TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized Co2.25Fe0.75O4 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized Co2.25Fe0.75O4 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - Co2.25Fe0.75O4 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7940538 PB - Zenodo CY - Geneva AN - OPUS4-57663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - The SMURFnano project - standardized measurements of surface functionalities on nanoparticles N2 - Engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely fabricated for industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, optoelectronics, and information storage. NP function, interaction with biological species, and environmental fate are largely determined by surface functionalities. Reliable, reproducible, and standardized surface characterization methods are therefore vital for quality control of NPs, and mandatory to meet increasing concerns regarding their safety. Also, industry, international standardization organizations, regulatory agencies, and policymakers need validated and standardized measurement methods and reference materials. However, methodologies for determining NP surface properties, including the amount, chemical composition, and homogeneity of surface functionalities and coatings are largely non-standardized. Suitable methods for determining surface functionalities on ligand-stabilized core and core/shell NPs include advanced techniques such as traceable quantitative nuclear magnetic resonance (qNMR) as well as X-ray electron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF-SIMS), and simpler optical and electrochemical methods. The latter less costly methods are often used by SMEs, e.g., for quality control. To validate methods, establish measurement uncertainties, test reference materials, and produce reference data, international interlaboratory comparisons (ILC) on NP surface functionalization measurements are required and well characterized test and reference nanomaterials providing benchmark values.[1] These needs are addressed by the recently started European metrology project SMURFnano involving 12 partners from different National Metrology Institutes, designated institutes, and research institutes, two university groups as well as one large company and one SME producing NPs. This project as well as first results derived from the development of test and reference materials with a well characterized surface chemistry and ongoing interlaboratory comparisons will be presented. T2 - eMRS CY - Strasbourg, France DA - 27.05.2025 KW - Quality assurance KW - Reference analysis KW - Standardization KW - Metrology KW - Reference products KW - Reference materials KW - Mission KW - Surface chemistry KW - Nano KW - Particle KW - qNMR KW - XPS KW - Fluorescence KW - Optical assays KW - Interlaboratory comparison KW - Uncertainty PY - 2025 AN - OPUS4-63243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Tavernaro, Isabella A1 - Abram, Sarah-Luise A1 - Homann, Christian A1 - Scholtz, Lena A1 - Radnik, Jörg T1 - Validated and standardized measurements and quantification of surface functionalities on nanoparticles N2 - Engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely fabricated for industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, opto-electronics, and information storage which improve the quality of life and European prosperity. Nanoparticle function, interaction with biological species, and environmental fate are largely determined by surface functionalities. Reliable, reproducible, and standardized surface characterization methods are therefore vital for quality control of NPs, and mandatory to meet increasing concerns regarding their safety. Also, industry, regulatory agencies, and policymakers need validated traceable measurement methods and reference materials. Industry, e.g., must comply with various regulations, including the chemicals´ regulation REACH (2006/1907) and cosmetic products regulation (2009/1223), depending on the use. Therefore, standardization organizations such as the European Committee for Standardization (CEN), the International Organization for Standardization (ISO), and the International Electrotechnical Commission (IEC) as well as industrial stakeholders, European Medicine Agency (EMA), and the nanosafety community responsible for guidelines for nanomaterial (NM) regulation like the Organisation for Economic Co-operation and Development (OECD) have expressed needs for standardized methodologies to measure NP surface chemical properties. Despite these needs, methodologies for determining NP surface properties, including the amount, chemical composition, and homogeneity of surface functionalities and coatings are largely non-standardized. Specifically, validated quantitative procedures for the measurement of thickness and composition of nanoparticle coatings and other surface functionalities are needed. Suitable methods for determining surface functionalities on ligand-stabilized core and core/shell NPs include advanced techniques such as traceable quantitative nuclear magnetic resonance (qNMR) as well as X-ray electron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF-SIMS), and simpler optical and electrochemical methods. The latter less costly methods are often used by SMEs, e.g., for quality