lifetime varies linearly in the 20−50 °C range. These results set the ground for further studies of photoluminescent TM-doped fluoride NPs, toward their applications in bioimaging, sensing, and light-converting devices. KW - Quality assurance KW - Fluorescence KW - Traceability KW - Nano KW - Particle KW - Synthesis KW - Quantum yield KW - NIR KW - Mechanism KW - Characterization KW - XRD KW - Phase transition KW - Ligand KW - Surface KW - Doping KW - Lifetime PY - 2025 DO - https://doi.org/10.1021/acs.chemmater.4c03335 SN - 1520-5002 SP - 1 EP - 14 PB - American Chemical Society AN - OPUS4-63073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Matiushkina, Anna T1 - Quantification of Citrate Ligands on Nanoparticle Surfaces N2 - To ensure the successful advancement of nanomaterials (NM) in applications and their safe use, it is crucial to develop reliable methods to control and quantify ligands and functional groups (FG) on the nanoparticle (NP) surface as surface chemistry largely determines the interactions of NPs with their surroundings. Many analytical methods can be used for this purpose. However, their applicability strongly depends on the type of NM and ligand(s) and most of them require challenging protocols for sample preparation, i.e., the removal of the NPs or their dissolution, which can influence the accuracy of the measurements. While some methods allow the precise quantification of specific ligands such as quantitative nuclear magnetic resonance (qNMR), others provide only semi-quantitative results like Fourier Transform infrared spectroscopy (FTIR) or target more general analyte groups like thermogravimetric analysis (TGA) detecting mass losses (total organic content) or conductometry (e.g., (de)protonable FGs such as carboxyl or amine groups). [1] The calculation of the coverage of the NP surface with ligands, additionally requires knowledge of their total surface area, which can be obtained, e.g., from a precise characterization of NP size and concentration. Citrate is one of the most frequently utilized surface ligand for stabilizing metal, metal oxide, and lanthanide-based upconversion NPs in hydrophilic environments. However, its quantification on NP surfaces has rarely been addressed although it is a frequent analyte in medical or food analysis. In this study we compare several methods for quantifying citrate as capping ligands of iron oxide NPs (IONPs), exemplarily chosen because of their broad applications in the life science. [2] The size of the IONPs was characterized by electron microscopy (EM) and dynamic light scattering (DLS), while their concentration was determined by quantifying iron ions after acidic particle dissolution using a colorimetric assay and inductively coupled plasma optical emission spectroscopy (ICP-OES). The simplest approach for citrate quantification, direct photometric UV-detection after acidic digestion of the IONPs, yielded only reasonable results when combined with reversed phase high-performance liquid chromatography (HPLC). These results were cross validated with qNMR that required the development of a reliable sample preparation protocol addressing not only particle dissolution in deuterated solvents but also the removal of the paramagnetic iron ions interfering with NMR measurements. Comparison with results from TGA gives insight into the sensitivity and specificity of these methods and their potential for quantifying surface ligands on NPs. T2 - Anakon 2025 CY - Leipzig, Germany DA - 10.03.2025 KW - Advanced material KW - Functional group KW - Iron oxide KW - Ligand KW - Nano KW - Particle KW - Quantification KW - Surface analysis PY - 2025 AN - OPUS4-64861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawlitza, Kornelia T1 - Using Dual Fluorescent Molecularly Imprinted Particles Coupled with a Miniaturized Opto-Microfluidic Platform for On-Site Detection of Perfluoroalkyl Carboxylic Acids N2 - Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic organofluorine chemicals widely used in the production of various materials, including firefighting foams, adhesives, and coatings that resist stains and oil. In recent years, PFAS have gained attention as emerging environmental contaminants, with particular emphasis on perfluoroalkyl carboxylic acids (PFCAs), the most common type of PFAS. PFCAs are defined by a fully fluorinated carbon chain and a charged carboxylic acid group. They have been classified as Substances of Very High Concern and included in the REACH Candidate List due to their persistence, resistance to biodegradation, and toxicological impacts. Traditional methods for analyzing PFCAs, like GC-MS, HRMS, and HPLC-based techniques, are time-consuming, non-portable, expensive, and require specialized expertise. On the other hand, fluorescence assays offer a user-friendly, portable, and cost-effective alternative with high sensitivity and quick results, particularly when the binding of the analyte causes a specific increase in the probe’s fluorescence. Combining these probes with a carrier platform and a miniaturized optofluidic device presents a promising approach for PFCA monitoring. In this study, a new guanidine BODIPY fluorescent indicator monomer was synthesized, characterized, and incorporated into a molecularly imprinted polymer (MIP) designed for the specific detection of perfluorooctanoic acid (PFOA). The MIP layer was formed on silica core nanoparticles doped with tris(bipyridine)ruthenium(II) chloride, serving as an optical internal reference for calibration-free assays. In combination with an extraction step prior to sample analysis, this system enables selective and reliable detection of PFCAs in surface water samples, minimizing interference from competing substances, matrix effects, and other factors. When integrated into an opto-microfluidic setup, the assay provided a compact, user-friendly detection system capable of detecting micromolar levels of PFOA in under 15 minutes from surface water samples. T2 - ANAKON2025 CY - Leipzig, Germany DA - 10.03.2025 KW - Perfluorooctanoic Acid (PFOA) KW - On-site detection KW - Fluorescence KW - Microfluidics KW - Molecularly Imprinted Polymers PY - 2025 AN - OPUS4-62712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fayis Kalady, Mohammed A1 - Schultz, Johannes A1 - Weinel, Kristina A1 - Wolf, Daniel A1 - Lubk, Axel T1 - Geometry-dependent localization of surface plasmons on random gold nanoparticle assemblies N2 - Assemblies of plasmonic nanoparticles (NPs) support hybridized modes of localized surface plasmons (LSPs), which delocalize in geometrically well-ordered arrangements. Here, the hybridization behavior of LSPs in geometrically completely disordered two-dimensional arrangements of Au NPs fabricated by an e-beam synthesis method is studied. Employing electron energy loss spectroscopy in a scanning transmission electron microscope and numerical simulations, the disorder-driven spatial and spectral localization of the coupled LSP modes that depends on the NP thickness is revealed. Below a NP thickness of 0.4 nm, localization increases toward higher hybridized LSP mode energies. In comparison, above 10 nm thickness, a decrease of localization toward higher mode energies is observed. In the intermediate thickness regime, a transition of the energy dependence of the localization between the two limiting cases, exhibiting a mode energy with minimal localization, is observed. It is shown that this behavior is mainly driven by the energy and thickness dependence of the polarizability of the individual NPs. KW - Gold Nanoparticles KW - Surface plasmons KW - Electron enerdy loss spectroscopy (EELS) KW - scanning transmission electron microscopy PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647230 DO - https://doi.org/10.1103/44nk-6bp2 SN - 2643-1564 VL - 7 IS - 043053 EP - 4 PB - American Physical Society AN - OPUS4-64723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Homann, Christian A1 - Peeters, Régis A1 - Mirmajidi, Hana A1 - Berg, Jessica A1 - Fay, Michael A1 - Rodrigues, Lucas Carvalho Veloso A1 - Radicchi, Eros A1 - Jain, Akhil A1 - Speghini, Adolfo A1 - Hemmer, Eva T1 - Rapid microwave-assisted synthesis of morphology-controlled luminescent lanthanide-doped Gd2O2S nanostructures N2 - Gadolinium oxysulfide (Gd2O2S) is an attractive material of demonstrated suitability for a variety of imaging applications, leveraging its magnetic, scintillating, and luminescent properties, particularly when doped with optically active lanthanide ions (Ln3+). For many of these applications, control over size and morphology at the nanoscale is crucial. This study demonstrates the rapid microwave-assisted Synthesis of colloidal Ln2O2S (Ln = Gd and dopants Yb, Er, Tb) nanostructures in as little as 20 min. Structural characterization using X-ray diffraction analysis (XRD), Raman spectroscopy, as well as Transmission electron microscopy (TEM), including elemental mapping via energy dispersive X-ray spectroscopy (EDS), unveiled the key role of elemental sulphur (S8) in the reaction mixtures for materials growth. By systematically varying the Ln-to-S ratio from 1 : 0.5 to 1 : 15, controlled morphologies ranging from triangular nanoplatelets to berry- and flower-like shapes were achieved. Doping with Er3+/Yb3+ endowed the nano-triangles with upconverting and near-infrared emitting properties. Tb3+-doped Gd2O2S exhibited the characteristic green Tb3+ emission under UV excitation, while also showing X-ray excited optical luminescence (XEOL), rendering the material interesting as a potential nano-scintillator. KW - Upconversion KW - Microwave-assisted synthesis KW - Synthesis KW - Fluorescence KW - Nano KW - Particle KW - NIR KW - XRD KW - X-ray fluoressence KW - Morphology control KW - Raman PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647907 DO - https://doi.org/10.1039/D5TC01646K SN - 2050-7526 VL - 13 IS - 35 SP - 18492 EP - 18507 PB - Royal Society of Chemistry (RSC) AN - OPUS4-64790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adamski, Paweł A1 - Zgrzebnicki, Michał A1 - Albrecht, Aleksander A1 - Jurkowski, Artur A1 - Wojciechowska, Agnieszka A1 - Ekiert, Ewa A1 - Sielicki, Krzysztof A1 - Mijowska, Ewa A1 - Smales, Glen J. A1 - Maximenko, Alexey A1 - Moszyński, Dariusz T1 - Ammonia synthesis over γ-Al2O3 supported Co-Mo catalysts N2 - Novel ammonia synthesis catalysts are sought due to energetic transformation and increasing environmental consciousness. Materials containing cobalt and molybdenum are showing state-of-art activities in ammonia synthesis. The application of γ-alumina support was proposed to enhance the properties of Co-Mo nanoparticles. The wet impregnation of the support was conducted under reduced pressure. The active catalysts were obtained by ammonolysis of precursors. The chemical and phase composition, as well as morphology, porosity, and surface composition of precursors and catalysts, were characterized. The Co-Mo nanoparticles phase composition as well as their size and dispersion were determined using X-ray absorption spectroscopy utilizing synchrotron radiation, electron microscopy, and X-ray scattering. The catalytic activity was tested in the ammonia synthesis process under atmospheric pressure. The activity and stability of the supported catalysts were compared with unsupported cobalt molybdenum nitride Co3Mo3N, revealing the superiority of the present approach. KW - Ammonia synthesis KW - Supported catalyst KW - Cobalt molybdenum nitrides KW - Scattering KW - X-ray scattering KW - Gamma-alumina KW - Stability PY - 2025 DO - https://doi.org/10.1016/j.mcat.2025.114907 SN - 2468-8231 VL - 575 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-64827 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gugin, Nikita T1 - ZIF-8-Based Biocomposites via Reactive Extrusion: Towards Industrial-Scale Manufacturing N2 - Mechanochemistry offers a solvent-free, sustainable alternative to conventional synthesis of metal-organic framework (MOF) biocomposites, which hold great promise for applications in drug delivery, biocatalysis, and biosensing,[1] yet the field remains limited to batch-type, gram-scale processes that restrict industrial application. To overcome these limitations, we present a scalable solid-state method for producing MOF-based biocomposites via continuous reactive extrusion. The process begins with rapid model reactions using hand-mixing[2] to encapsulate a variety of biomolecules into zeolitic imidazolate framework-8 (ZIF-8), including proteins, carbohydrates, and enzymes, thereby enabling rapid screening and optimization of reaction conditions. The mild synthesis conditions preserve the catalytic activity of glucose oxidase, confirming the suitability of the method to sensitive biomaterials. Building on this, we translated the batch protocol to twin-screw extrusion,[3] enabling continuous and scalable synthesis of biocomposites such as bovine serum albumin (BSA)@ZIF-8 with tunable protein content. The extrusion process yielded highly crystalline, porous materials with protein loadings of up to 26 wt% and encapsulation efficiencies as high as 96%. The production rate reached 1.2 kg d⁻¹, significantly exceeding previously reported continuous methods.[4] To demonstrate the industrial viability of the method, we extended the approach to produce shaped ZIF-8 monoliths loaded with hyaluronic acid (HA) in a single-step extrusion. These monoliths retained their structural integrity during washing and released HA without measurable degradation, as confirmed by size-exclusion chromatography. Our study opens new avenues for the industrial implementation of MOF biocomposites and establishes reactive extrusion as a robust platform for their scalable synthesis and shaping, expanding the toolkit for drug delivery and biocatalytical applications. T2 - Tag der Chemie 2025 CY - Berlin, Germany DA - 03.07.2025 KW - Mechanochemistry PY - 2025 AN - OPUS4-63802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voss, Heike A1 - Zahedi-Azad, Setareh A1 - Ernst, Owen C. A1 - Lucaßen, Jan A1 - Mann, Guido A1 - Bonse, Jörn A1 - Boeck, Torsten A1 - Martin, Jens A1 - Schmid, Martina A1 - Krüger, Jörg T1 - Chemical vapor deposition of indium precursors for solar microabsorbers using continuous laser radiation BT - A, Materials science & processing N2 - Localized deposition of indium on an amorphous glass surface covered with a thin molybdenum layer is demonstrated utilizing laser-assisted chemical vapor deposition. A continuous-wave laser causes a temperature rise on the molybdenum layer resulting in the selective aggregation of liquid and ultimately crystalline structures of indium. The formation sites of the indium are determined by the decomposition of gaseous trimethylindium. The deposited indium islands can serve as precursors and could be further processed into compound semiconductors like CuInSe2 for micro-concentrator solar cells. The experimental investigations were supported by theoretical simulations of the laser heating process to calculate the local temperature distribution on the surface of the molybdenum-covered glass substrate. KW - Laser-assisted Chemical Vapor Deposition KW - CW Laser KW - Indium Islands KW - Micro-concentrator Solar Cell PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-641069 DO - https://doi.org/10.1007/s00339-025-08895-z SN - 0947-8396 VL - 131 SP - 1 EP - 10 PB - Springer CY - Berlin ; Heidelberg [u.a.] AN - OPUS4-64106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xu, Alan A1 - Moschetti, Michael A1 - Miskovic, David A1 - Wei, Tao A1 - Ionescu, Mihail A1 - Wang, Zhiyang A1 - Palmer, Tim A1 - Bhattacharyya, Dhriti A1 - He, Peidong A1 - Li, Xiaopeng A1 - Gludovatz, Bernd A1 - Ferry, Michael T1 - Improved irradiation resistance of a low activation refractory medium entropy alloy, VCrFeW0.2, for fusion applications demonstrated by micro-tensile testing N2 - An, as cast, VCrFeW0.2 refractory medium entropy alloy (RMEA) was designed for fusion reactor divertor applications, focusing on reduced cost, low activation and compositional stability (low transmutation rates). The as-cast alloy was irradiated to a fluence of 5.6 × 10^17 ions/cm^2 at room temperature with 5 MeV helium ions whose energy have been uniformly attenuated to 0.4 MeV and 5 MeV via energy degradation device prior to sample irradiation. Pre and post irradiation, its mechanical properties were evaluated micro-tensile testing. Prior to irradiation, the VCrFeW0.2 alloy demonstrated good strength and ductility, with a yield strength of 1464 MPa and strain to UTS (\sigma_UTS) of 4.6 %, maintaining comparable strength to pure tungsten (1403 MPa) but with greater strain to UTS (1.3 %). Post irradiation, the VCrFeW0.2 alloy exhibited remarkable damage resistance; its strength increased by only ∼160 MPa, and it retained strain to UTS with a \sigma_UTS of 2.9 %. It performed better than pure tungsten tested under identical irradiation conditions where there was ∼1800 MPa increase in yield strength and a complete loss of plasticity. The micro-tensile results were supported by nanoindentation tests and Vickers hardness testing was also undertaken to show the yield strength values are representative of macro scale, bulk behavior. TEM and comparison with existing literature on RMEA/RHEA are presented here to understand the reason for difference in performance between VCrFeW0.2 alloy and pure tungsten. KW - Refractory medium entropy alloys KW - Fusion reactor materials KW - Irradiation resistance KW - Micro-tensile testing KW - Helium ion damage PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-645322 DO - https://doi.org/10.1016/j.ijrmhm.2025.107481 SN - 0263-4368 VL - 134 SP - 1 EP - 16 PB - Elsevier Ltd. CY - Netherlands AN - OPUS4-64532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Robust data generation, heuristics and machine learning for designing sustainable materials N2 - Despite advances in computational materials design, simulating large systems—such as defects, interfaces, or amorphous states—with quantum-chemical accuracy remains a major challenge.[1] Machine learning (ML) methods are emerging as powerful tools to overcome these limitations, enabling scalable and accurate modeling beyond traditional quantum-chemical approaches.[2] They also open new avenues for discovering non-toxic, earth-abundant alternatives to existing materials and can be combined with self-driving labs. [3] There are nowadays robust data generation strategies that underpin the development and benchmarking of ML models. [4,5]atomate2 I will focus on such strategies for quantum-chemical bonding analysis and ML interatomic potentials in my talk. Quantum-chemical bonding descriptors can be effectively used in ML models to predict phononic properties. [6] ML interatomic potentials offer a powerful approach for predicting energies, forces, and stresses—but their performance hinges on high-quality training data. Our automated framework, autoplex, enables diverse and scalable training workflows, from random structure searches for general-purpose models to phonon-aware pipelines for high-accuracy predictions.[7] While quantum chemistry excels in many domains, properties like magnetism and synthesizability remain elusive. Here, heuristics or leveraging experimental data for ML offer promising alternatives.