control. To validate methods, establish measurement uncertainties, test reference materials, and produce reference data, international interlaboratory comparisons (ILC) on NP surface functionalization measurements are required. These needs have been addressed by us in two interlaboratory comparisons, that will be presented. In addition, the European metrology project SMURFnano will be briefly presented involving 12 partners from different National Metrology Institutes, designated institutes, and research institutes, two university groups as well as one large company and one SME producing NPs. T2 - NanoCarbon Annual Conference 2025 CY - Würzburg, Germany DA - 18.03.2025 KW - Nano KW - Particle KW - Silica KW - Quality assurance KW - Reference material KW - Surface chemistry KW - Size KW - Shape KW - Particle number concentration KW - Method KW - Optical assay KW - QNMR KW - Validation KW - Potentiometry KW - XPS PY - 2025 AN - OPUS4-62790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brinkmann, A. T1 - A qNMR Method for Quantification of Surface Functional Groups on Silica Nanoparticles: Bilateral Comparisons N2 - Nanomaterials (NM) of different size, shape, morphology, composition, and surface chemistry are used in a wide range of applications, including medical diagnostics, and imaging and consumer products. The importance of an adequate and reliable characterization is crucial for quality control during NM production, for ensuring an optimum function for the desired application, and for risk assessment studies. Currently there is a lack of reliable and validated methods and reference materials for quantifying NM surface functional groups, despite the importance of surface chemistry for the production of colloidally stable materials, further processing steps, and the interaction with the environment and biological species. Following our initial study on the use of qNMR for quantifying the amount of amino groups on surface modified silica (1), we have carried out two bilateral comparisons between NRC and BAM to further develop and optimize a reliable protocol for these measurements (2,3), using aminated silica nanoparticles prepared by multiple methods, both commercial and in-house synthesized, and with varying amine content. Solution qNMR is based on dissolving aminated silica nanoparticles in strong base to release the surface grafted amino silane molecules, followed by the quantification of these molecules by solution qNMR using an internal standard. This method provides the amount of total amino groups present in the sample, which can differ from probe accessible or surface-sensitive measurements performed with X-Ray photoelectron spectroscopy (XPS). Complementary measurements using optical assays, involving a labeling step with a dye reporter, and XPS are employed to assess the probe accessible and surface amine content for representative samples. These measurements, which illustrate the advantages and potential limitations of the different characterization methods, will contribute to establish a basis for testing the protocol in an international inter-laboratory comparison and for standardization at ISO Technical Committee 229 – Nanotechnologies. T2 - BERM CY - Halifax, Canada DA - 01.06.2025 KW - Quality assurance KW - Nano KW - Particle KW - Synthesis KW - Advanced materials KW - Characterization KW - Electron microscopy KW - Silica KW - Surface KW - qNMR KW - Optical assay KW - Interlaboratory comparison KW - Metrology KW - Standardization PY - 2025 AN - OPUS4-63527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Abram, Sarah-Luise A1 - Homann, Christian A1 - Scholtz, Lena A1 - Radnik, Jörg A1 - Resch-Genger, Ute T1 - Validated and standardized measurements and quantification of surface functionalities on nanoparticles N2 - Surface-functionalized organic and inorganic engineered nanomaterials (NMs) are widely applied in the life and materials sciences. NM performance depends on key factors such as particle size and shape, crystal phase, morphology, chemical composition, and surface chemistry, i.e., surface coatings, functional groups (FGs), and ligands.1 The latter controls their processability and interaction with the environment and largely their possible toxicity. Thus, methods for FG quantification are important tools for quality control of NM production processes and can foster the sustainable development of functional and safe(r) NMs. This underlines the importance of validated and standardized analytical methods for surface analysis and reference materials.2 This encouraged us to explore simple and versatile tools for quantifying common bioanalytically relevant FGs such as optical assays, electrochemical titration methods, quantitative nuclear magnetic resonance spectroscopy (qNMR), and X-Ray photoelectron spectroscopy (XPS) and to perform a first interlaboratory comparison (ILC) on surface FG quantification.3,4 In a follow-up ILC, BAM and NRC explored qNMR sample preparation, measurement, and data evaluation protocols for commercial and custom-made aminated SiO2 NPs with sizes of 20-100 nm, different amounts of surface amino FGs, and different porosity.5,6 First, the number of amino FGs accessible for a dye reporter was determined with a cost-efficient, automated optical fluorescamine assay. Then, qNMR workflows and