[8,9] T2 - Advanced Materials Safety 2025 CY - Dresden, Germany DA - 04.11.2025 KW - Nano Particles KW - Machine Learning KW - Automation KW - Materials Design KW - Sustainability KW - Material Safety PY - 2025 AN - OPUS4-64599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörmann, Anja Franziska T1 - extending the MOUSE in spirit: lifecycle of a GIXS experiment N2 - We present the new grazing incidence mode at the MOUSE, which adapts and extends the MOUSE methodology developed for transmission X-ray scattering (Smales and Pauw, 2021). Our methodology begins and ends in discussion with our users and embraces automation for reproducible experiments including sample organisation, instrument configuration, documentation and data processing. This poster presents methodological innovations and challenges. T2 - GISAXS 2025 CY - Hamburg, Germany DA - 27.10.2025 KW - Grazing incidence KW - X-ray scattering KW - Experimental methodology PY - 2025 AN - OPUS4-64694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Alasonati, E A1 - Bartczak, D A1 - Altmann, Korinna A1 - Giovannozzi, A T1 - Towards Standardised Micro and Nanoplastics Analysis via Interlaboratory Comparisons: First Outlook of the VAMAS TWA 45 P3 Project N2 - This talk is part of the stakeholder workshop of the PlasticTrace project held in September 2025 in Oslo. The presentation shows first results of the VAMAS ILC on nanoplastics. PP nanoparticles were given to the participants. These were asked to measure the mass or particle number or size of the PP nanoplastics. Various techniques such as DLS, FFF, Py-GC/MS, TED-GC/MS, PTA were used. T2 - Stakeholder Workshop PlasticsTrace CY - Online meeting DA - 09.09.2025 KW - Nanoplastics KW - ILC KW - DLS KW - Polypropylene PY - 2025 AN - OPUS4-64714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna T1 - Production of reference materials using a quality by design approach N2 - Accurate analysis of microplastics is based on validated methods and the use of standardized protocols. Therefore, reference materials are essential to determine recovery rates and optimise the existing workflows. The reference materials should mimic the reality in terms of particle properties and concentration and are intended for a special use. The Quality-by-Design approach helps to select the users need and defines a target product profile with mandatory and desired particle properties. We will address different reference material top-down production processes with their limits and challenges for production of materials varying in size ranges of micro- and nanoplastics. T2 - OECD Workshop on Nanoplastics CY - Paris, France DA - 12.11.2025 KW - Microplastics KW - Reference materials KW - Nanoplastics KW - Quality-by-Design PY - 2025 AN - OPUS4-64717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Tim A1 - Huber, Norbert T1 - Designing microcompression experiments for nanoporous metals via computational plasticity N2 - Micropillar compression testing is essential for understanding bulk metal plasticity at small scales and has emerged as a key technique for evaluating nanoporous metals like nanoporous gold (NPG). To support experimental design, we present a computational plasticity study on single crystal NPG micropillars, systematically examining four extrinsic factors: pillar height-to-diameter ratio, taper angle, friction coefficient, and misalignment angle. The study reveals that NPG exhibits similar trends to its bulk counterpart but is less prone to post-yield buckling in unstable crystal orientations. For optimal NPG pillar stability, an aspect ratio of is recommended and a moderate taper angle to prevent artificial stiffening and yielding. Even minimal friction enhances stability, while buckling is mainly governed by misalignment, requiring to also avoid underestimating the elastic modulus. KW - Nanoporous gold KW - Microcompression KW - Plasticity KW - Finite element method KW - Micromechanics PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-645317 DO - https://doi.org/10.1016/j.matdes.2025.114550 SN - 0264-1275 VL - 258 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-64531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Huber, Norbert T1 - Perspectives and pitfalls in modeling of structure-property relationships using machine learning N2 - Machine learning (ML) has been increasingly utilized to support microstructure characterization and predict mechanical properties. A successful ML model typically requires a comprehensive understanding of existing knowledge, expertise in translating this knowledge into meaningful input features, an effective ML architecture, and robust validation of the trained model. Despite the rapid growth in publications incorporating ML methods in recent years, there is limited literature specifically addressing nanoporous metals. The talk will give an overview on perspectives and pitfalls in modeling of structureproperty relationships using machine learning with focus on various challenges that arise from the specific nature of nanoporous metals including randomness of microstructure, image segmentation, lack of tomography data, feature engineering for property prediction, and implications for plasticity including anisotropic flow and arbitrary multiaxial loading on the lower scale of hierarchy. An outlook will be given on the perspectives of establishing a culture of open data, specifically towards curated data sets needed for training and validation of ML models. Potential use cases are the comparison of data from different sources, mining of more general relationships, and validation of models trained with computer generated data using experimental data. T2 - 5th International Symposium on Nanoporous Materials by Alloy Corrosion CY - Sendai, Japan DA - 06.10.2025 KW - Nanoporous metals KW - Machine learning KW - Structure-properties relationship KW - Materials design PY - 2025 AN - OPUS4-64536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, Yong A1 - Hu, Kaixiong A1 - Lilleodden, Erica T. A1 - Huber, Norbert T1 - Datasets for structural and mechanical properties of nanoporous networks from FIB reconstruction N2 - This dataset paper presents a comprehensive archive of 3D tomographic reconstruction image files, volume mesh files for finite element simulations, and tabulated structural and mechanical properties data of nanoporous gold structures. The base material is nanoporous gold, fabricated using a dealloying process, with a solid fraction of approximately 0.30. The NPG samples with ligament sizes ranging from 20 nm to 400 nm were prepared by dealloying and by controlling the thermal annealing process. The original data consist of tomographic TIFF files acquired through Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) 3D reconstruction, as detailed in Philosophical Magazine 2016 96 (32-34), 3322-3335. At each ligament size, six sets of 3D tomographic images were obtained from different regions of the same sample to ensure representative data. New simulations and analyses were conducted based on the 3D image data. The resulting structural and mechanical property data of nanoporous gold are reported for the first time in this dataset paper. Volume meshing of the 3D reconstructed data was performed using Simpleware software. Structural parameters, including surface area, solid volume, and solid volume fraction of the nanoporous network, were extracted from the meshed volumes. Structural connectivity was assessed from the 3D microstructures. The meshed volumes were then used as input for finite element simulations performed in Abaqus to evaluate mechanical responses under uniaxial compression along all three principal axes respectively. From the resulting stress–strain curves, the Young’s modulus and yield strength of each structure were determined. Both elastic and plastic Poisson’s ratios were analyzed from true strain increments. This dataset includes the 3D tomographic images, corresponding volume mesh files, mechanical behavior data and tables summarizing the structural and mechanical properties. The archived data serve as a database for nanoporous network materials and can be reused for numerical simulations, additive manufacturing, and machine learning applications within the materials science community. All files are openly accessible via the TORE repository at https://doi.org/10.15480/882.15230 KW - Nanoporous gold KW - Dealloying KW - FIB/SEM tomography KW - Finite element KW - Volume mesh KW - Young’s modulus KW - Yield stress KW - Poisson’s ratio PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-645330 DO - https://doi.org/10.1016/j.dib.2025.112152 SN - 2352-3409 VL - 63 SP - 1 EP - 14 PB - Elsevier Inc. AN - OPUS4-64533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Li, Yong A1 - Hu, Kaixiong A1 - Lilleodden, Erica T. A1 - Huber, Norbert T1 - Datasets for structural and mechanical properties of nanoporous networks from FIB reconstruction N2 - This dataset includes 3D tomographic reconstruction image files, volume mesh files for finite element simulations, and data on the structural and mechanical properties of nanoporous gold (NPG) structures. It serves as a supplement to a dataset paper, with the corresponding DOI provided in the “Related Identifiers” section. Detailed descriptions of the data, as well as the procedures for their preparation and curation, are presented in that paper. The base material, nanoporous gold, was fabricated via a dealloying process and has a solid fraction of approximately 0.30. NPG samples with ligament sizes ranging from 20 nm to 400 nm were prepared through dealloying and subsequent thermal annealing. Tomographic TIFF files were obtained via Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) 3D reconstruction, with the procedure detailed in Philosophical Magazine (2016, 96(32–34), 3322–3335). Based on the 3D image data, new simulations and analyses were performed. The resulting structural and mechanical property data of nanoporous gold are reported for the first time in the dataset paper and are archived here. This dataset provides a valuable database for the study of nanoporous network materials and can be reused for numerical simulations, additive manufacturing, and machine learning applications within the materials science community. KW - Nanoporous gold KW - Dealloying KW - Coarsening KW - FIB/SEM tomography KW - Connectivity KW - Finite element KW - Volume mesh KW - Young’s modulus KW - Yield stress KW - Poisson’s ratio PY - 2025 DO - https://doi.org/10.15480/882.15230 PB - Technische Universität Hamburg Open Research CY - Hamburg AN - OPUS4-64534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altmann, Korinna A1 - Portela, Raquel A1 - Barbero, Francesco A1 - Breuninger, Esther A1 - Camassa, Laura Maria Azzurra A1 - Velickovic, Tanja Cirkovic A1 - Charitidis, Costas A1 - Costa, Anna A1 - Fadda, Marta A1 - Fengler, Petra A1 - Fenoglio, Ivana A1 - Giovannozzi, Andrea M. A1 - Haugen, Øyvind Pernell A1 - Kainourgios, Panagiotis A1 - von der Kammer, Frank A1 - Kirchner, Markus J. A1 - Lomax-Vogt, Madeleine A1 - Lujic, Tamara A1 - Milczewski, Frank A1 - Moussawi, Mhamad Aly A1 - Ortelli, Simona A1 - Parac-Vogt, Tatjana N. A1 - Potthoff, Annegret A1 - Jimenez Reinosa, Julian J. A1 - Röschter, Sophie A1 - Sacco, Alessio A1 - Wimmer, Lukas A1 - Zanoni, Ilaria A1 - Dailey, Lea Ann T1 - Characterizing nanoplastic suspensions of increasing complexity: inter-laboratory comparison of size measurements using dynamic light scattering N2 - Understanding the potential human health risks associated with micro- and nanoplastic exposure is currently a priority research area. Nanoplastic toxicity studies are complicated by the lack of available, well-characterized test and reference materials. Further, many nanoplastic test materials are inherently more polydisperse and heterogenous in shape compared to polystyrene beads, making accurate and representative size distribution measurements particularly challenging. The aim of this study was to conduct an inter-laboratory comparison of dynamic light scattering measurements, the most commonly used particle sizing method for nanomaterials. Using a published standard operating procedure, size measurements in water and a standardized cell culture medium (CCM) were generated for spherical, carboxy-functionalized polystyrene nanoparticles (PS-COOH; 50 nm; benchmark material), and for increasingly complex in-house produced spherical poly(ethylene terephthalate) (nanoPET) and irregular shaped polypropylene (nanoPP) test materials. The weighted mean of hydrodynamic diameters of PS-COOH dispersed in water (55 ± 5 nm) showed moderate variation between labs (coefficient of variation, CV = 8.2%) and were similar to literature reports. Measurements of nanoPET (82 ± 6 nm) and nanoPP (182 ± 12 nm) in water exhibited similar CV values (nanoPET: 7.3% and nanoPP; 6.8%). Dispersion of PS-COOH and nanoPET in CCM increased the CV to 15.1 and 14.2%, respectively, which is lower than literature reports (CV = 30%). We conclude with a series of practical recommendations for robust size measurements of nanoplastics in both water and complex media highlighting that strict adherence to a standard operating procedure is required to prevent particle agglomeration in CCM KW - Nanoplastics KW - Reference materials KW - Polypropylene PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-644571 DO - https://doi.org/10.1039/d5en00645g SN - 2051-8153 SP - 1 EP - 15 PB - Royal Society of Chemistry (RSC) AN - OPUS4-64457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wegner, Karl David T1 - Advancing Short-Wave Infrared (SWIR) Emission N2 - There is a growing interest in the exploitation of the short-wave infrared (SWIR), which refers to the wavelength band of light between 900 nm and 2500 nm. Luminophores that emit in the SWIR are used in various areas of telecommunications, photovoltaics, security systems (night vision), and in biomedicine. In particular for biomedical applications, the SWIR range is highly promising because light scattering, absorption, and autofluorescence of tissue and biological compounds are strongly reduced compared to the visible (400–700 nm) and NIR (~700–900 nm). The benefits of SWIR-emissive QDs have been demonstrated for a variety of applications, such as in thermal sensing, as photoelectrochemical biosensor, in in vivo vascular imaging, and for fluorescence-guided surgery.[1] Full exploitation of SWIR photoluminescence (PL) imaging and sensing is currently hampered by i.) a lack of suitable advanced nanomaterials with a high PL quantum yield (PL QY) and a high brightness, that can be used safely in vivo and ii.) a lack of quantitative and reliable data on the optical properties of many SWIR emitters. Promising nanomaterials for the SWIR are heavy metal-free Ag2S quantum dots (QDs). Aiming for the development of SWIR advanced nanomaterials with optimum performance, we have dived deeper into the photophysical processes occurring in these nanomaterials, thereby exploring in depth how the environment such as temperature, surface ligand composition, and the incorporation of transition metals influence the optical properties Ag2S QDs. We observed a strong enhancement of the SWIR emission of upon addition of metal ions such as Zn2+, yielding PL quantum yields of about 10% and thus making them highly suitable for non-invasive deep imaging of vascular networks and 3D fluid flow mapping. T2 - Anakon 2025 CY - Leipzig, Germany DA - 10.03.2025 KW - Quantum dots KW - Nano KW - Particle KW - SWIR KW - Fluorescence KW - Temperature KW - Ag2S KW - Quality assuarance KW - Ligand KW - Sensor PY - 2025 AN - OPUS4-62769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Andresen, Elina T1 - Lanthanide based multi element nanoparticles: a versatile platform for surface chemistry analysis and potential reference materials N2 - The use of engineered nanoparticles of different size, shape, and composition is continuously increasing in the life and materials sciences. This calls for methods and reference materials enabling the reliable and accurate determination of nanoparticle size, particle size distribution, shape, number concentration, degree of aggregation and agglomeration in different environments as well as for nanoparticle dispersibility and stability. We are currently building up and exploring a platform of lanthanide-based nanocrystals (LnNCs) with application-specifically tuned size, shape, composition, architecture, optical properties, and surface chemistry for emerging applications in life sciences. As a prerequisite for the broad applicability of these nanomaterials, we assess simple, robust, and easily upscaleable synthesis protocols for LnNCs with defined morphologies and tunable optical properties, and the short-term and long-term stability of LnNCs with selected surface coatings in aqueous environments under different application-relevant conditions. T2 - Anakon 2025 CY - Leipzig, Germany DA - 10.03.2025 KW - Nano KW - Particle KW - Method KW - Lanthanide KW - Synthesis KW - Upconversion KW - Ligand KW - Quality assurance KW - Particle number concentration KW - Reference material KW - Surface chemistry PY - 2025 AN - OPUS4-62768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Matiushkina, Anna A1 - Abram, Sarah-Luise A1 - Tavernaro, Isabella A1 - Richstein, R. A1 - Reithofer, M. R. A1 - Andresen, Elina A1 - Michaelis, Matthias A1 - Koch, Matthias A1 - Resch-Genger, Ute T1 - Quantifying Citrate Surface Ligands on Iron Oxide Nanoparticles with TGA, CHN Analysis, NMR, and RP-HPLC with UV Detection N2 - Although citrate is frequently used as a surface ligand for nanomaterials (NMs) such as metal, metal oxide, and lanthanide-based NMs in hydrophilic environments due to its biocompatibility and simple replacement by other more strongly binding ligands in postsynthetic surface modification reactions, its quantification on NM surfaces has rarely been addressed. Here, we present a multimethod approach for citrate quantification on iron oxide nanoparticles (IONPs) broadly applied in the life and material sciences. Methods explored include thermogravimetric (TGA) and elemental (CHN) analysis, providing citrate-nonspecific information on the IONP coating, simple photometry, and citrate-selective reversed-phase high-performance liquid chromatography (RP-HPLC) with absorption (UV) detection and quantitative nuclear magnetic resonance spectroscopy (qNMR). Challenges originating from the strongly absorbing magnetic NM and paramagnetic iron species interfering with optical and NMR Methods were overcome by suitable sample preparation workflows. Our multimethod approach to citrate quantification highlights the advantages of combining specific and unspecific methods for characterizing NM Surface chemistry and method cross-validation. It also demonstrates that chemically nonselective measurements can favor an overestimation of the amount of a specific surface ligand by signal contributions from molecules remaining on the NM surface, e.g., from particle synthesis, such as initially employed ligands and/or surfactants. Our results emphasize the potential of underexplored selective RPHPLC for quantifying ligands on NMs, which does not require a multistep sample preparation workflow such as qNMR for many NMs and provides a higher sensitivity. These findings can pave the road to future applications of versatile HPLC methods in NM characterization. KW - Advanced material KW - Functional group KW - Iron oxide KW - Ligand KW - Nano KW - Particle KW - Quantification KW - Surface analysis PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-648632 DO - https://doi.org/10.1021/acs.analchem.5c03024 SN - 0003-2700 VL - 97 IS - 36 SP - 19627 EP - 19634 PB - American Chemical Society (ACS) CY - Washington, DC AN - OPUS4-64863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Absolute determination of photoluminescence quantum yields of scattering led converter materials how to get it right N2 - Scattering luminescent materials dispersed in liquid and solid matrices and luminescent powders are increasingly relevant for fundamental research and industry. Examples are luminescent nano- and microparticles and phosphors of different compositions in various matrices or incorporated into ceramics with applications in energy conversion, solid-state lighting, medical diagnostics. A key performance parameter is the photoluminescence quantum yield (Φf), i.e., the number of emitted per number of absorbed photons. Φf of transparent luminophore solutions can be obtained relative to a fluorescence Φf standard of known Φf, meanwhile available as certified reference materials.[1] The determination of Φf of scattering liquid and solid samples requires, however, absolute measurements with an integrating sphere setup. Fist we present the results of an interlaboratory comparison of 3 labs from academia and industry on measurements of transparent and scattering dye solutions and YAG:Ce optoceramics, an optical converter material, with commercial stand-alone integrating sphere setups of different illumination and detection geometries.[2] Second we present results for a series of 500 μm-thick polymer films containing different concentrations of photoluminescent and scattering YAG:Ce microparticles.[3] We systematically explored and quantified pitfalls of absolute Φf measurements with special emphasis dedicated to the influence of measurement geometry, optical properties of the blank for determining the number of incident photons absorbed by the sample, and sample-specific surface roughness. Matching Φf values could be easily obtained for transparent dye solutions and scattering dispersions with a blank with scattering properties closely matching those of the sample, Φf measurements of optoceramic samples with different blanks revealed substantial differences of more than 20 %. Our results further reveal that setup configurations can introduce systematic errors resulting in under- or overestimation of the absorbed photon flux and hence an under- or overestimation of Φf. T2 - Shift 2025 CY - La Laguna, Tenerife, Spain DA - 13.10.2025 KW - Quantum Yield KW - LED Converter KW - Luminescent KW - Microparticles PY - 2025 AN - OPUS4-64785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - Nanoparticle Characterisation - The long way to standardisation N2 - Diese Präsentation gibt einen Überblick über die Entwicklung der Nanopartikelforschung von ca. 2005 bis heute. Beginnend mit den Besonderheiten von Nanopartikeln und der Aufnahme in den menschlichen Körper über Messmethoden bis hin zur Entwicklung einer Prüfrichtlinie im Rahmen der OECD und einem Ausblick über die absehbaren digitalen Entwicklungen. T2 - Abteilungsseminar der Abteilung 4 CY - Berlin, Germany DA - 27.02.2025 KW - Nanomaterials KW - Nano KW - OECD KW - Standardisierung KW - Advanced Materials PY - 2025 AN - OPUS4-64977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - da Rocha, Morgana A1 - Chaves, Eduardo T1 - Assessment of Pd Nanoparticles as Chemical Modifiers and Preconcentration Agents for Cd Determination in River Water by HR-CS GFAAS N2 - Cadmium is a heavy metal that can be hazardous to environmental and human health, even in trace levels.[1] In this way, the extraction and/or preconcentration of this element from environmental samples, such as river water, is important to obtain information about the composition and monitoring of potential contamination.