protocols were stepwise fine-tuned. The qNMR ILC was complemented by joint XPS measurements. BAM also examined the applicability of fast and automatable potentiometric titrations to screen the total amount of (de)protonable FGs on aminated SiO2 NPs. Our results underline the need to evaluate protocols for FG quantification in ILCs and the advantages of multi-method characterization strategies for efficient method cross validation. T2 - Surface and Micro/Nano Analysis Working Group CY - Paris, France DA - 08.04.2025 KW - Quality assurance KW - Reference material KW - Fluorescence KW - Nano KW - Particle KW - Surface analysis KW - XPS KW - Traceability KW - Metrology KW - Calibration KW - Reference data KW - Reference product KW - Digital certificate KW - QNMR KW - Potentiometry PY - 2025 AN - OPUS4-62969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portesi, C. T1 - qNMR for standardised measurements of surface functionalities on nanoparticles N2 - Engineered nanoparticles have a large application potential in fields such as medicine, sensing, catalysis, energy storage, and opto-electronics [1]. The applicability and performance of engineered nanoparticles is largely determined by their surface chemistry, i.e. functional groups and ligands on the particle surface. However, documented standards to quantify functional groups and ligands currently do not exist. Such standards are required to support quality control of nanomaterial production and surface modification processes, and safe-by-design concepts and to meet regulatory requirements. Here, this issue is addressed by developing and standardizing quantitative Nuclear Magnetic Resonance (qNMR) methods for the characterization of surface functionalized nanoparticles which specifically address the determination of the amount and chemical composition of surface functionalities and coatings. This work is being developed under the EMP project 23NRM02 SMURFnano - Standardised measurements of surface functionalities on nanoparticles. qNMR competence of 7 qNMR laboratories involved in the project was first tested with a molecular model sample i.e. citrate, to be assessed in terms of purity. Citrate is often used as hydrophilic surface ligand for different nanoparticles. Then, the first nanoparticle samples, here a set of aminated SiO2 NPs [1] with a particle size of 100 nm and two amino group densities, prepared and characterized by BAM regarding size and surface charge as well as stability over 21 months with an optical assay and qNMR, were assessed in an international interlaboratory comparison (ILC) on qNMR. Thereby, the amount of surface amino groups introduced by grafting of the silica cores with different amounts of 3-aminopropyl)triethoxysilane (APTES) was quantified by each participant following a sample preparation protocol previously developed by BAM and NRC.The results of the ILC were then used to refine the protocol for sample preparation and to identify critical points for qNMR measurement and data analysis. This work will contribute to the development of a Preliminary Work Item (PWI) 19257 (ISO/TC 229) on surface functional groups and coatings on nano-objects. Also, it will lay the groundwork to perform ILCs on the quantification and determination of the amount of surface functional groups under the roof of VAMAS TWA2 (Surface Chemical Analysis) for different types of nanomaterials possessing industry-relevant surface functionalities using qNMR. These ILCs will be complemented by other techniques like X-Ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). T2 - BERM CY - Halifax, Canada DA - 01.06.2025 KW - Quality assurance KW - Nano KW - Particle KW - Synthesis KW - Advanced materials KW - Characterization KW - Electron microscopy KW - Silica KW - Surface KW - qNMR KW - Optical assay KW - Interlaboratory comparison KW - Metrology KW - Validation KW - Standardization PY - 2025 AN - OPUS4-63443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Quantifying the total and accessible amount of surface functionalities and ligands on nano-materials: Overview and recommended methods N2 - Engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely fabricated for industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, opto-electronics, and information storage. NP function, interaction with biological species, and environmental fate are largely determined by surface functionalities. This calls for reliable, reproducible, and standardized surface characterization methods, which are vital for quality control of NPs, and mandatory to meet increasing concerns regarding their safety. Validated and standardized workflows for surface analysis are also increasingly requested by industry, international standardization organizations, regulatory agencies, and policymakers. To establish comparable measurements of surface functionalities across different labs and ease instrument performance validation, reference test materials and reference materials of known surface chemistry as well as reference data are needed. In the following, different methods for determining surface functionalities on ligand-stabilized core and core/shell NPs include advanced techniques are presented and discussed regarding method-inherent advantages and limitations. Special emphasis is dedicated to traceable quantitative