[2] High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS) is widely used for Cd determination. However, the determination of this element at trace-level can be challenging, especially in complex matrices. Thus, nanoparticles (NPs) can be used as an alternative for the extraction and preconcentration of Cd in environmental samples, minimizing the potential interferences and improving the method´s limit of detection (LOD). Considering that Pd is also widely used as a “universal” chemical modifier, this project aims todevelop PdNPs capped with 3-mercaptopropionic acid (MPA) to assess its potential as a chemical modifier and preconcentration agent for Cd determination by HR-CS GF AAS in river water. In this way, the synthesis of PdNPs was performed in an aqueous medium by using ascorbic acid as a reducing agent. The characterization of PdNPs was performed by checking the size via dynamic light scattering (DLS), transmission electron microscopy (TEM), and inductively coupled plasma mass spectrometer in single particle mode (spICP-MS), where the median size was 56 ± 14 nm. The temperature program of HR-CS GFAAS was optimized for river water under three conditions: using Pd(NO3)2/Mg2+ (0.01%/0.5% m/v) as a chemical modifier (condition A), using Pd NPs as a chemical modifier (condition B), and without chemical modifiers (condition C). The pyrolysis and atomization temperatures for condition A were 900 and 1900 ºC, for condition B were 700 ºC and 1900 ºC, and for condition C were 500 and 1900ºC, respectively. Besides the temperature of pyrolysis for the universal chemical modifier being higher than that of PdNPs, using the PdNPs, the absorbance is significantly greater, according to the t-test for pairs, at a 95% confidence level. In addition, the evaluation of the preconcentration property of the PdNP was performed by adding 1 µg L-1 of Cd2+ in buffer pH 4 in two systems: one with and the other without PdNPs. After 1 h of stirring, both systems were centrifuged at 3600 rpm for 10 min, and the absorbance in HR-CS GFAAS for Cd in both supernatants was evaluated. According to ANOVA from the t-test, at a 95% confidence level, there was a significant difference in the absorbance, indicating that Cd is interacting with the PdNPs. A multifactorial planning 2k, where k is the number of parameters of the extraction, which was time of extraction (10; 35; 60 min), Volume of Pd NPs (100; 300; 500 µL), pH (3; 5; 7), was used to evaluate the parameters with significant influence in the preconcentration of Cd2+. According to ANOVA, with 95% confidence, there is no lack of fit, and the parameters volume of PdNP and pH significantly influenced the response. In this way, the Doehlert methodology surface will be applied to both significant parameters. The goal is to achieve optimal conditions that increase the extraction efficiency of Cd2+ from environmental samples. The results indicate that the developed material is promising to use as a chemical modifier and for the preconcentration of Cd2+ in environmental samples. T2 - 17th Rio Symposium on Atomic Spectrometry (RSAS 2025) CY - Sao Pedro, Brazil DA - 12.11.2025 KW - Pd Nanoparticles KW - HR-CS GFAAS KW - Cadmium Ion Sensing KW - Particle Characterization KW - Particle Surface PY - 2025 AN - OPUS4-64997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Batatia, Ilyes A1 - Benner, Philipp A1 - Chiang, Yuan A1 - Elena, Alin M. A1 - Kovács, Dávid P. A1 - Riebesell, Janosh A1 - Advincula, Xavier R. A1 - Asta, Mark A1 - Avaylon, Matthew A1 - Baldwin, William J. A1 - Berger, Fabian A1 - Bernstein, Noam A1 - Bhowmik, Arghya A1 - Bigi, Filippo A1 - Blau, Samuel M. A1 - Cărare, Vlad A1 - Ceriotti, Michele A1 - Chong, Sanggyu A1 - Darby, James P. A1 - De, Sandip A1 - Della Pia, Flaviano A1 - Deringer, Volker L. A1 - Elijošius, Rokas A1 - El-Machachi, Zakariya A1 - Fako, Edvin A1 - Falcioni, Fabio A1 - Ferrari, Andrea C. A1 - Gardner, John L. A. A1 - Gawkowski, Mikołaj J. A1 - Genreith-Schriever, Annalena A1 - George, Janine A1 - Goodall, Rhys E. A. A1 - Grandel, Jonas A1 - Grey, Clare P. A1 - Grigorev, Petr A1 - Han, Shuang A1 - Handley, Will A1 - Heenen, Hendrik H. A1 - Hermansson, Kersti A1 - Ho, Cheuk Hin A1 - Hofmann, Stephan A1 - Holm, Christian A1 - Jaafar, Jad A1 - Jakob, Konstantin S. A1 - Jung, Hyunwook A1 - Kapil, Venkat A1 - Kaplan, Aaron D. A1 - Karimitari, Nima A1 - Naik, Aakash A. A1 - Csányi, Gábor T1 - A foundation model for atomistic materials chemistry N2 - Atomistic simulations of matter, especially those that leverage first-principles (ab initio) electronic structure theory, provide a microscopic view of the world, underpinning much of our understanding of chemistry and materials science. Over the last decade or so, machine-learned force fields have transformed atomistic modeling by enabling simulations of ab initio quality over unprecedented time and length scales. However, early machine-learning (ML) force fields have largely been limited by (i) the substantial computational and human effort required to develop and validate potentials for each particular system of interest and (ii) a general lack of transferability from one chemical system to the next. Here, we show that it is possible to create a general-purpose atomistic ML model, trained on a public dataset of moderate size, that is capable of running stable molecular dynamics for a wide range of molecules and materials. We demonstrate the power of the MACE-MP-0 model—and its qualitative and at times quantitative accuracy—on a diverse set of problems in the physical sciences, including properties of solids, liquids, gases, chemical reactions, interfaces, and even the dynamics of a small protein. The model can be applied out of the box as a starting or “foundation” model for any atomistic system of interest and, when desired, can be fine-tuned on just a handful of application-specific data points to reach ab initio accuracy. Establishing that a stable force-field model can cover almost all materials changes atomistic modeling in a fundamental way: experienced users obtain reliable results much faster, and beginners face a lower barrier to entry. Foundation models thus represent a step toward democratizing the revolution in atomic-scale modeling that has been brought about by ML force fields. KW - Materials Design KW - Thermal Conducitivity KW - Nanoparticles KW - Batteries PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647829 DO - https://doi.org/10.1063/5.0297006 SN - 0021-9606 VL - 163 IS - 18 SP - 1 EP - 89 PB - AIP Publishing AN - OPUS4-64782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - The digital product passport N2 - This presentation contains information for industry and the scientific communitiy about the new digital product passport and the demands from the EU. Furthermore a short overview is given about the different supporting activities which are currently under developement by BAM. T2 - 3. Netzwerktag Cluster Nanotechnologie CY - Würzburg, Germany DA - 02.07.2025 KW - DPP KW - ESPR KW - Product Passport KW - Ökodesignrichtlinie KW - DMP PY - 2025 AN - OPUS4-64964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - del Rocío Silva-Calpa, Leydi A1 - de Souza Bernardes, Andrelaine A1 - de Avillez, Roberto Ribeiro A1 - Smales, Glen J. A1 - Camarena, Mariella Alzamora A1 - Ramos Moreira, Carla A1 - Zaitsev, Volodymyr A1 - Archanjo, Braulio Soares A1 - Letichevsky, Sonia T1 - From support to shell: An innovative design of air-stable nano zero-valent iron–nickel catalysts via structural self-assembly N2 - This work presents the design of air-stable core–shell zero-valent iron–nickel nanofilaments supported on silica and zeolite, developed to overcome the oxidation limitations of nano zero-valent iron in environmental catalysis. The nanofilaments feature ∼ 100 nm iron–nickel cores surrounded by ultrafine iron-rich threads embedded with aluminates and silicates, originating from partial support dissolution during synthesis. By varying the iron reduction time, three catalysts were prepared: one on silica reduced for 30 min, and two on zeolite reduced for 30 and 15 min. They were thoroughly characterized using nitrogen physisorption, X-ray diffraction, electron microscopy with elemental analysis, Mössbauer spectroscopy, and small-angle X-ray scattering. The zeolite-supported catalyst reduced for 15 min showed the highest activity for hexavalent chromium reduction (rate constant 8.054 min−1), attributed to a higher fraction of reactive iron–nickel phases formed under shorter reduction. Its tailored core–shell structure improves air stability and surface reactivity, highlighting its potential as a next-generation zero-valent iron nanocatalyst for aqueous remediation KW - nanofilaments KW - Core–shell nanostructures KW - Air-stable nanomaterials KW - Structure-controlled FeNi nanoparticles KW - Hexavalent chromium reduction KW - X-ray scattering KW - MOUSE PY - 2025 DO - https://doi.org/10.1016/j.mtcomm.2025.114142 SN - 2352-4928 VL - 49 SP - 1 EP - 15677 PB - Elsevier Ltd. AN - OPUS4-65087 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Berry, Charlotte A. A1 - Reinart, Katre A1 - Smales, Glen J. A1 - Wilkinson, Holly N. A1 - Hardman, Matthew J. A1 - Marchesini, Sofia A1 - Lee, William A1 - Nery, Eveliny Tomás A1 - Moghaddam, Zarrin A1 - Hoxha, Agron A1 - Felipe-Sotelo, Mónica A1 - Gutierrez-Merino, Jorge A1 - Carta, Daniela T1 - Hierarchically porous copper and gallium loaded sol–gel phosphate glasses for enhancement of wound closure N2 - In this work, we have developed hierarchically porous phosphate-based glasses (PPGs) as novel materials capable of promoting wound closure and simultaneously delivering antibacterial effects at the glass-biological tissue interface. PPGs are characterised by extended porosity, which enhances the controlled release of therapeutic ions, whilst facilitating cell infiltration and tissue growth. Two series of PPGs in the systems P2O5–CaO–Na2O–CuO and P2O5–CaO–Na2O–Ga2O3 with (CuO and Ga2O3 0, 1, 5 and 10 mol%) were manufactured using a supramolecular sol–gel synthesis strategy. Significant wound healing promotion (up to 97%) was demonstrated using a human ex vivo wound model. A statistically significant reduction of the bacterial strains Staphylococcus aureus and Escherichia coli was observed in both series of PPGs, particularly those containing copper. All PPGs exhibited good cytocompatibility on keratinocytes (HaCaTs), and analysis of PPG dissolution products over a 7-day period demonstrated controlled release of phosphate anions and Ca, Na, Cu, and Ga cations. These findings indicate that Cu- and Ga-loaded PPGs are promising materials for applications in soft tissue regeneration given their antibacterial capabilities, in vitro biocompatibility with keratinocytes and ex vivo wound healing properties at the biomaterial-human tissue interface. KW - Porous glass KW - Phosphates KW - Wound healing materials KW - Antibacterial KW - X-ray scattering KW - MOUSE PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-650867 DO - https://doi.org/10.1039/d5tb01945a SN - 2050-750X VL - 13 IS - 48 SP - 15662 EP - 15677 PB - Royal Society of Chemistry (RSC) AN - OPUS4-65086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sun, Yijuan A1 - Pérez-Padilla, Víctor A1 - Valderrey, Virginia A1 - Bell, Jérémy A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Ratiometric detection of perfluoroalkyl carboxylic acids using dual fluorescent nanoparticles and a miniaturised microfluidic platform N2 - The widespread contamination of soil and water with perfluoroalkyl substances (PFAS) has caused considerable societal and scientific concern. Legislative measures and an increased need for remediation require effective on-site analytical methods for PFAS management. Here we report on the development of a green-fluorescent guanidine-BODIPY indicator monomer incorporated into a molecularly imprinted polymer (MIP) for the selective detection of perfluorooctanoic acid (PFOA). Complexation of PFOA by the indicator, which is mediated by concerted protonation-induced ion pairing-assisted hydrogen bonding, significantly enhances fluorescence in polar organic solvents. The MIP forms as a thin layer on silica nanoparticles doped with tris(bipyridine)ruthenium(II) chloride, which provides an orange emission signal as internal reference, resulting in low measurement uncertainties. Using a liquid-liquid extraction protocol, this assay enables the direct detection of PFOA in environmental water samples and achieves a detection limit of 0.11 µM. Integration into an opto-microfluidic system enables a compact and user-friendly system for detecting PFOA in less than 15 minutes. KW - PFAS KW - Molecular imprinting KW - Microfluidics KW - Fluorescence KW - Onsite assay PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-650270 DO - https://doi.org/10.1038/s41467-025-66872-9 SN - 2041-1723 VL - 16 IS - 1 SP - 1 EP - 16 PB - Springer Science and Business Media LLC AN - OPUS4-65027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rodríguez-Sánchez, Noelia A1 - Prinz, Carsten A1 - Bienert, Ralf A1 - Ballesteros, Menta A1 - Ruiz Salvador, A. Rabdel A1 - Bhattacharya, Biswajit A1 - Emmerling, Franziska T1 - Mechanochemical ZIF-9 formation: in situ analysis and photocatalytic enhancement evaluation N2 - Efficient treatment of persistent pollutants in wastewater is crucial for sustainable water management and environmental protection. This study addresses this challenge by investigating the mechanochemical synthesis and photocatalytic performance of ZIF-9, a cobalt-based zeolitic imidazolate framework. Using synchrotron-based powder X-ray diffraction, we provide real-time insights into the formation dynamics of ZIF-9 during mechanosynthesis. Our results show that mechanochemically synthesised ZIF-9 exhibits superior photocatalytic activity compared to its solvothermally prepared counterpart, achieving a 2-fold increase in methylene blue degradation rate. This research not only advances our understanding of the synthesis and properties of ZIF-9, but also demonstrates the potential of mechanochemical approaches in the development of high-performance, sustainably produced materials for water treatment and other environmental applications. KW - MOFs KW - ZIF KW - Time-resolved in situ investigation KW - Photocatalysis synchrotron X-ray powder diffraction PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-641416 DO - https://doi.org/10.1039/D4MR00114A SN - 2976-8683 VL - 2 IS - 1 SP - 116 EP - 126 PB - Royal Society of Chemistry (RSC) CY - Cambridge AN - OPUS4-64141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinekamp, Christian A1 - Palmer, Tahlia M. A1 - Al‐Sabbagh, Dominik A1 - May, Anastasia A1 - Prinz, Carsten A1 - Michalik, Stefan A1 - Michalchuk, Adam A. L. A1 - Emmerling, Franziska T1 - Pre‐Activation as a Route for Tuning the Kinetics of Mechanochemical Transformations N2 - Learning to control reaction kinetics is essential for translating any chemical technology into real‐world application. Based on time‐resolved in situ powder X‐ray diffraction data, we demonstrate the opportunity to tune mechanochemical reaction rates through the pre‐activation of the starting reagents. For three model co‐crystal systems, the pre‐activation of the most stable reagent yields up to a ca 10‐fold increase in the reaction rate, whilst negligible kinetic enhancement is seen when the less stable reagent is pre‐activated. Moreover, we demonstrate how the polymorphic outcome of mechano‐co‐crystallization is also sensitive to pre‐activation of the starting material. Our results suggest that reproducibility of mechanochemical processes requires detailed understanding over the origin and history of reagent powders, whilst providing a new conceptual framework to design and control mechanochemical reactions. KW - Mechanochemistry KW - In situ synthesis PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-649409 DO - https://doi.org/10.1002/anie.202516632 SN - 1433-7851 SP - 1 EP - 7 PB - Wiley VHC-Verlag AN - OPUS4-64940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kostenko, Yevgen T1 - Harmonizing Viscoplastic Material Model Application within the BMBF-Project “DigitalModelling” of the Platform Material Digital- Basic Idea, General Strategy and Current Status N2 - For decades, Germany stands for excellent cutting-edge research in the field of so-called higher-value constitutive visco-plastic material models and can draw on a large and globally unique pool of material data. However, both the data and the model structure are extremely heterogeneous and sometimes fundamentally different from research center to research center and from industrial partner to industrial partner. To address the heterogeneity in the material model landscape appropriately, an adaptable material model for the specific application and the specific material is required. The relevant parameters for the adapted material model must be identified as objectively and automatically as possible. To achieve a potentially real-time capable implementation, the material model equation system should be abstracted. The “DigitalModeling” project, organized within the German Platform initiative Material Digital, aims to create a standard and an interface that harmonize the scientific and technical development of constitutive, visco-plastic material models, increase their visibility and maximize the productivity of future research funding. This presentation summarizes the basic idea, the strategy behind it as well as the current status of the project, which was started beginning of 2024. T2 - vgbe Workshop with Technical Exhibition Materials & Quality Assurance CY - Bergen, Norway DA - 07.05.2025 KW - Visco-plastic Material Model KW - Simulation Workflows KW - Ontologies KW - Digitalization PY - 2025 AN - OPUS4-64043 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana T1 - Bridging Structure and Electronic State: Real-time XES–XRD Fusion for Functional Alloys N2 - We present a unified X-ray Emission Spectroscopy (XES) and X-ray Diffraction (XRD) approach for real-time, in situ characterization of materials, demonstrated on Co₂FeSi Heusler alloys under varied heat treatments. The combination of XES and XRD is particularly well-suited to Heusler alloys, where subtle changes in atomic ordering and electronic structure (e.g. site occupancy, hybridization, and spin state) are tightly interdependent and critical for their magnetic and transport properties. In addition, this method enables more efficient materials design by reducing experimental iterations through comprehensive structural and electronic analysis. Developed at the mySpot beamline at BESSY-II, the platform integrates (a) digital twin-based experiment planning, (b) open-source XES spectral simulations, (c) an optimized single-shot, two-element XES setup with sub-pixel resolution for enhanced energy precision, and (d) result-driven beamtime utilization. With an unprecedented synchronized XES-XRD platform, we aim to shed light on how diffusion-controlled processes in Heusler alloys and double perovskites at elevated temperatures establish the formation of specific phases with distinct structure types in real time. This, in turn, strongly impacts the functional properties of the materials under scrutiny. T2 - XLIV Colloquium Spectroscopicum Internationale CY - Ulm, Germany DA - 27.07.2025 KW - Multimodal KW - X-ray spectroscopy KW - X-ray diffraction KW - Functional alloys PY - 2025 AN - OPUS4-63991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pavlidis, Sotirios A1 - Teutloff, Christian A1 - de Oliveira Guilherme Buzanich, Ana A1 - Krause, Konstantin B. A1 - Emmerling, Franziska A1 - Bittl, Robert A1 - Abbenseth, Josh T1 - A Crystalline Bismuth(II) Radical Anion: Synthesis, Characterization, and Reactivity N2 - AbstractWe report the synthesis of a planarized tris‐amidobismuthane supported by a rigid, bulky NNN pincer ligand, which enforces a T‐shaped geometry at the bismuth center. The Bi(NNN) complex features a low‐lying LUMO with distinct Bi(6p) orbital character as shown by DFT calculations. Cyclic voltammetry reveals a fully reversible one‐electron reduction at E1/2 = –1.85 V versus Fc0/+ in THF. Chemical reduction with KC8 in the presence of 4,7,13,16,21,24‐hexaoxa‐1,10‐diazabicyclo[8.8.8]hexacosane (222‐crypt) enables the isolation of an unprecedented Bi(II) radical anion in high isolated yields. Multi‐frequency EPR, X‐ray absorption spectroscopy and SQUID magnetometry complemented by theoretical calculations confirm localization of the unpaired electron on the bismuth center. Preliminary reactivity studies display radical reactivity as shown by single‐electron transfer chemistry and radical coupling reactions. KW - Bi(III) PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-644143 DO - https://doi.org/10.1002/anie.202515545 SN - 1433-7851 VL - 64 IS - 49 SP - 1 EP - 6 PB - Wiley VHC-Verlag AN - OPUS4-64414 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernardino, Carolina T1 - Effortless Antimicrobial Shield: Spray-coated Silica Nanoparticles For Safer High-touch Surfaces N2 - Functional films with tailored interfacial properties play a pivotal role for the development of next generation surface coatings, particularly in healthcare-related environments. In this contribution, we present a facile spray-coating method for the creation of antimicrobial thin films on high-touch surfaces using mesoporous silica nanoparticles (MSNs) that were specifically functionalized to enable strong adhesion and sustained release of metal-based antimicrobial agents. The process is scalable and addresses key challenges in adhesion control, film homogeneity, and long-term antimicrobial function against a large range of key pathogens responsible for nosocomial infections. Three distinct types of MSNs – bearing amine (MSN-NH₂), carboxy (MSN-COOH), and thiol (MSN-SH) surface groups – were synthesized to optimize both metal ion loading and interactions with polyelectrolyte-based adhesion layers. These surface modifications not only provide chemical handles for Cu²⁺ and Ag⁺ ion coordination but also modulate nanoparticle-substrate interactions and dispersion behavior during film formation. The coating architecture consists of a two-step process: first, spray deposition of polyelectrolyte primers that anchor strongly to stainless steel substrates; second, a nanoparticle layer that bonds electrostatically and chemically to the primer, forming robust films with great surface coverage. The films were characterized to assess structural integrity, adhesion, and functional performance. Transmission electron microscopy (TEM) and N₂ sorption analysis confirmed the mesoporous structure. ATR-FTIR and zeta potential measurements validated surface functionalization and colloidal stability. Environmental SEM revealed conformal coating across the stainless-steel surfaces with uniform nanoparticle distribution. The coating's adhesion strength was maintained through mechanical wiping and simulated wear and abrasion tests, demonstrating film durability relevant in real-world use scenarios. Antimicrobial testing under semi-dry, application-relevant conditions showed excellent performance for Ag⁺-loaded MSN-SH films, inhibiting growth of Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. These results highlight the synergistic role of surface chemistry, metal ion loading, and film-substrate adhesion in creating effective and wear-resistant functional coatings. Moreover, these films do not show any cytotoxic properties towards Human Dermal Fibroblasts (HDF). This study contributes new insights into the design of multifunctional films where adhesion, surface functionality, and scalable processing are co-optimized for enhanced performance and shows how combining tailored surface chemistry and wide-ranging antimicrobial activity brings together smart material design for practical and safe use. T2 - MRS Fall Meeting 2025 CY - Boston, MA, USA DA - 30.11.2025 KW - Mesoporous silica nanoparticles KW - Silver KW - Antimicrobial KW - Coatings KW - Thin film PY - 2025 AN - OPUS4-65150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zaki, Mohammad A1 - Prinz, Carsten A1 - Ruehle, Bastian T1 - A Self-Driving Lab for Nano- and Advanced Materials Synthesis N2 - The recent emergence of self-driving laboratories (SDL) and material acceleration platforms (MAPs) demonstrates the ability of these systems to change the way chemistry and material syntheses will be performed in the future. Especially in conjunction with nano- and advanced materials which are generally recognized for their great potential in solving current material science challenges, such systems can make disrupting contributions. Here, we describe in detail MINERVA, an SDL specifically built and designed for the synthesis, purification, and in line characterization of nano- and advanced materials. By fully automating these three process steps for seven different materials from five representative, completely different classes of nano- and advanced materials (metal, metal oxide, silica, metal organic framework, and core–shell particles) that follow different reaction mechanisms, we demonstrate the great versatility and flexibility of the platform. We further study the reproducibility and particle size distributions of these seven representative materials in depth and show the excellent performance of the platform when synthesizing these material classes. Lastly, we discuss the design considerations as well as the hardware and software components that went into building the platform and make all of the components publicly available. KW - Self-driving laboratories KW - Materials acceleration platforms KW - Nanomaterials KW - Advanced materials KW - Automation KW - Robotics KW - In-line characterization PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-627361 DO - https://doi.org/10.1021/acsnano.4c17504 SN - 1936-086X VL - 19 IS - 9 SP - 9029 EP - 9041 PB - ACS Publications CY - Washington, DC AN - OPUS4-62736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karafiludis, Stephanos A1 - Standl, Jacob A1 - Ryll, Tom W. A1 - Schwab, Alexander A1 - Prinz, Carsten A1 - Wolf, Jakob B. A1 - Kruschwitz, Sabine A1 - Emmerling, Franziska A1 - Völker, Christoph A1 - Stawski, Tomasz M. T1 - High-Entropy Phosphate Synthesis: Advancements through Automation and Sequential Learning Optimization N2 - Transition metal phosphates (TMPs) are extensively explored for electrochemical and catalytical applications due to their structural versatility and chemical stability. Within this material class, novel high-entropy metal phosphates (HEMPs)─containing multiple transition metals combined into a single-phase structure─are particularly promising, as their compositional complexity can significantly enhance functional properties. However, the discovery of suitable HEMP compositions is hindered by the vast compositional design space and complex or very specific synthesis conditions. Here, we present a data-driven strategy combining automated wet-chemical synthesis with a Sequential Learning App for Materials Discovery (SLAMD) framework (Random Forest regression model) to efficiently explore and optimize HEMP compositions. Using a limited set of initial experiments, we identified multimetal compositions in a single-phase crystalline solid. The model successfully predicted a novel Co0.3Ni0.3Fe0.2Cd0.1Mn0.1 phosphate octahydrate phase, validated experimentally, demonstrating the effectiveness of the machine learning approach. This work highlights the potential of integrating automated synthesis platforms with data-driven algorithms to accelerate the discovery of high-entropy materials, offering an efficient design pathway to advanced functional materials. KW - Metal phosphates KW - High entropy KW - Sequential learning KW - Automated synthesis KW - MAP KW - Random forest KW - Machine learning PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-641554 DO - https://doi.org/10.1021/acs.cgd.5c00549 SN - 1528-7483 VL - 25 IS - 19 SP - 7989 EP - 8001 PB - American Chemical Society (ACS) CY - Washington, DC AN - OPUS4-64155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arai, Marylyn S. A1 - Brambilla, Gabriel V. A1 - Corrêa, Bruna Carolina A1 - Merízio, Leonnam G. A1 - Inada, Natalia M. A1 - de Camargo, Andrea S. S. T1 - A Dual-Mode “Turn-On” Ratiometric Luminescent Sensor Based on Upconverting Nanoparticles for Detection and Differentiation of Gram-Positive and Gram-Negative Bacteria N2 - Infectious bacterial diseases, intensified by antibiotic resistance, cause millions of deaths annually and pose risks beyond human health, including water and food contamination. Current diagnostics are often slow, require complex equipment, and lack specificity, highlighting the need for rapid and reliable detection methods. To address this, we developed a luminescent sensor based on NaYF4 upconverting nanoparticles (UCNPs) doped with Er3+ or Tm3+, coated with COOH-PEG4-COOH, and functionalized with vancomycin (Van) or polymyxin-B (Poly) to selectively target Gram-positive and Gram-negative bacteria, respectively. Gold nanoparticles (AuNPs) served as quenchers, enabling a ratiometric “turn-on” mechanism: upon bacterial binding, the UCNP emission, initially quenched by AuNPs, was partially restored. This allowed Differentiation through changes in the green/red (G/R) ratio for Er-UCNP@PEG4-Van and the blue/red (B/R) ratio for Tm-UCNP@PEG4-Poly. The sensor distinguished between Gram-positive and Gram-negative bacteria over a wide concentration range (0.05 to 5 × 105 CFU/mL) and showed high correlation with actual bacterial counts (r = 0.99 for S. aureus, r = 0.91 for E. coli). This platform is a potential fast, selective, and reliable tool for bacterial detection in clinical and environmental settings. KW - Lminescent sensor KW - Upconverting nanoparticles KW - Gram-positive and Gram-negative bacteria KW - Ratiometric luminescent sensors PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652785 DO - https://doi.org/10.1021/acsomega.5c07006 SN - 2470-1343 VL - 10 IS - 39 SP - 46040 EP - 46050 PB - American Chemical Society (ACS) AN - OPUS4-65278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arai, Marylyn Setsuko A1 - Machado, Thales Rafael A1 - da Silva, Beatriz Giacomelli Rodrigues A1 - Vilela, Raquel Riciati do Couto A1 - de Camargo, Andrea Simone Stucchi A1 - Zucolotto, Valtencir T1 - Biomimetic Upconverting Nanoplatforms for Glioblastoma Bioimaging and Targeted Therapy N2 - Infectious bacterial diseases, intensified by antibiotic resistance, cause millions of deaths annually and pose risks beyond human health, including water and food contamination. Current diagnostics are often slow, require complex equipment, and lack specificity, highlighting the need for rapid and reliable detection methods. To address this, we developed a luminescent sensor based on NaYF4 upconverting nanoparticles (UCNPs) doped with Er3+ or Tm3+, coated with COOH-PEG4-COOH, and functionalized with vancomycin (Van) or polymyxin-B (Poly) to selectively target Gram-positive and Gram-negative bacteria, respectively. Gold nanoparticles (AuNPs) served as quenchers, enabling a ratiometric “turn-on” mechanism: upon bacterial binding, the UCNP emission, initially quenched by AuNPs, was partially restored. This allowed differentiation through changes in the green/red (G/R) ratio for Er-UCNP@PEG4-Van and the blue/red (B/R) ratio for Tm-UCNP@PEG4-Poly. The sensor distinguished between Gram-positive and Gram-negative bacteria over a wide concentration range (0.05 to 5 × 105 CFU/mL) and showed high correlation with actual bacterial counts (r = 0.99 for S. aureus, r = 0.91 for E. coli). This platform is a potential fast, selective, and reliable tool for bacterial detection in clinical and environmental settings. KW - Glioblastoma KW - Homotypic targeting KW - Cell membrane coating KW - Upconverting nanoparticles KW - Temozolamide KW - Near infrared bioimaging KW - Drug delivery PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652808 DO - https://doi.org/10.1021/acsanm.5c04567 SN - 2574-0970 VL - 10 IS - 39 SP - 1 EP - 13 PB - American Chemical Society (ACS) AN - OPUS4-65280 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea A1 - Arai, Marylyn Setsuko T1 - Upconversion nanoparticles for chemical, physical and biological sensing: from functionalization to point-of-care devices N2 - Among several applications, versatile upconversion nanoparticles (UCNPs) which can convert lower-energy infrared radiation into higher-energy visible or ultraviolet light, have emerged as one of the most powerful tools in the field of chemical, physical and biological sensing. The use of UCNPs in fluorescent sensors allows non-invasive, highly sensitive, and selective detection methods, which are particularly beneficial in environments requiring minimal interference and high precision for analytes that can range from metal ions to biomolecules. In this lecture, an overview and the state of the art will be given, accompanied by examples of our recent contributions to key areas such as chronic disease diagnostics, bacterial sensing, and multifunctionally responsive nanoplatforms: (1) An Enhanced Luminescence Lateral-Flow Assay (ELLA) designed for rapid (< 15 min) and early detection of acute kidney injury biomarkers in urine samples, using a commercial cell phone camera, will be presented. The platform is based on Er³⁺- and Tm³⁺-doped UCNPs whose emissions intensities are 40-fold enhanced by an Au-coated mesoporous silica shell, enabling the accurate detection of KIM-1 and NGAL biomarkers with detection limits as low as 0.23 ng/mL; (2) Also, a multifunctional nanoplatform that combines Tm³⁺-doped UCNPs with a Cu(I) complex for applications in oxygen sensing, optical thermometry, and emission colour tuning will be presented. The platform utilizes Luminescent Resonance Energy Transfer (LRET) to achieve efficient energy transfer, enabling red emission from the Cu(I) complex while allowing the use of the UCNP’s original emissions for thermometry. The dual functionality allows sensitive O2 detection and temperature measurements, with relative sensitivities of up to 1% K⁻¹; (3) The critical challenge of rapid bacterial detection and differentiation was addressed by the development of a novel UCNP-based sensor. By functionalizing UCNPs with the antibiotics - vancomycin for Gram-(+) and polymyxin-B for Gram-(-), and using Au nanoparticles as intensity quenchers, the sensor leverages a ratiometric "turn-on" mechanism for selective detection of the bacteria, through changes in the green/red (G/R) ratio for Er-UCNP@PEG4-Van, and blue/red (B/R) ratio for Tm-UCNP@PEG4-Poly. By this approach, differentiation was possible over a wide concentration range of bacteria (0.05 to 5 x 105 CFU/mL) with high correlation with actual bacterial counts (r = 0.99 for S. aureus, r = 0.91 for E. coli); (4) Recently, we have demonstrated a water dispersable ratiometric pH-nanosensor based on host-guest interaction of Tm3+/Yb3+ co-doped UCNPs functionalized with b-cyclodextrin (b-CD) and a pH-responsive nitrobenzoxadiazol dye modified with adamantane (NBD-Ad). The sensor shows a ratiometric emission response (blue/red) over a pH range of 8.0 – 11.0 with high reproducibility, excellent reusability and selectivity, even in the presence of interferents. Together, the presented examples highlight the versatility and potential of UCNPs to develop novel sensors, offering measurable advances in diagnostics, environmental monitoring, and beyond. T2 - Shift2025 - Spectral shaping for biomedical and energy applications CY - Tenerife, Spain DA - 13.10.2025 KW - Upconverting nanoparticles KW - Fluorescent sensors KW - Point-of-care devices PY - 2025 AN - OPUS4-65282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hallier, Dorothea C. A1 - Radnik, Jörg A1 - Dietrich, Paul M. A1 - Seitz, Harald A1 - Hahn, Marc Benjamin T1 - Radiation damage to amino acids, peptides and DNA-binding proteins: the influence of water directly monitored by X-ray photoelectron spectroscopy N2 - Ionizing radiation damage to biomolecules plays a crucial role in radiotherapy as a cancer treatment. Among these, DNA-binding proteins are of particular interest due to their pivotal roles in shielding DNA and facilitating its repair. Hence, in this study, we present first-ever recorded data of radiation damage to a protein monitored directly with near-ambient pressure (NAP) X-ray photoelectron spectroscopy (XPS) under a water atmosphere. This surface sensitive technique was used to in situ damage and probe gene-V protein (G5P, a model DNA-binding protein) under wet NAP conditions and dry vacuum (UHV) conditions to determine the effect of water on the radiation response. In addition, the X-ray radiation damage to selected pure amino acids and short homopeptides was determined to better understand the variety of damage mechanisms within the complex protein. In dry samples, drastic chemical changes were detected in all biomolecules dominated by fragmentation processes. Here, the breakage of peptide bonds in the peptides and the protein are dominant. Surprisingly, hydration – despite introducing additional indirect damage pathways via water radiolysis – led to a reduction in overall radiation damage. This behaviour was attributed to hydration-dependent changes in reaction rates and respective deexcitation and damaging channels within the molecules and secondary species such as low-energy (LEE), (pre)-hydrated/(pre)-solvated electrons and radical species such as hydroxyl radicals. KW - Radiation damage KW - (Near-ambient pressure) X-ray photoelectron spectroscopy KW - Ultra-high vacuum PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647565 DO - https://doi.org/10.1039/d5cp01887k VL - 27 IS - 48 SP - 1 EP - 22 PB - Royal Society of Chemistry AN - OPUS4-64756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Amiri, Hesam A1 - Nikookhesal, Aidin A1 - Murugan, Divagar A1 - Scholz, Stefan A1 - Frentzen, Michael A1 - Cao, Yuan A1 - Nickl, Philip A1 - Radnik, Jörg A1 - Stockmann, Jörg M. A1 - Vu, Xuan-Thang A1 - Narayanan, Madaboosi S. A1 - Knoch, Joachim A1 - Ingebrandt, Sven A1 - Adeli, Mohsen A1 - Pachauri, Vivek T1 - High precision correlative analysis of dielectric behavior evolution and anisotropy in graphene oxide thin film as a function of thermal annealing parameters N2 - Graphene oxide (GO) and reduced graphene oxide (rGO) attract keen interest from different science and technology sectors owing to their tunable material characteristics dependent on C/O ratio. Thermal annealing in different gaseous environments serves as an effective approach to manipulate the C/O ratio in graphitic lattice, making it suitable for various electronic, optical and composites applications. Despite regular use of thermal annealing, systematic studies on dielectric properties evolution in GO against different annealing parameters remain elusive. This work reports on a reliable approach that adopts a joint Raman Spectroscopy, Mueller Matrix Spectroscopic Ellipsometry (MMSE) and high-precision electrical impedance spectroscopy (HP-EIS) framework for studying the evolution of dielectric behavior and anisotropies in GO. The experimental platform involved lithography-defined GO patterns connected to metal microelectrodes and glass passivation for protection from gaseous environments during annealing and measurements using Raman, MMSE and HP-EIS. The presented study delineates the effects of annealing parameters such as temperature, heating rate, and gaseous environment on GO permittivity. Novel findings include the discovery of a direct relationship between heating rate and dielectric properties, as well as determination of vertical limitation of MMSE for permittivity distribution characterization in GO, for the first time, to be around 8 nm. KW - Thermal annealing KW - Reduced graphene oxide KW - Thin films KW - 2D materials KW - Spectroscopic ellipsometry PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652428 DO - https://doi.org/10.1016/j.nwnano.2025.100130 SN - 2666-9781 VL - 11 SP - 1 EP - 10 PB - Elsevier Ltd. AN - OPUS4-65242 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tavernaro, Isabella A1 - Rajotte, Isabelle A1 - Thibeault, Marie-Pier A1 - Sander, Philipp C. A1 - Kodra, Oltion A1 - Lopinski, Gregory A1 - Radnik, Jörg A1 - Johnston, Linda J. A1 - Brinkmann, Andreas A1 - Resch-Genger, Ute T1 - Quantifying surface groups on aminated silica nanoparticles of different size, surface chemistry, and porosity with solution NMR, XPS, optical assays, and potentiometric titration N2 - We assessed the quantification of surface amino functional groups (FGs) for a large set of commercial and custom-made aminated silica nanoparticles (SiO2 NPs) with sizes of 20–100 nm, prepared with different sol–gel routes, different amounts of surface amino FGs, and different porosity with four methods providing different, yet connected measurands in a bilateral study of two laboratories, BAM and NRC, with the overall aim to develop standardizable measurements for surface FG quantification. Special emphasis was dedicated to traceable quantitative magnetic resonance spectroscopy (qNMR) performed with dissolved SiO2 NPs. For the cost efficient and automatable screening of the amount of surface amino FGs done in a first step of this study, the optical fluorescamine assay and a potentiometric titration method were utilized by one partner, i.e., BAM, yielding the amount of primary amino FGs accessible for the reaction with a dye precursor and the total amount of (de)protonatable FGs. These measurements, which give estimates of the minimum and maximum number of surface amino FGs, laid the basis for quantifying the amount of amino silane molecules with chemo-selective qNMR with stepwise fine-tuned workflows, involving centrifugation, drying, weighting, dissolution, measurement, and data evaluation steps jointly performed by BAM and NRC. Data comparability and relative standard deviations (RSDs) obtained by both labs were used as quality measures for method optimization and as prerequisites to identify method-inherent limitations to be later considered for standardized measurement protocols. Additionally, the nitrogen (N) to silicon (Si) ratio in the near-surface region of the SiO2 NPs was determined by both labs using X-ray photoelectron spectroscopy (XPS), a well established surface sensitive analytical method increasingly utilized for microparticles and nano-objects which is currently also in the focus of international standardization activities. Overall, our results underline the importance of multi-method characterization studies for quantifying FGs on NMs involving at least two expert laboratories for effectively identifying sources of uncertainty, validating analytical methods, and deriving NM structure–property relationships. KW - Advanced Materials KW - Amino Groups KW - Calibration KW - Characterization KW - Functional groups KW - Method Comparison KW - Nano Particle KW - Validation KW - XPS KW - Optical Assay KW - Quantification KW - Surface Analysis KW - Reference Materials KW - Synthesis KW - Fluorescence PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-649992 DO - https://doi.org/10.1039/d5na00794a VL - 7 IS - 21 SP - 6888 EP - 6900 PB - Royal Society of Chemistry AN - OPUS4-64999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schusterbauer, Robert A1 - Schünemann, Pia A1 - Nickl, Philip A1 - Er, Jasmin A1 - Kämmer, Victoria A1 - Junge, Florian A1 - Fazzani, Salim A1 - Mrkwitschka, Paul A1 - Meermann, Björn A1 - Haag, Rainer A1 - Donskyi, Ievgen T1 - Bifunctional Reduced Graphene Oxide Derivatives for PFOA Adsorption N2 - Innovative materials are crucial for removing persistent pollutants per‐ and polyfluorinated alkyl substances (PFAS) from water. Here, a novel bifunctional reduced graphene oxide (TRGO) adsorbent is developed and characterized by advanced surface sensitive methods. Compared to pristine TRGO, the functionalized TRGO shows markedly improved PFAS removal efficiency and demonstrates strong potential for water purification applications. KW - Adsorber KW - PFAS KW - HR-CS-GFMAS PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-651238 DO - https://doi.org/10.1002/ceur.202500240 SN - 2751-4765 SP - 1 EP - 7 PB - Wiley VHC-Verlag AN - OPUS4-65123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - The emp project smurfnano – Standardizing the quantification of surface functionalities, ligands, and coatings on nanomaterials N2 - For industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, opto-electronics, and information storage, meanwhile engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely fabricated. NP function, interaction with biological species, and environmental fate are largely determined by surface functionalities. Reliable, reproducible, and standardized surface characterization methods are therefore vital for quality control of NPs, and mandatory to meet increasing concerns regarding their safety. Also, industry, international standardization organizations, regulatory agencies, and policymakers need validated and standardized measurement methods and reference materials. These needs are addressed by the recently started European metrology project SMURFnano involving 12 partners from different National Metrology Institutes, designated institutes, and research institutes, two university groups as well as one large company and one SME producing NPs. This project as well as first results derived from the development of test and reference materials with a well characterized surface chemistry and ongoing interlaboratory comparisons will be presented. T2 - LNE Workshop CY - Paris, France DA - 04.11.2025 KW - Quality assurance KW - Fluorescence KW - Nano KW - Particle KW - Synthesis KW - Characterization KW - Advanced material KW - Surface KW - Standardization KW - Reference material KW - Functional group KW - Quantification KW - Coating KW - Automation KW - Potentiometry KW - Method KW - Validation KW - Optical assay KW - Fluram KW - qNMR KW - Comparison KW - ILC PY - 2025 AN - OPUS4-64725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scholtz, Lena T1 - Standardized Measurements of Surface Functionalities on Nanoparticles N2 - Engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely and commonly fabricated for industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, opto-electronics, and information storage. NP function, their interaction with biological species, and also their environmental fate are largely determined by the surface functionalities of the particles. Reliable, reproducible, and standardized surface characterization methods are therefore vital for quality control of NPs, determination of their applicability, and mandatory to meet increasing concerns regarding their safety. In addition, industry as well as international standardization organizations, regulatory agencies, and policymakers need validated and standardized measurement methods and reference materials. However, methodologies for determining NP surface properties, including the amount, chemical composition, and homogeneity of surface functionalities and coatings are largely non-standardized up until now. Suitable methods for determining surface functionalities on ligand-stabilized core and core/shell NPs include advanced techniques such as traceable quantitative nuclear magnetic resonance (qNMR), as well as X-ray electron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF-SIMS), and simpler optical and electrochemical methods. The latter, typically less costly methods are often used by SMEs, e.g., for quality control. To validate methods, establish measurement uncertainties, test reference materials, and produce reference data, international interlaboratory comparisons (ILC) on NP surface functionalization measurements are required to provide well characterized test and reference nanomaterials including benchmark values.[1] These needs are addressed by the current European metrology project SMURFnano, involving 12 partners from different National Metrology Institutes, designated and research institutes, two university groups as well as one large company and one SME producing NPs. This project, as well as first results derived from the development of test and reference materials with a well characterized surface chemistry, and ongoing interlaboratory comparisons, will be presented. T2 - eMRS - Fall Meeting 2025 CY - Warsaw, Poland DA - 15.09.2025 KW - Nano KW - Particle KW - Silica KW - Polymer KW - Metrology KW - Quality assurance KW - Reference material KW - Surface chemistry KW - Size KW - Shape KW - Particle number concentration KW - Method KW - Optical assay KW - qNMR KW - Validation KW - Potentiometry KW - XPS PY - 2025 AN - OPUS4-64243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Advanced Materials for the Energy Transition N2 - Advanced Materials are crucial for the sucess of the energy transition. 10 relevant advanced materials were chosen and their role for relevant technologies was analysed. Challenges regarding their safe and sustainable use are discussed. T2 - OECD WPMN SG Advanced Materials Teleconference CY - Online meeting DA - 30.09.2025 KW - Solar Cells KW - Advanced Carbon Materials KW - Fuel Cells KW - Batteries KW - Hydrogen Storage PY - 2025 AN - OPUS4-64306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hülagü, Deniz A1 - Hirahara, Kenta A1 - Fischer, Daniel A1 - Florian, Camilo A1 - Schusterbauer, Robert A1 - Ermilova, Elena A1 - Krüger, Jörg A1 - Unterreiner, Andreas-Neil A1 - Bonse, Jörn A1 - Hertwig, Andreas T1 - Using imaging ellipsometry to understand femtosecond laser materials processing of group IV materials N2 - Laser materials processing is an important tool for creating and shaping new materials. Laser machining, especially with ultrashort pulses offers the modification of surfaces, thin coatings, and bulk materials with an unprecedented precision and control. The most desired feature of pulsed laser processing in the femtosecond range is that the heat-affected zone in the irradiated material will be extremely small. To better understand the mechanisms involved during laser irradiation, it is important to analyse the outcome of light-matter interaction with spectroscopic methods. Ellipsometry, especially spectroscopic imaging ellipsometry (SIE), has become an important tool for this in recent times, as it gives access to local layer thicknesses, materials dielectric functions, and features like changes in surface roughness. This work includes an overview over our recent studies examining near-infrared fs-laser surface processing of different group IV materials. The superficial phase change of silicon from crystalline to amorphous has been investigated in the past as the result of laser processing strongly depends on the crystal orientation. Moreover, SIE is capable of determining the properties of buried a-Si interfaces with micrometer lateral and sub-nanoneter vertical precision. Additionally, the growth of native and laser-induced oxides can be revealed. T2 - ICSE10 - 10th International Conference on Spectroscopic Ellipsometry CY - Boulder, CO, USA DA - 08.06.2025 KW - Laser surface ablation KW - Amorphous Carbon KW - Silicon KW - Correlative Imaging Ellipsometry PY - 2025 AN - OPUS4-63633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella T1 - Quantifying the Total and Accessible Number of Surface Functional Groups and Ligands on Engineered Nanomaterials Using a Multimodal Approach N2 - Functionalized nanomaterials (NM) with their unique size-dependent properties are of increasing relevance for current and future developments in various fields such as medical and pharmaceutical industry, computing, electronics or food and consumer products. For instance, NMs are used as drug carriers, fluorescent sensors, and multimodal labels in bio-analytical assays and imaging applications. The performance and safety of NMs are influenced by their intrinsic physicochemical properties. Among these, the surface chemistry of the particles, which is largely determined by the chemical nature and density of functional groups and ligands, plays a crucial role in enhancing the stability, and processability of NMs, as well as their interactions with the environment. Thus, particle standards with well-designed surfaces and methods for functional group quantification can foster the sustainable development of functional and safe(r) NM.[1] To develop simple, versatile, and multimodal tools for quantifying various bioanalytically relevant functional groups (FG) such as amine,[2,3] carboxy,[2] thiol, and aldehyde[4] functionalities, we explored and compared several analytical methods. These methods included electrochemical titration, dye-based optical assays, and other instrumental techniques like nuclear magnetic resonance, mass spectrometry, and thermal analysis. Our multimodal approach’s potential for FG quantification was demonstrated using both commercial and custom-made polymeric and silica particles with different densities of functional groups. T2 - ANAKON 2025 CY - Leipzig, Germany DA - 10.03.2025 KW - Quality Assurance KW - Nano Particle KW - qNMR KW - Potentiometry KW - Reference Material KW - Surface Analysis KW - Advance Materials KW - Functional Group KW - Silica KW - Synthesis KW - Optical Assays KW - Reference Data PY - 2025 AN - OPUS4-65000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - The SMURFnano project - standardized measurements of surface functionalities on nanoparticles N2 - Engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely fabricated for industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, optoelectronics, and information storage. NP function, interaction with biological species, and environmental fate are largely determined by surface functionalities. Reliable, reproducible, and standardized surface characterization methods are therefore vital for quality control of NPs, and mandatory to meet increasing concerns regarding their safety. Also, industry, international standardization organizations, regulatory agencies, and policymakers need validated and standardized measurement methods and reference materials. However, methodologies for determining NP surface properties, including the amount, chemical composition, and homogeneity of surface functionalities and coatings are largely non-standardized. Suitable methods for determining surface functionalities on ligand-stabilized core and core/shell NPs include advanced techniques such as traceable quantitative nuclear magnetic resonance (qNMR) as well as X-ray electron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF-SIMS), and simpler optical and electrochemical methods. The latter less costly methods are often used by SMEs, e.g., for quality control. To validate methods, establish measurement uncertainties, test reference materials, and produce reference data, international interlaboratory comparisons (ILC) on NP surface functionalization measurements are required and well characterized test and reference nanomaterials providing benchmark values.[1] These needs are addressed by the recently started European metrology project SMURFnano involving 12 partners from different National Metrology Institutes, designated institutes, and research institutes, two university groups as well as one large company and one SME producing NPs. This project as well as first results derived from the development of test and reference materials with a well characterized surface chemistry and ongoing interlaboratory comparisons will be presented. T2 - eMRS CY - Strasbourg, France DA - 27.05.2025 KW - Quality assurance KW - Reference analysis KW - Standardization KW - Metrology KW - Reference products KW - Reference materials KW - Mission KW - Surface chemistry KW - Nano KW - Particle KW - qNMR KW - XPS KW - Fluorescence KW - Optical assays KW - Interlaboratory comparison KW - Uncertainty PY - 2025 AN - OPUS4-63243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Tavernaro, Isabella A1 - Abram, Sarah-Luise A1 - Homann, Christian A1 - Scholtz, Lena A1 - Radnik, Jörg T1 - Validated and standardized measurements and quantification of surface functionalities on nanoparticles N2 - Engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely fabricated for industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, opto-electronics, and information storage which improve the quality of life and European prosperity. Nanoparticle function, interaction with biological species, and environmental fate are largely determined by surface functionalities. Reliable, reproducible, and standardized surface characterization methods are therefore vital for quality control of NPs, and mandatory to meet increasing concerns regarding their safety. Also, industry, regulatory agencies, and policymakers need validated traceable measurement methods and reference materials. Industry, e.g., must comply with various regulations, including the chemicals´ regulation REACH (2006/1907) and cosmetic products regulation (2009/1223), depending on the use. Therefore, standardization organizations such as the European Committee for Standardization (CEN), the International Organization for Standardization (ISO), and the International Electrotechnical Commission (IEC) as well as industrial stakeholders, European Medicine Agency (EMA), and the nanosafety community responsible for guidelines for nanomaterial (NM) regulation like the Organisation for Economic Co-operation and Development (OECD) have expressed needs for standardized methodologies to measure NP surface chemical properties. Despite these needs, methodologies for determining NP surface properties, including the amount, chemical composition, and homogeneity of surface functionalities and coatings are largely non-standardized. Specifically, validated quantitative procedures for the measurement of thickness and composition of nanoparticle coatings and other surface functionalities are needed. Suitable methods for determining surface functionalities on ligand-stabilized core and core/shell NPs include advanced techniques such as traceable quantitative nuclear magnetic resonance (qNMR) as well as X-ray electron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF-SIMS), and simpler optical and electrochemical methods. The latter less costly methods are often used by SMEs, e.g., for quality control. To validate methods, establish measurement uncertainties, test reference materials, and produce reference data, international interlaboratory comparisons (ILC) on NP surface functionalization measurements are required. These needs have been addressed by us in two interlaboratory comparisons, that will be presented. In addition, the European metrology project SMURFnano will be briefly presented involving 12 partners from different National Metrology Institutes, designated institutes, and research institutes, two university groups as well as one large company and one SME producing NPs. T2 - NanoCarbon Annual Conference 2025 CY - Würzburg, Germany DA - 18.03.2025 KW - Nano KW - Particle KW - Silica KW - Quality assurance KW - Reference material KW - Surface chemistry KW - Size KW - Shape KW - Particle number concentration KW - Method KW - Optical assay KW - QNMR KW - Validation KW - Potentiometry KW - XPS PY - 2025 AN - OPUS4-62790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brinkmann, A. T1 - A qNMR Method for Quantification of Surface Functional Groups on Silica Nanoparticles: Bilateral Comparisons N2 - Nanomaterials (NM) of different size, shape, morphology, composition, and surface chemistry are used in a wide range of applications, including medical diagnostics, and imaging and consumer products. The importance of an adequate and reliable characterization is crucial for quality control during NM production, for ensuring an optimum function for the desired application, and for risk assessment studies. Currently there is a lack of reliable and validated methods and reference materials for quantifying NM surface functional groups, despite the importance of surface chemistry for the production of colloidally stable materials, further processing steps, and the interaction with the environment and biological species. Following our initial study on the use of qNMR for quantifying the amount of amino groups on surface modified silica (1), we have carried out two bilateral comparisons between NRC and BAM to further develop and optimize a reliable protocol for these measurements (2,3), using aminated silica nanoparticles prepared by multiple methods, both commercial and in-house synthesized, and with varying amine content. Solution qNMR is based on dissolving aminated silica nanoparticles in strong base to release the surface grafted amino silane molecules, followed by the quantification of these molecules by solution qNMR using an internal standard. This method provides the amount of total amino groups present in the sample, which can differ from probe accessible or surface-sensitive measurements performed with X-Ray photoelectron spectroscopy (XPS). Complementary measurements using optical assays, involving a labeling step with a dye reporter, and XPS are employed to assess the probe accessible and surface amine content for representative samples. These measurements, which illustrate the advantages and potential limitations of the different characterization methods, will contribute to establish a basis for testing the protocol in an international inter-laboratory comparison and for standardization at ISO Technical Committee 229 – Nanotechnologies. T2 - BERM CY - Halifax, Canada DA - 01.06.2025 KW - Quality assurance KW - Nano KW - Particle KW - Synthesis KW - Advanced materials KW - Characterization KW - Electron microscopy KW - Silica KW - Surface KW - qNMR KW - Optical assay KW - Interlaboratory comparison KW - Metrology KW - Standardization PY - 2025 AN - OPUS4-63527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Abram, Sarah-Luise A1 - Homann, Christian A1 - Scholtz, Lena A1 - Radnik, Jörg A1 - Resch-Genger, Ute T1 - Validated and standardized measurements and quantification of surface functionalities on nanoparticles N2 - Surface-functionalized organic and inorganic engineered nanomaterials (NMs) are widely applied in the life and materials sciences. NM performance depends on key factors such as particle size and shape, crystal phase, morphology, chemical composition, and surface chemistry, i.e., surface coatings, functional groups (FGs), and ligands.1 The latter controls their processability and interaction with the environment and largely their possible toxicity. Thus, methods for FG quantification are important tools for quality control of NM production processes and can foster the sustainable development of functional and safe(r) NMs. This underlines the importance of validated and standardized analytical methods for surface analysis and reference materials.2 This encouraged us to explore simple and versatile tools for quantifying common bioanalytically relevant FGs such as optical assays, electrochemical titration methods, quantitative nuclear magnetic resonance spectroscopy (qNMR), and X-Ray photoelectron spectroscopy (XPS) and to perform a first interlaboratory comparison (ILC) on surface FG quantification.3,4 In a follow-up ILC, BAM and NRC explored qNMR sample preparation, measurement, and data evaluation protocols for commercial and custom-made aminated SiO2 NPs with sizes of 20-100 nm, different amounts of surface amino FGs, and different porosity.5,6 First, the number of amino FGs accessible for a dye reporter was determined with a cost-efficient, automated optical fluorescamine assay. Then, qNMR workflows and protocols were stepwise fine-tuned. The qNMR ILC was complemented by joint XPS measurements. BAM also examined the applicability of fast and automatable potentiometric titrations to screen the total amount of (de)protonable FGs on aminated SiO2 NPs. Our results underline the need to evaluate protocols for FG quantification in ILCs and the advantages of multi-method characterization strategies for efficient method cross validation. T2 - Surface and Micro/Nano Analysis Working Group CY - Paris, France DA - 08.04.2025 KW - Quality assurance KW - Reference material KW - Fluorescence KW - Nano KW - Particle KW - Surface analysis KW - XPS KW - Traceability KW - Metrology KW - Calibration KW - Reference data KW - Reference product KW - Digital certificate KW - QNMR KW - Potentiometry PY - 2025 AN - OPUS4-62969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portesi, C. T1 - qNMR for standardised measurements of surface functionalities on nanoparticles N2 - Engineered nanoparticles have a large application potential in fields such as medicine, sensing, catalysis, energy storage, and opto-electronics [1]. The applicability and performance of engineered nanoparticles is largely determined by their surface chemistry, i.e. functional groups and ligands on the particle surface. However, documented standards to quantify functional groups and ligands currently do not exist. Such standards are required to support quality control of nanomaterial production and surface modification processes, and safe-by-design concepts and to meet regulatory requirements. Here, this issue is addressed by developing and standardizing quantitative Nuclear Magnetic Resonance (qNMR) methods for the characterization of surface functionalized nanoparticles which specifically address the determination of the amount and chemical composition of surface functionalities and coatings. This work is being developed under the EMP project 23NRM02 SMURFnano - Standardised measurements of surface functionalities on nanoparticles. qNMR competence of 7 qNMR laboratories involved in the project was first tested with a molecular model sample i.e. citrate, to be assessed in terms of purity. Citrate is often used as hydrophilic surface ligand for different nanoparticles. Then, the first nanoparticle samples, here a set of aminated SiO2 NPs [1] with a particle size of 100 nm and two amino group densities, prepared and characterized by BAM regarding size and surface charge as well as stability over 21 months with an optical assay and qNMR, were assessed in an international interlaboratory comparison (ILC) on qNMR. Thereby, the amount of surface amino groups introduced by grafting of the silica cores with different amounts of 3-aminopropyl)triethoxysilane (APTES) was quantified by each participant following a sample preparation protocol previously developed by BAM and NRC.The results of the ILC were then used to refine the protocol for sample preparation and to identify critical points for qNMR measurement and data analysis. This work will contribute to the development of a Preliminary Work Item (PWI) 19257 (ISO/TC 229) on surface functional groups and coatings on nano-objects. Also, it will lay the groundwork to perform ILCs on the quantification and determination of the amount of surface functional groups under the roof of VAMAS TWA2 (Surface Chemical Analysis) for different types of nanomaterials possessing industry-relevant surface functionalities using qNMR. These ILCs will be complemented by other techniques like X-Ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). T2 - BERM CY - Halifax, Canada DA - 01.06.2025 KW - Quality assurance KW - Nano KW - Particle KW - Synthesis KW - Advanced materials KW - Characterization KW - Electron microscopy KW - Silica KW - Surface KW - qNMR KW - Optical assay KW - Interlaboratory comparison KW - Metrology KW - Validation KW - Standardization PY - 2025 AN - OPUS4-63443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Quantifying the total and accessible amount of surface functionalities and ligands on nano-materials: Overview and recommended methods N2 - Engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely fabricated for industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, opto-electronics, and information storage. NP function, interaction with biological species, and environmental fate are largely determined by surface functionalities. This calls for reliable, reproducible, and standardized surface characterization methods, which are vital for quality control of NPs, and mandatory to meet increasing concerns regarding their safety. Validated and standardized workflows for surface analysis are also increasingly requested by industry, international standardization organizations, regulatory agencies, and policymakers. To establish comparable measurements of surface functionalities across different labs and ease instrument performance validation, reference test materials and reference materials of known surface chemistry as well as reference data are needed. In the following, different methods for determining surface functionalities on ligand-stabilized core and core/shell NPs include advanced techniques are presented and discussed regarding method-inherent advantages and limitations. Special emphasis is dedicated to traceable quantitative nuclear magnetic resonance (qNMR), X-ray electron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF-SIMS), and simpler optical and electrochemical methods. T2 - LNE Workshop CY - Paris, France DA - 04.11.2025 KW - Quality assurance KW - Fluorescence KW - Nano KW - Particle KW - Synthesis KW - Characterization KW - Advanced material KW - Surface KW - Standardization KW - Reference material KW - Functional group KW - Quantification KW - Coating KW - Automation KW - Potentiometry KW - Method KW - Validation KW - Optical assay KW - Fluram KW - Fluorescamine KW - qNMR KW - Comparison KW - ILC PY - 2025 AN - OPUS4-64726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Standardized Measurements of Surface - Functionalities on Nanoparticles N2 - Engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely fabricated for industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, optoelectronics, and information storage. NP function, interaction with biological species, and environmental fate are largely determined by surface functionalities. Reliable, reproducible, and standardized surface characterization methods are therefore vital for quality control of NPs, and mandatory to meet increasing concerns regarding their safety. Also, industry, international standardization organizations, regulatory agencies, and policymakers need validated and standardized measurement methods and reference materials. However, methodologies for determining NP surface properties, including the amount, chemical composition, and homogeneity of surface functionalities and coatings are largely non-standardized. Suitable methods for determining surface functionalities on ligand-stabilized core and core/shell NPs include advanced techniques such as traceable quantitative nuclear magnetic resonance (qNMR) as well as X-ray electron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF-SIMS), and simpler optical and electrochemical methods. The latter less costly methods are often used by SMEs, e.g., for quality control. To validate methods, establish measurement uncertainties, test reference materials, and produce reference data, international interlaboratory comparisons (ILC) on NP surface functionalization measurements are required and well characterized test and reference nanomaterials providing benchmark values.[1] These needs are addressed by the recently started European metrology project SMURFnano involving 12 partners from different National Metrology Institutes, designated institutes, and research institutes, two university groups as well as one large company and one SME producing NPs. This project as well as first results derived from the development of test and reference materials with a well characterized surface chemistry and ongoing interlaboratory comparisons will be presented. T2 - eMRS CY - Strasbourg, France DA - 27.05.2025 KW - Quality assurance KW - Fluorescence KW - Nano KW - Particle KW - Synthesis KW - Silica KW - Upconversion nanoparticles KW - Optical assay KW - qNMR KW - Surface analysis KW - Ligand KW - Quantification KW - Functional group KW - XPS KW - ToF-SIMS KW - Polymer particle KW - Surface modification KW - Potentiometry KW - Metrology KW - Method KW - Validation KW - ILC PY - 2025 AN - OPUS4-63339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Standardized Measurements of Surface Functionalities on Nanoparticles - F. Synthesis and characterization of functional nanocomposite materials N2 - Engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely and commonly fabricated for industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, opto-electronics, and information storage. NP function, their interaction with biological species, and also their environmental fate are largely determined by the surface functionalities of the particles. Reliable, reproducible, and standardized surface characterization methods are therefore vital for quality control of NPs, determination of their applicability, and mandatory to meet increasing concerns regarding their safety. In addition, industry as well as international standardization organizations, regulatory agencies, and policymakers need validated and standardized measurement methods and reference materials. However, methodologies for determining NP surface properties, including the amount, chemical composition, and homogeneity of surface functionalities and coatings are largely non-standardized up until now. Suitable methods for determining surface functionalities on ligand-stabilized core and core/shell NPs include advanced techniques such as traceable quantitative nuclear magnetic resonance (qNMR), as well as X-ray electron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF-SIMS), and simpler optical and electrochemical methods. The latter, typically less costly methods are often used by SMEs, e.g., for quality control. To validate methods, establish measurement uncertainties, test reference materials, and produce reference data, international interlaboratory comparisons (ILC) on NP surface functionalization measurements are required to provide well characterized test and reference nanomaterials including benchmark values.[1] These needs are addressed by the current European metrology project SMURFnano, involving 12 partners from different National Metrology Institutes, designated and research institutes, two university groups as well as one large company and one SME producing NPs. This project, as well as first results derived from the development of test and reference materials with a well characterized surface chemistry, and ongoing interlaboratory comparisons, will be presented. T2 - Shift 2025 CY - La Laguna, Tenerife DA - 13.10.2025 KW - Nano KW - Particle KW - Silica KW - Iron oxide KW - Lanthanide KW - Metrology KW - Quality assurance KW - Reference material KW - Surface chemistry KW - Size KW - Shape KW - Particle number concentration KW - Method KW - Optical assay KW - qNMR KW - Validation KW - Potentiometry KW - XPS KW - ILC KW - Standardization PY - 2025 AN - OPUS4-64370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Guitton-Spassky, Tiffany A1 - Schade, Boris A1 - Zoister, Christian A1 - Veronese, Eleonora A1 - Rosati, Marta A1 - Baldelli Bombelli, Francesca A1 - Cavallo, Gabriella A1 - Thünemann, Andreas A1 - Ghermezcheshme, Hassan A1 - Makki, Hesam A1 - Netz, Roland R. A1 - Ludwig, Kai A1 - Metrangolo, Pierangelo A1 - Singh, Abhishek Kumar A1 - Haag, Rainer T1 - Fluorinated Hexosome Carriers for Enhanced Solubility of Drugs N2 - Designing nanomaterials for drug encapsulation is a crucial, yet challenging, aspect for pharmaceutical development. An important step is synthesizing amphiphiles that form stable supramolecular systems for efficient drug loading. In the case of fluorinated drugs, these have superior properties and also a tendency toward reduced water solubility. For the first time, we report here fluorinated hexosome carriers made from nonionic dendritic amphiphiles, capable of encapsulating the fluorinated drug Leflunomide with high efficiency (62 ± 3%) and increasing its solubility by 12-fold. We synthesized amphiphiles with varying tail groups (fluorinated/alkylated), and their supramolecular self-assembly was investigated using cryogenic transmission electron microscopy and small-angle X-ray scattering. Furthermore, Leflunomide and its equivalent nonfluorinated counterpart were encapsulated within fluorinated and nonfluorinated assemblies. Self-assembly and encapsulation mechanisms were well supported by coarse-grained molecular simulations, yielding a fundamental understanding of the new systems. KW - PEFAS KW - Small-angle X-ray scattering KW - SAXS KW - Reference method PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-632002 DO - https://doi.org/10.1021/jacsau.5c00198 SN - 2691-3704 VL - 5 IS - 5 SP - 2223 EP - 2236 PB - American Chemical Society (ACS) CY - Washington, DC AN - OPUS4-63200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Qiang A1 - Heuchel, Matthias A1 - Thünemann, Andreas A1 - Machatscheck, Rainhard T1 - The role of diffusion in the hydrolytic degradation of poly(lactic-co-glycolic acid): A molecular perspective N2 - This research emphasizes the importance of internal surface erosion as a key factor in the hydrolytic degradation of PLGA (poly(D,L-lactic-co-glycolic acid)) providing an alternative view of the established surface and bulk erosion degradation modes. Using molecular dynamics (MD) simulations, this study reveals the role of water and oligomer diffusion during the degradation of PLGA and highlights the importance of water channels formed as the overall water content increases. We found that these continuous water channels play a crucial role in accelerating the transport of water and the release of degradation products from the polymer matrix, as the diffusion coefficients of water and small oligomers exhibit significant differences spanning 2 to 3 orders of magnitude between the water and polymer phases. Water follows a different diffusion mechanism than polymer fragments. The diffusion rate of the fragments up to a size of octamers was found to be size-dependent and reasonably well approximated by a 1/N behavior, in line with the Rouse model. KW - Small-angle X-ray scattering KW - SAXS KW - Nanostructure KW - PLGA PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-621250 DO - https://doi.org/10.1016/j.polymdegradstab.2024.111119 VL - 232 SP - 1 EP - 12 PB - Elsevier Ltd. AN - OPUS4-62125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lange, Alyna A1 - Holtzheimer, Lea A1 - Clarke, Coby A1 - Thünemann, Andreas A1 - Taubert, Andreas T1 - Complex Self-Organization in n-Alkylammonium Sulfobetaine Zwitterions with High Thermal Stabilities and High Expansion Coefficients N2 - Sulfobetaine zwitterions made from n-alkyl dimethylamines and butanesultone yield a series of n-alkylammonium sulfobetaine zwitterions with complex self-organization behavior. The compounds are thermally quite stable and the length of the alkyl chain directly affects all phase transition temperatures of the compounds: the longer the alkyl chain, the higher the transition temperature. All compounds exhibit lamellar order and the different phases are characterized by a lower temperature orthorhombic and a higher temperature hexagonal in-plane order. The phase transition from the orthorhombic to the hexagonal phase is always associated with an increase of the long period. The phase transition is also associated with a rather high thermal expansion coefficient. KW - SAXS KW - Small-angle X-ray scattering KW - Nanostructure PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-626276 DO - https://doi.org/10.1021/acs.langmuir.4c02892 SN - 1520-5827 VL - 41 SP - 4422 EP - 4434 PB - American Chemical Society (ACS) AN - OPUS4-62627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kieserling, Helena A1 - Sieg, Holger A1 - Heilscher, Jasmin A1 - Drusch, Stephan A1 - Braeuning, Albert A1 - Thünemann, Andreas A1 - Rohn, Sascha T1 - Towards Understanding Particle-Protein Complexes: Physicochemical, Structural, and Cellbiological Characterization of β-Lactoglobulin Interactions with Silica, Polylactic Acid, and Polyethylene Terephthalate Nanoparticles N2 - Nanoplastic particles and their additives are increasingly present in the food chain, interacting with biomacromolecules with not yet known consequences. A protein corona forms around the particles in these usually complex matrices, primarily with a first contact at surface-active proteins. However, systematic studies on the interactions between the particles and proteins –especially regarding protein affinity and structural changes due to surface properties like polarity – are limited. It is also unclear whether the protein corona can "mask" the particles, mimic protein properties, and induce cytotoxic effects when internalized by mammalian cells. This study aimed at investigating the physicochemical properties of model particle-protein complexes, the structural changes of adsorbed proteins, and their effects on Caco-2 cells. Whey protein β-lactoglobulin (β-Lg) was used as a well-characterized model protein and studied in a mixture with nanoparticles of varying polarity, specifically silica, polylactic acid (PLA), and polyethylene terephthalate (PET). The physicochemical analyses included measurements of the hydrodynamic diameter and the zeta potential, while the protein conformational changes were analyzed using Fourier-transform-infrared spectroscopy (FTIR) and intrinsic fluorescence. Cellular uptake in Caco-2 cells was assessed through flow cytometry, cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) assay, and cellular impedance was analyzed with xCELLigence® technology. The results indicated that β-Lg had the highest affinity for hydrophilic silica particles, forming silica-β-Lg complexes and large aggregates through electrostatic interactions. The affinity decreased for PLA and was lowest for hydrophobic PET, which formed smaller complexes. Adsorption onto silica caused partial unfolding and refolding of β-Lg. The silica-β-Lg complexes were internalized by Caco-2 cells, impairing cell proliferation. In contrast, PLA- and PET-protein complexes were not internalized, though PLA complexes slightly reduced cell viability. This study enhances our understanding of protein adsorption on nanoparticles and its potential biological effects. KW - Nanoplastics KW - Microplastics KW - Reference materials KW - Scattering KW - DLS PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-630093 DO - https://doi.org/10.1016/j.colsurfb.2025.114702 SN - 1873-4367 VL - 253 SP - 1 EP - 12 PB - Elsevier BV CY - Amsterdam AN - OPUS4-63009 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Giannakopoulos, Antonios E. A1 - Zisis, Athanasios A1 - Zervaki, Anna D. A1 - Dimopoulos, Christos D. A1 - Platypodis, Efstathios A1 - Eberwein, Robert T1 - Effective elastic moduli and failure mechanisms of a random assembly of thin walled glass microbubbles N2 - In this work a methodology is presented to estimate the elastic properties and failure mechanisms of an assembly of random, brittle microbubbles. The approach is based on the mechanics of frictionless micro-contact between hollow spherical shells by employing relations from classical shell theory and verified by two dimensional axisymmetric Finite Elements. The estimated values are in agreement with available experimental values. Moreover, a granular type analytical homogenization model provides an isotropic elastic constitutive law to be used for the macroscopic deformation of an assembly of glass micro-bubbles when it is compressed by external loads. In addition, approximate estimates are also proposed for two important micro-failure mechanisms of such assemblies that relate either to the splitting or to the buckling of a brittle spherical shell, prior its complete crushing. The results are novel and are expected to enhance the application of glass microbubbles directly in acute thermal insulation problems such as liquid hydrogen storage. KW - LH2 KW - Cryogenic Vessels KW - Insulation PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634354 DO - https://doi.org/10.1016/j.ijsolstr.2025.113528 SN - 0020-7683 VL - 320 SP - 1 EP - 11 PB - Elsevier BV CY - Amsterdam AN - OPUS4-63435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shasmal, Nilanjana T1 - Effects of Direct femtosecond laser writing on chloroborosilicate glasses doped with Eu3+/Eu2+ and CdS quantum dots N2 - Femtosecond (fs) direct laser writing (DLW) is a promising technique for developing nano-inhomogeneous materials with advanced optical properties and for fabricating novel photonic devices such as integrated waveguides, ultrafast optical switches, phase plates, and 3D optical memory. In this study, DLW was applied to chloroborosilicate glasses that were singly and co-doped with Eu and CdS quantum dots (QDs). The glasses were laser-treated within a very narrow range of experimental conditions, resulting in laser-inscribed sites exhibiting enhanced emission, similar to the glass-ceramics crystallized from the as-prepared glass. In the regions crystalized by DLW a significant reduction of Eu3+ to Eu2+ was verified by photoluminescence spectroscopy. However, the characteristics of the emission bands of Eu2+ changed markedly in the laser-treated sites as compared to the emission spectra of the same glass crystallized by heat treatment. A considerable redshift and splitting of the emission band were observed, attributed to changes in the surrounding environment of the rare earth (RE) ions which was, in turn, attributed to an alteration in the coordination number of Ba2 + and/or Eu2+ as a result of the high-power laser treatment. Although there was an issue with homogeneity of the glass in the micro-level, which restricts some of the aspects of the DLW, these findings suggest the potential for structural modifications through laser treatment, which could be harnessed to create new functionalities for advanced optical applications. T2 - ICG 2025 (27th International Congress on Glass) CY - Kolkata, India DA - 20.01.2025 KW - Femtosecond direct laser writing KW - DLW KW - CdS quantum dots KW - Eu/CdS co-doped glass PY - 2025 AN - OPUS4-65285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ruehle, Bastian T1 - A Self-Driving Lab for Nano and Advanced Materials Synthesis N2 - Nano- and advanced materials have been recognized as a key enabling technology of the 21st century, due to their high potential of driving innovations in new clean energy technologies, sustainable manufacturing by substitution of critical raw materials and replacement of hazardous substances, breakthroughs in energy conversion and storage, improvement of the environmental performance of products and processes, and facilitation of circularity. Consequently, new tools that enhance the development and optimization cycle of nano- and advanced materials are crucial. In this contribution, we present our Self-Driving Lab (SDL) for Nano and Advanced Materials [1], that integrates robotics for batched autonomous synthesis – from molecular precursors to fully purified nanomaterials – with automated characterization and data analysis, for a complete and reliable nanomaterial synthesis workflow. By fully automating the processing steps for seven different materials from five representative, completely different classes of nano- and advanced materials (metal, metal oxide, silica, metal organic framework, and core–shell particles) that follow different reaction mechanisms, we demonstrate the great versatility and flexibility of the platform. The system also exhibits high modularity and adaptability in terms of reaction scales and incorporates in-line characterization measurement of hydrodynamic diameter, zeta potential, and optical properties (absorbance, fluorescence). We discuss the excellent reproducibility of the various materials synthesized on the platform in terms of particle size and size distribution, and the adaptability and modularity that allows access to a diverse set of nanomaterial classes. We also present several key aspects of the central backend that orchestrates the (parallelized) syntheses workflows. One key feature is the resource management or “traffic control” for scheduling and executing parallel reactions in a multi-threaded environment. Another is the interface with data analysis algorithms from in-line, at-line, and off-line measurements. Here, we will give examples of how automatic image segmentation of electron microscopy images with the help of AI [2] can be used for reducing the “data analysis bottleneck” from an off-line measurement. We will also discuss various machine learning (ML) algorithms that are currently implemented in the backend and can be used for ML-guided, closed-loop material optimization in our SDL. Lastly, we will show our recent efforts [3] in making the workflow generation on SDLs more user-friendly by using large language models to generate executable workflows automatically from synthesis procedures given in natural language and user-friendly graphical user interfaces based on node editors that also allow for knowledge graph extraction from the workflows. In this context, we are currently also working on a common description or ontology for representing the process steps and parameters of the workflows, which will greatly facilitate the semantic description and interoperability of workflows between different SDL hardware and software platforms. These features underscore the SDL’s potential as a transformative tool for advancing and accelerating the development of nano- and advanced materials, offering solutions for a sustainable and environmentally responsible future. T2 - MRS Fall Meeting 2025 CY - Boston, MA, USA DA - 30.11.2025 KW - Self-Driving Labs KW - Materials Acceleration Platforms KW - Advanced Materials KW - Nanomaterials KW - Automation PY - 2025 AN - OPUS4-65129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ankli, P. P. A1 - Abdelwahab, A. A. A1 - Logachov, A. A1 - Bugiel, R. A1 - Drobne, D. A1 - Novak, S. A1 - Kranjc, E. A1 - Saje, S. A1 - Pellegrino, F. A1 - Alladio, E. A1 - Sordello, F. A1 - Corrao, E. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg A1 - Mrkwitschka, Paul A1 - Madbouly, Loay Akmaal A1 - Akdemir, Yücel A1 - Gulumian, M. A1 - Wepener, V. A1 - Andraos, C. A1 - Boodhia, K. A1 - Jones, E. A1 - Doolin, A. A1 - Leuchtenberg, K. A1 - Valsami Jones, E. A1 - Rocca, C. A1 - Ibrahim, B. A1 - Singh, D. A1 - Chakraborty, S. A1 - Jurkschat, K. A1 - Johnston, C. A1 - Van Der Zande, M. A1 - Fernandez, D. A1 - Queipo, P. A1 - Clifford, C. A1 - Hardy, B. T1 - Knowledge Infrastructure supporting image-based characterisation of 2D graphene materials N2 - As part of the European Horizon ACCORDs project, advanced methods are being developed for the image-based characterisation of 2D nanomaterials. Given the complexity of this task, robust nd wellorganised data management is critical to ensuring high-quality outcomes. To support this, we have established a knowledge infrastructure that serves as the central repository for protocols, images and experimental data which are stored in a standardised, harmonised manner and in accordance with the FAIR principles – Findable, Accessible, Interoperable and Reusable and open science. This machine-readable framework enables the systematic and computationally automated correlation of image features with experimental descriptors, facilitating accurate material characterisation and transparent reporting which is all integrated in the ACCORDs KI. KW - Graphene-related 2D materials (GR2M) KW - 2D materials KW - Knowledge infrastructure KW - Characterisation PY - 2025 DO - https://doi.org/10.1016/j.toxlet.2025.07.660 SN - 0378-4274 VL - 411 SP - S281 EP - S282 PB - Elsevier B.V. AN - OPUS4-65061 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ciornii, Dmitri A1 - Hodoroaba, Vasile-Dan A1 - Wachtendorf, Volker A1 - Fengler, Petra A1 - Altmann, Korinna T1 - Interlaboratory Comparison Reveals State of the Art in Microplastic Detection and Quantification Methods N2 - In this study, we investigate the current accuracy of widely used microplastic (MP) detection methods through an interlaboratory comparison (ILC) involving ISO-approved techniques. The ILC was organized under the prestandardization platform of VAMAS (Versailles Project on Advanced Materials and Standards) and gathered a large number (84) of analytical laboratories across the globe. The aim of this ILC was (i) to test and to compare two thermo-analytical and three spectroscopical methods with respect to their suitability to identify and quantify microplastics in a water-soluble matrix and (ii) to test the suitability of the microplastic test materials to be used in ILCs. Two reference materials (RMs), polyethylene terephthalate (PET) and polyethylene (PE) as powders with rough size ranges between 10 and 200 μm, were used to press tablets for the ILC. The following parameters had to be assessed: polymer identity, mass fraction, particle number concentration, and particle size distribution. The reproducibility, SR, in thermo-analytical experiments ranged from 62%−117% (for PE) and 45.9%−62% (for PET). In spectroscopical experiments, the SR varied between 121% and 129% (for PE) and 64% and 70% (for PET). Tablet dissolution turned out to be a very challenging step and should be optimized. Based on the knowledge gained, development of guidance for improved tablet filtration is in progress. Further, in this study, we discuss the main sources of uncertainties that need to be considered and minimized for preparation of standardized protocols for future measurements with higher accuracy. KW - Microplastics KW - Interlaboratory comparison KW - PlasticsFatE KW - PET KW - PE KW - Reference materials KW - VAMAS KW - Thermo-analytical methods KW - Spectroscopical methods PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-630462 DO - https://doi.org/10.1021/acs.analchem.4c05403 SN - 1520-6882 VL - 97 SP - 8719 EP - 8728 PB - ACS Publications AN - OPUS4-63046 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Reliable physico–chemical characterisation of graphene-related and other 2D materials: present and future N2 - In the path of commercialisation of graphene-related and other 2D materials the consolidation has begun. In this phase, it is important to build trust between the individual partners in the product value chain. This requires trustworthy statements based on reliable and reproducible material characterisation. The first steps have been taken to measure graphene and other related 2D materials (GR2Ms) under well-defined conditions. Measurands and protocols for key methods were made available for this purpose. But there are still some challenges to overcome such as (i) reference materials, (ii) reference data, (iii) reproducibility throughout the workflow, (iv) credible structure-activity relationships, bringing the standards to (v) the factory floor and to (vi) real-word products. In addition, 2D materials beyond graphene should also be considered exploiting the knowledge gained from the characterisation of GR2M. KW - 2D Materials KW - Commercialisation KW - Standardisation KW - Trust PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-638122 DO - https://doi.org/10.1088/2053-1583/aded9d SN - 2053-1583 VL - 12 IS - 4 SP - 1 EP - 8 PB - IOP Publishing AN - OPUS4-63812 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wolf, M. E. A1 - Vickery, W. M. A1 - Swift-Ramirez, W. A1 - Arnold, A. M. A1 - Orlando, J. D. A1 - Schmidt, S. J. A1 - Liu, Y. A1 - Er, Jasmin A1 - Schusterbauer, Robert A1 - Ahmed, R. A1 - Nickl, Philip A1 - Radnik, Jörg A1 - Donskyi, Ievgen A1 - Sydlik, S. A. T1 - The Mitsunobu reaction for the gentle covalent attachment of biomolecules to graphene oxide N2 - Graphene oxide (GO) has emerged as a promising biomaterial as it is easily and cheaply synthesized, strong, cytocompatible, osteoinductive, and has a well-characterized aqueous degradation pathway. It is also a great substrate for functionalization with biomolecules such as proteins, peptides, and small molecules that can enhance or add bioactivity. Covalent chemical linkages as opposed to typical noncovalent association methods are preferable so that the biomolecules do not quickly diffuse away or face replacement by other proteins, which is critical in long time scale applications like bone regeneration. However, covalent chemistry tends to carry a drawback of harsh reaction conditions that can damage the structure, conformation, and therefore function of a delicate biomolecule like a protein. Here, the Mitsunobu reaction is introduced as a novel method of covalently attaching proteins to graphene oxide. It features gentle reaction conditions and has the added benefit of utilizing the plentiful basal plane alcohol functionalities on graphene oxide, allowing for high yield protein functionalization. The amino acid Glycine (G), the protein bovine serum albumin (BSA), and the small molecule SVAK-12 are utilized to create the three Mitsunobu Graphene (MG) materials G-MG, BSA-MG, and SVAK-MG that demonstrate the wide applicability of this functionalization method. KW - Graphene oxide KW - Mitsunobu reaction KW - Covalent attachment KW - Bovine serum albumin KW - Macrophage polarization KW - Osteogenesis PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-630483 DO - https://doi.org/10.1016/j.carbon.2025.120221 VL - 238 SP - 1 EP - 15 PB - Elsevier Ltd. AN - OPUS4-63048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chemello, Giovanni A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - XPS–SEM/EDS Tandem Analysis for the Elemental Composition of Functionalized Graphene Nanoplatelets N2 - Over the past decade, energy-dispersive X-ray spectrometry (EDS) with scanning electron microscopy (SEM) has advanced to enable the accurate analysis of light elements such as C, N, or O. For this reason, EDS is becoming increasingly interesting as an analytical method for the elemental analysis of functionalized graphene and could be an attractive alternative to Xray photoelectron spectroscopy (XPS), which is considered the most important method for elemental analysis. In this study, comparative XPS and EDS investigations under different excitation conditions are carried out on commercially available powders containing graphene particles with different morphologies. The slightly different XPS/HAXPES and EDS results can be explained by the different information depths of the methods and the functionalization of the particle surfaces. For the material with smaller graphene particles and higher O/C ratios, all methods reported a lower O/C ratio in pellets compared with the unpressed powder samples. This clearly shows that sample preparation has a significant influence on the quantification results, especially for such a type of morphology. Overall, the study demonstrates that EDS is a reliable and fast alternative to XPS for the elemental quantification of functionalized graphene particles, provided that differences in the information depth are taken into account. Particle morphology can be examined in parallel with quantitative element analysis, since EDS spectrometers are typically coupled with SEM, which are available in a huge number of analytical laboratories. KW - Graphene oxide KW - SEM/EDS KW - XPS/HAXPES KW - Elemental composition KW - Functionalization PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647294 DO - https://doi.org/10.1021/acsomega.5c07830 SN - 2470-1343 SP - 1 EP - 7 PB - American Chemical Society (ACS) AN - OPUS4-64729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mrkwitschka, Paul A1 - Sahre, Mario A1 - Zurutuza, Amaia A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Standardized Chemical Composition Analysis of Graphene Oxide Flakes with SEM/EDS and XPS Works Reliably N2 - Suspensions of graphene-related 2D materials (GR2M) are broadly used for further applications like printable electronics. The reliable quantification of the composition of graphene-related 2D materials as liquid suspensions is still a challenging task, which can hinder the commercialisation of the products. Specific parameters to be measured are defined, e.g. the oxygen-to-carbon (O/C) concentration ratio, the trace metal impurities, or the functional groups present, but reference protocols are still missing. One of the central methods for the quantification is X-ray photoelectron spectroscopy (XPS) as a rather expensive method. Therefore, the development of cheaper alternatives is highly desired. One attractive alternative of XPS is energy-dispersive spectroscopy (EDS) which is usually coupled with scanning electron microscopy (SEM). This combination is one of the most widely used methods in analytical laboratories. In this contribution the results of a systematic study on the capability of SEM/EDS to reliably quantify the O/C ratio in a well-defined and well-characterized graphene oxide material are presented. The robustness of the SEM/EDS results obtained at various measurement conditions (various excitation energies) is tested by comparing the results to the established XPS analysis, which has been carried out on the same samples. It is demonstrated that for samples prepared by drop-casting on a substrate, both surface-sensitive XPS analysis and bulk-characterising EDS result in very similar elemental composition of oxygen and carbon for thick spots. Further, the effect of untight deposited material enabling co-analysis of the (silicon) substrate, is evaluated for both methods, XPS and EDS. The last results clearly show the influence of the substrate on the analysis of the results and stressed out the importance of the sample preparation. KW - EDS KW - Light elements KW - XPS/HAXPES KW - Graphene oxide KW - Quantification KW - Standardisation PY - 2025 DO - https://doi.org/10.1093/mam/ozaf048.267 VL - 31 IS - 7 SP - 531 EP - 532 PB - Oxford Aacademic AN - OPUS4-63792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Reusable data: putting the “Arr” in FAIR N2 - This talk demonstrates how to apply FAIR principles to data from actual scientific investigations. The reasons and practical benefits of FAIR data are highlighted. Several levels of reusability are discussed, i.e. the “trust me”-level, the “I’ll not need to repeat my measurement”-level, and the “you’ll not need to repeat my measurements”-level. Practical FAIR datafiles are explored and their information content highlighted. T2 - Reusability of Scientific Data for Matter CY - Online meeting DA - 13.11.2025 KW - Methodology KW - Metadata KW - FAIR KW - Reusability KW - X-ray scattering KW - Traceability PY - 2025 AN - OPUS4-65309 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul T1 - Standardized Chemical Characterisation of Graphene Oxide Flakes by X-Ray Photoelectron Spectroscopy and Energy-Dispersive X-Ray Spectroscopy N2 - Reliable quantification of the chemical composition of graphene-related 2D materials as powders and liquid suspensions is a challenging task. Analytical methods such as XPS, ICP-MS, TGA and FTIR are recommended to be used in ongoing projects at standardisation bodies. The specific parameters to be measured are also defined, e.g. the oxygen-to-carbon (O/C) concentration ratio, the trace metal impurities, or the functional groups present [1]. In this contribution, for the first time, the results of a systematic study on the capability of SEM/EDS to reliably quantify the O/C ratio in a well-defined and well-characterized graphene oxide material [2] are presented. It is expected that the quantitative EDS analysis of light elements emitting characteristic X-ray lines below 1 keV to be provided with significantly larger measurement uncertainties than the analysis of elements with an atomic number of 11 (Na) or above [3]. The robustness of the SEM/EDS results obtained at various measurement conditions (various excitation energies) is tested by comparing the results to the established XPS analysis [4], which has been carried out on the same samples. A crucial step in sample preparation from liquid suspension with graphene oxides flakes onto a substrate for analysis with both XPS and EDS. It is demonstrated that if a closed and enough thick drop-cast deposited spot is succeeded to be deposited on a substrate, both surface-sensitive XPS analysis and bulk-characterising EDS result in very similar elemental composition of oxygen and carbon. Hence, theoretical, expected O/C atomic ratio values for pure graphene oxide of ~0.5 [1] are achieved (with both methods), see Figure 1. Further, the effect of untight deposited material enabling co-analysis of the (silicon) substrate, is evaluated for both methods, XPS and EDS. To note that all the EDS results in this study have been quantified standardless. The results of this study demonstrate the reliability of the reference measurement protocol for SEM/EDS to be introduced into ISO/DTS 23359, including the dedicated sample preparation, particularly for the cases when the concentration of the GO flakes in stock liquid suspension is low. Further, also the consideration of this GO material as one of the very few available as a commercial material on the market as the very first GO reference material with regard to its morphology as well as chemical composition. Both the standard measurement procedure and the candidate reference material will immensely contribute to characterise reliably the chemical composition of graphene-related 2D materials with SEM/EDS as one of the most widely used methods in analytical laboratories T2 - EMAS 2025 Workshop CY - Mataró, Spain DA - 11.05.2025 KW - Advanced Materials KW - Graphene KW - Chemical Quantification KW - EDX KW - XPS PY - 2025 AN - OPUS4-64082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul T1 - Wire-print procedure for accurate morphological and Chemical characterization of graphene-related 2D-materials N2 - One of the biggest challenges in the physico-chemical characterization of particulate nanomaterials pertains to the sample preparation. Particularly the imaging methods require suitable deposition of the sample on a substrate. ‘Suitable’ sample preparation of a particulate (nano)material on a substrate means to make visible the constituent particles to a microscopy technique able to analyze the nanoscale (AFM, SEM, TEM, etc). The particles deposited on a substrate either directly as a powder or from liquid suspension must be ideally isolated (de-agglomerated), without particle losses, homogeneously distributed in a high density of particles per substrate area for efficient analysis, with good statistics of the counted particles. Various sample preparation approaches to meet the latter requirements have been reported in the literature, e.g. electrospray, substrate surface treatment, embedding the particulate material and polishing the cross-section, or addition of ligands to the suspended nanostructures to enhance their hydrophilicity [1], [2], [3], [4]. In this study we have systematically tested the efficacy of a new deposition procedure for graphene-related 2D materials (GR2M’s) from liquid suspension onto a substrate for quantitative analysis of their size and shape distribution with electron microscopy. The technique is an extension of the conventional drop-casting method, and we have designated it “wire-print” deposition. It consists of two steps, first one being usual drop-casting on a copper substrate and second one involving a thin copper wire with a sub-mm diameter being dipped into the deposited droplet and retracted with a corresponding half-spherical droplet attached on its tip and final deposition of this entire nL-amount of suspension onto e.g. a silicon wafer for microscopical, detailed analysis. The result of 11 series of such a wire-print deposition for a graphene-based ink is shown in Figure 1 (labeled A-L), where various conditions (treatment of the starting suspension) have been experimented with a repetition of up to 10 times per condition, all together 86 spots on a silicon wafer of 10 mm x 10 mm. The result of one series of 8 repeated wire-print depositions is shown in Figure 2, where the deposited spots are visualized with SEM. Note the weak presence of coffee-rings, irregular spot shape, and presence of agglomerates. The results for the measured flake size distribution expressed as ECD (equivalent circular diameter) are represented in Fig. 3 for all the eight depositions. Both the mean value of the 8 ECD distributions and the total number of flakes deposited in each spot show a variance in the range of 17% and 22%, respectively, see Table 1. In the context of accurate analysis of such challenging complex materials these numbers can be considered as excellent and demonstrate the high benefit of the wire-print deposition for accurate morphological measurements on GR2M’s. T2 - Microscopy and Microanalysis 2025 CY - Salt Lake City, UTAH, USA DA - 27.07.2025 KW - Sample preparation KW - Graphene KW - Electron Microscopy KW - Morphology PY - 2025 AN - OPUS4-64083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Waqfi, R. A. A1 - Khan, C. J. A1 - Irving, O. J. A1 - Matthews, Lauren A1 - Albrecht, T. T1 - Crowding Effects during DNA Translocation in Nanopipettes N2 - Quartz nanopipettes are an important emerging class of electric single-molecule sensors for DNA, proteins, their complexes, as well as other biomolecular targets. However, in comparison to other resistive pulse sensors, nanopipettes constitute a highly asymmetric environment and the transport of ions and biopolymers can become strongly directiondependent. For double-stranded DNA, this can include the characteristic translocation time and tertiary structure, but as we show here, nanoconfinement can also unlock capabilities for biophysical and bioanalytical studies at the single-molecule level. To this end, we show how the accumulation of DNA inside the nanochannel leads to crowding effects, and in some cases reversible blocking of DNA entry, and provide a detailed analysis based on a range of different DNA samples and experimental conditions. Moreover, using biotin-functionalized DNA and streptavidinmodified gold nanoparticles as target, we demonstrate in a proof-of-concept study how the crowding effect, and the resulting increased residence time in nanochannel, can be exploited by first injecting the DNA into the nanochannel, followed by incubation with the nanoparticle target and analysis of the complex by reverse translocation. We thereby integrate elements of sample processing and detection into the nanopipette, as an important conceptual advance, and make a case for the wider applicability of this device concept. KW - DNA translocation KW - Transport KW - Resistive-pulse sensing KW - Nanopores KW - Nanopipettes KW - Crowding KW - Confinement PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-630448 DO - https://doi.org/10.1021/acsnano.5c01529 SN - 1936-086X VL - 19 IS - 17 SP - 1 EP - 9 PB - ACS Publications AN - OPUS4-63044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pellegrino, F. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Unveiling Order in Graphene Oxide Synthesis Through A Design of Experiment and Chemometric Strategy Based on Tour’s Method N2 - Graphene oxide (GO), a derivative of graphene containing oxygen functional groups, shows significant potential for a wide range of applications due to its unique electrical, mechanical, and chemical properties. Traditional synthesis methods, such as Tour's method, often rely on trial-and-error, leading to variations in product quality and yield. To address these challenges, we applied Design of Experiments (DoE) to systematically investigate the effects of key synthesis parameters, including reaction temperature, reaction time, and oxidant concentration. We identified the most significant factors influencing GO characteristics using a Plackett-Burman design and chemometric analysis. Our results highlight that the oxidation level is the most critical factor, impacting outcomes observed through various characterization techniques, such as UV-Vis spectroscopy and X-Ray Diffraction. Principal Component Analysis (PCA) and Multiple Linear Regression (MLR) provided insights into the synthetic parameters most strongly affecting material properties. While some findings aligned with expectations, others were counterintuitive. For instance, oxidation temperature had a minimal effect on the final material characteristics and may not need to be prioritized in the synthesis process. On the other hand, stirring was found to enhance the homogeneity of the material and promote more uniform oxidation. This study demonstrates the effectiveness of DoE in the controlled production of graphene oxide, offering a reliable framework for manufacturing high-quality GO tailored to specific applications. By minimizing time and resource consumption, this approach is increasingly relevant in the context of materials science, which demands higher quality, safety and sustainability standards. T2 - Joint Regulatory Risk Assessors Summit – Advancing Safety & Sustainability Assessments of Advanced Materials CY - Paris, France DA - 19.06.2025 KW - Graphene oxide KW - Chemometry KW - UV-Vis KW - XRD KW - XPS KW - EDX PY - 2025 UR - https://macrame-project.eu/macrame-meetings-workshops/jointrras/#Agenda AN - OPUS4-63676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Xing, Na A1 - Er, Jasmin A1 - Vidal, Ricardo M. A1 - Khadka, Sandhya A1 - Schusterbauer, Robert A1 - Rosentreter, Maik A1 - Etouki, Ranen A1 - Ahmed, Rameez A1 - Page, Taylor A1 - Nickl, Philip A1 - Bawadkji, Obida A1 - Wiesner, Anja A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Ludwig, Kai A1 - Trimpert, Jakob A1 - Donskyi, Ievgen T1 - Scalable covalently functionalized black phosphorus hybrids for broadspectrum virucidal activity N2 - At the onset of viral outbreaks, broad-spectrum antiviral materials are crucial before specific therapeutics become available. We report scalable, biodegradable black phosphorus (BP) hybrids that provide mutation-resilient virucidal protection. BP sheets, produced via an optimized mechanochemical process, are covalently functionalized with 2-azido-4,6-dichloro- 1,3,5-triazine to form P=N bonds. Fucoidan, a sulfated polysaccharide with intrinsic antiviral activity, and hydrophobic chains are then incorporated to achieve irreversible viral deactivation. The material exhibits strong antiviral inhibition and complete virucidal activity against multiple viruses, including recent severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants. It maintains high biocompatibility, remains effective against viral mutations, and is shelf stable for at least five month. The combination of biodegradability, scalable synthesis, and synergistic antiviral and virucidal mechanisms establishes BP-conjugates as a new class of highly efficient antivirals. They offer a broad spectrum antiviral solutions that could bridge the gap between antiviral medicines and general antiseptics. KW - Black phosphorus KW - Antiviral materials KW - Functionalization KW - Biodegradability KW - Sheets PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652941 DO - https://doi.org/10.48550/arXiv.2510.12854 SN - 2331-8422 SP - 1 EP - 22 PB - Cornell University CY - Ithaca, NY AN - OPUS4-65294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - The role of Critical Raw Materials in Advanced Materials for the Energy Transition N2 - The energy transition needs advanced materials, especially for batteries, solar cells, and fuel cells. Therefore, critical raw materials are necessary. In this presentation the use of critcal raw materials and strategies for the optimisation of their use are discussed. T2 - Critical Raw Material Workshop during VAMAS Annual Meeting CY - Teddington, United Kingdom DA - 17.09.2025 KW - Advanced solar cells KW - Iridium oxide KW - Aerogels KW - Advanced carbon materials PY - 2025 AN - OPUS4-64290 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mrkwitschka, Paul A1 - Mühlbauer, Michaela A1 - Rossi, Andrea A1 - Pellegrino, Francesco A1 - Zurutuza, Amaia A1 - Radnik, Jörg A1 - Meier, Florian A1 - Hodoroaba, Vasile-Dan T1 - Morphological Analysis of Graphene Oxide by Scanning Electron Microscopy and Correlative Field-flow Fractionation Coupled with Multi-angle Light Scattering N2 - In this paper graphene related 2D materials (GR2M) arre investigated by centrifugal field flow fractioning (CF3) and SEM. Three materials were selected as case studies (CS): graphene „HD-G (CS I), graphene oxide UniTo“ (CS II), and graphene oxide „Graphenea“ (CS III). For CS I particles were evaluated as constituent particles in agglomerates, for the other two materials only isolated (non aggregated/agglomerated) flakes were considered for determination of the area equivalent circular diameter (ECD). Size analysis of all three materials was carried out by CF3 coupled with MALS (Multi-Angle Light Scattering). For evaluation, it was found that the data obtained was best suited to a disc model. Results are in good agreement when compared to the sizes obtained before CF3 analysis. CS II material is too heterogenous to accurately determine flake size by imaging. CF3 coupled with MALS enables to assess fractions within the highly heterogenous material of CS II. Imaging of the material in CS III after CF3 measurement indicates that the procedure is non-destructive. This could not be verified for the CS‘s I & II As a next step we plan to analyse the fractionated samples by imaging them within a SEM wet-cell. KW - 2D Materials KW - SEM KW - Centrifugal field flow fractionation (CF3) KW - Imaging KW - Size distribution PY - 2025 DO - https://doi.org/10.1093/mam/ozaf048.222 VL - 31 IS - 7 SP - 442 EP - 443 PB - Oxford Academic AN - OPUS4-63804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Methodologies implemented to measure key properties of graphene and other 2D materials N2 - The key properties and suitable measurement methods for the characterization of graphene-related 2D materials are presented. A case study will be discussed about the chemical characterisation of functionalised graphene used in inks along the production chain. T2 - European-African Graphene Workshop CY - Parys, South Africa DA - 26.11.2025 KW - X-ray photoelectron spectroscoyp KW - Raman spectroscopy KW - Defects KW - Surface Chemistry PY - 2025 AN - OPUS4-64959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Liaison Report ISO/TC 229 Nanotechnology for ISO/TC 202 Microbeam Analysis and vice-versa N2 - The liaison between the ISO technical committees TC 229 Nanotechnologies and TC 202 Microbeam analysis is described in detail with highlight on the projects under development and published since 2024 and which involve input /knowledge from ISO/TC 202. T2 - 32nd Plenary Meeting of ISO/TC 202 Microbeam Analysis CY - London, United Kingdom DA - 28.10.2025 KW - Nanotechnology KW - Microabeam analysis KW - Standardisation KW - ISO PY - 2025 AN - OPUS4-64551 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Energy-Dispersive X-Ray Spectrometry (EDS) on GR2Ms for Routine/Standardized Elemental Analysis N2 - The elemental analysis of solid matter by means of the Energy-Dispersive X-Ray Spectrometry (EDS) is meanwhile posible as a quick (seconds!) and more and more accurate analysis via standardsless (instantaneous) quantification. The sensitivity & quantification accuracy for light elements (C, O,..) has significantly increased in the recent years. The availability via table-top SEMs with incorporated EDS is also enhanced. Further, the EDS analysis at an SEM is well-standardized, see ISO/TC 202 Microbeam Analysis & VAMAS/ TWA 37 Quantitative Microstructural Analysis in good liaisonships with ISO/TC 229 Nanotechnologies. It is demostrated that key parameters such as oxygen-to-carbon atomic-% ratio and impurities can be realibly measured, with XPS as a reference method. Various EDS spectrometers and analysis conditions are tested and the validity of the EDS quantification of an ionic liquid of well-defined chemical composition is demonstrated. Next steps are: launch of a corresponding VAMAS interlaboratory comparison and discussions within ISO/TC 202 Microbeam Analysis. T2 - 32nd Plenary Meeting of ISO/TC 202 Microbeam Analysis CY - London, United Kingdom DA - 28.10.2025 KW - GR2M KW - EDS KW - Quantification KW - XPS KW - Light elements KW - 2D materials PY - 2025 AN - OPUS4-64553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Methodologies implemented to measure key properties of graphene and other 2D materials - EDX N2 - The elemental analysis of solid matter by means of the Energy-Dispersive X-Ray Spectrometry (EDS) is meanwhile posible as a quick (seconds!) and more and more accurate analysis via standardsless (instantaneous) quantification. The sensitivity & quantification accuracy for light elements (C, O,..) has significantly increased in the recent years. The availability via table-top SEMs with incorporated EDS is also enhanced. It is demostrated that key parameters such as oxygen-to-carbon atomic-% ratio and impurities can be realibly measured, with XPS as a reference method. Various EDS spectrometers and analysis conditions are tested and the validity of the EDS quantification of an ionic liquid of well-defined chemical composition is demonstrated. T2 - Advanced Materials Graphene: The implementation of SbD and SSbD CY - Parys, South Africa DA - 26.11.2025 KW - Light elements KW - EDS KW - Quantification KW - Oxygen-to-carbon ratio KW - XPS KW - Graphene-realted 2D materials PY - 2025 AN - OPUS4-64943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Energy Dispersive X Ray Spectrometry (EDS) on GR2Ms for Routine/Standardized Elemental Analysis N2 - The elemental analysis of solid matter by means of the Energy-Dispersive X-Ray Spectrometry (EDS) is meanwhile posible as a quick (seconds!) and more and more accurate analysis via standardsless (instantaneous) quantification. The sensitivity & quantification accuracy for light elements (C, O,..) has significantly increased in the recent years. The availability via table-top SEMs with incorporated EDS is also enhanced. Further, the EDS analysis at an SEM is well-standardized, see ISO/TC 202 Microbeam Analysis & VAMAS/ TWA 37 Quantitative Microstructural Analysis in good liaisonships with ISO/TC 229 Nanotechnologies. It is demostrated that key parameters such as oxygen-to-carbon atomic-% ratio and impurities can be realibly measured, with XPS as a reference method. Various EDS spectrometers and analysis conditions are tested and the validity of the EDS quantification of an ionic liquid of well-defined chemical composition is demonstrated. Next steps are: launch of a corresponding VAMAS interlaboratory comparison and discussions within ISO/TC 202 Microbeam Analysis. T2 - ISO/TC 229 Nanotechnologies Meeting Week CY - Stockholm, Sweden DA - 19.05.2025 KW - Graphene-related 2D materials (GR2M) KW - Energy-Dispersive X-Ray Spectrometry (EDS) KW - Elemental analysis KW - Quantification KW - ISO/TC 229 Nanotechnologies PY - 2025 AN - OPUS4-63190 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Report VAMAS/TWA 37 "Quantitative Microstructural Analysis" & Liaison with ISO/TC 202 "Microbeam Analysis" N2 - The progress in activities on Quantitative MicroStructural Analysis under VAMAS/TWA 37 is reviewed. Particularly the liaison with the new projects within the ISO technical committee TC 202 Microbeam Analysis is presented and discussed with respect to the identification and launching corresponding VAMAS projects. The ongoing projects "Development of guidelines for reproducible TEM specimen preparation by FIB processing", "Measurement of dislocation density in metallic materials by Transmission Electron Microscope (TEM)", "Repeatability of high angular resolution electron backscatter diffraction (HR-EBSD) analysis for elastic strain measurements", "Measurement of grain size and distribution of nanocrystalline nickel by using Transmission Kikuchi Diffraction (TKD) in SEM" and the just started project "Evaluation Method of Surface Layer Quality of TEM Specimen Prepared by focused Ion Beam Processing" are presented in detail. T2 - Versailles Project on Advanced Materials and Standards (VAMAS) 50th Steering Committee Meeting CY - London, United Kingdom DA - 15.09.2025 KW - VAMAS KW - Interlaboratory comparison KW - Microbeam Analysis KW - Electron Microscopy KW - ISO/TC 202 KW - Sample preparation PY - 2025 AN - OPUS4-64231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Deep Insights into Functionalised Nanoparticles with Photoelectron Spectroscopy N2 - Modern instrumentation X-ray photoelectron instrumentation combines soft and hard X-rays. Additonally, in the last years methods were developed for the analysis of the measurement data to elucidate the composition and thickness of coatings of nanoparticles. In this presentation four examples will be presented: quantum dots, silica-coated iron-oxide nanoparticles, mixed Fe-Ni-O nanoparticles and amine-functionalized silica nanoparticles. These different nanoparticles are used for displays, for biomedicine, for water splitting, and as additives and fillers. T2 - United Kingdom Surface Analysis Forum Meeting 2025 CY - Teddington, UK DA - 15.07.2025 KW - Simulation KW - Oxygen evolution reaction KW - Transmission electron microscopy KW - Quantitative nuclear magnetic resonance (qNMR) PY - 2025 AN - OPUS4-63733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Analysis of Nanoparticles N2 - The determination of the thickness and composition of the coating is crucial for the understanding of the properties of nanoparticles. Four different approaches will be presented: (i) numerical methods, (ii) descriptive formulae, (iii) the simulation of spectra with Monte-Carlo methods, and (iv) inelastic background analysis. The advantages and limits of these methods will be discussed. T2 - XPS Workshop CY - Teddington, United Kingdom DA - 14.07.2025 KW - Numerical simulation KW - Emperical formulae KW - Simulation KW - Inelastic background analysis PY - 2025 AN - OPUS4-63732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Interlaboratory comparisons for validated measurements of the surface chemistry of nanomaterials N2 - Interlaboratory comparisons are essential tools for validating new protocols or methods. The properties of advanced materials are largely determined by surface chemistry. Using a VAMAS interlaboratory comparison on the surface functionalization of GR2DM, it is explained what insights can be gained from such a comparison.” T2 - Nanomesure France Journee technique CY - Paris, France DA - 04.11.2025 KW - VAMAS KW - Functionalized graphene KW - X-ray photoelectron spectroscopy PY - 2025 AN - OPUS4-65002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altmann, Korinna A1 - Wimmer, Lukas A1 - Alcolea-Rodriguez, Victor A1 - Waniek, Tassilo A1 - Wachtendorf, Volker A1 - Matzdorf, Kay A1 - Ciornii, Dmitri A1 - Fengler, Petra A1 - Milczewski, Frank A1 - Otazo-Aseguinolaza, Itziar A1 - Ferrer, Manuel A1 - Bañares, Miguel A. A1 - Portela, Raquel A1 - Dailey, Lea Ann T1 - Quality-by-design and current good practices for the production of test and reference materials for micro- and nano-plastic research N2 - Understanding the environmental and human health impacts of micro- and nanoplastic pollutants is currently a high priority, stimulating intensive methodological research work in the areas of sampling, sample preparation and detection as well as intensive monitoring and testing. It is challenging to identify and quantify microplastics in complex organic matrices and concepts for nanoplastic detection are still in their infancy. All analytical techniques employed in studying micro- and nanoplastics require suitable reference materials for validation measurements, with requirements as diverse as the analytical tools used, ranging from different polymer types, size distributions and shapes of the material to the concentrations employed in different experimental set ups (ng to g amounts). The aim of this manuscript is to outline current good practices for small-scale laboratory production and characterization of suitable test and reference materials. The focus is placed on top-downfragmentation methods as well as bottom-up precipitation methods. Examples using polyethylene, polypropylene, polystyrene and polyethylene terephthalate with size distribution classes of mainly 10–1000, 1–10 and <1 μm particles will be provided. Experiences and suggestions on how to produce well-characterized micro- and nano-plastics for internal research needs will ensure that studies using the materials have robust and informative outcomes. KW - Mmicroplastics KW - Nanoplastics KW - Reference materials KW - Standard validation method PY - 2025 DO - https://doi.org/10.1016/j.jhazmat.2025.139595 SN - 0304-3894 VL - 497 SP - 1 EP - 20 PB - Elsevier B.V. AN - OPUS4-63958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cosimi, Andrea A1 - Stöbener, Daniel D. A1 - Nickl, Philip A1 - Schusterbauer, Robert A1 - Donskyi, Ievgen A1 - Weinhart, Marie T1 - Interfacial nanoengineering of hydrogel surfaces via block copolymer self-assembly N2 - Synthetic polymer hydrogels are valuable matrices for biotransformations, drug delivery, and soft implants. While the bulk properties of hydrogels depend on chemical composition and network structure, the critical role of interfacial features is often underestimated. This work presents a nanoscale modification of the gel−water interface using polymer brushes via a straightforward “grafting-to” strategy, offering an alternative to more cumbersome “grafting-from” approaches. Functional block copolymers with photoreactive anchor blocks are successfully self-assembled and UV-immobilized on hydrogel substrates despite their low solid content (<30 wt %). This versatile technique works on both bulk- and surface-immobilized hydrogels, demonstrated on poly(hydroxypropyl acrylate), poly(N-isopropylacrylamide), and alginate gels, allowing precise control over grafting density. X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry revealed a homogeneous bilayered architecture. By “brushing-up”, the hydrogels’ interface can be tailored to enhance protein adsorption, improve cell adhesion, or impair the diffusive uptake of small molecules into the bulk gels. This effective interfacial nanoengineering method is broadly applicable for enhancing hydrogel performance across a wide range of applications. KW - Brushing-up KW - Benzophenone KW - LCTS-type polymer KW - Poly(glycidyl ether) (PGE) KW - Fibroblast adhesion KW - XPS KW - ToF-SIMS PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652966 DO - https://doi.org/10.1021/acsami.4c18632 SN - 1944-8244 VL - 17 IS - 6 SP - 10073 EP - 10086 PB - American Chemical Society (ACS) CY - Washington, DC AN - OPUS4-65296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Standardized Chemical Composition Analysis of Graphene Oxide Flakes with SEM/EDS and XPS Works Reliably N2 - Reliable quantification of the chemical composition of graphene-related 2D materials (GR2M) as powders and liquid suspensions is a challenging task. Analytical methods such as XPS, ICP-MS, TGA and FTIR are recommended in projects at standardization bodies. The parameters to be measured are also defined, e.g. the oxygen-to-carbon (O/C) concentration ratio, the trace metal impurities, or the functional groups present. In this contribution, for the first time, the capability of SEM/EDS to reliably quantify the O/C ratio in a well-characterized graphene oxide (GO) material is evaluated. The robustness of the SEM/EDS results under various measurement conditions is tested by comparison to the established XPS analysis. A crucial step is the sample preparation from liquid suspension with GO flakes onto a substrate for analysis with both EDS and XPS. It is demonstrated that if a closed and enough thick drop-cast spot is deposited on a substrate, both surface-sensitive XPS analysis and bulk-characterizing EDS result in very similar elemental composition of oxygen and carbon. Hence, the theoretical, expected O/C atomic ratio values for pure GO of ~0.5 are achieved with both methods. Further, the effect of untight deposited material causing co-analysis of the silicon substrate, is evaluated for both methods, XPS and EDS. Note that all the EDS results in this study have been quantified standardless. The standard measurement procedure including the GO material considered here as a candidate reference material will make a significant contribution to analyse reliably the chemical composition of GR2M with SEM/EDS as one of the most widely used methods in analytical laboratories. T2 - Graphene Week 2025 CY - Vicenza, Italy DA - 22.09.2025 KW - EDX KW - Graphene-related 2D materials KW - O/C ratio KW - Standardisation KW - Samle preparation KW - XPS PY - 2025 AN - OPUS4-64261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mrkwitschka, Paul A1 - Sahre, Mario A1 - Corrao, Elena A1 - Pellegrino, Francesco A1 - Hodoroaba, Vasile-Dan T1 - Wire-Print as a Sample Preparation Procedure Suitable for Accurate Morphological Characterization of Constituent Particles for Graphene-Related 2D-Materials N2 - In this study we have systematically tested the efficacy of a new deposition procedure for graphene-related 2D materials (GR2M’s) from liquid suspension onto a substrate for quantitative analysis of their size and shape distribution with electron microscopy. The technique is an extension of the conventional drop-casting method, and we have designated it “wire-print” deposition. It consists of two steps, first one being usual drop-casting on a copper substrate and second one involving a thin copper wire with a sub-mm diameter being dipped into the deposited droplet and retracted with a corresponding half-spherical droplet attached on its tip and final deposition of this entire nL-amount of suspension onto e.g. a silicon wafer for microscopical, detailed analysis. 11 series of such a wire-print deposition for a graphene-based ink have been considered, whereby various conditions (treatment of the starting suspension) have been experimented with a repetition of up to 10 times per condition, all together 86 spots on a silicon wafer of 10 mm x 10 mm. The evaluation of one series of 8 repeated wire-print depositions reveal that the deposited spots are visualized with SEM. The weak presence of coffee-rings, irregular spot shape, and presence of agglomerates should be noticed. Both the mean value of the 8 ECD distributions and the total number of flakes deposited in each spot show a variance in the range of 17% and 22%, respectively. In the context of accurate analysis of such challenging complex materials these numbers can be considered as excellent and demonstrate the high benefit of the wire-print deposition for accurate morphological measurements on GR2M’s. KW - Sample preparation KW - Imaging KW - 2D materials KW - Morphology KW - Size distribution PY - 2025 DO - https://doi.org/10.1093/mam/ozaf048.219 VL - 31 IS - 7 SP - 436 EP - 437 PB - Oxford Academic AN - OPUS4-63821 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -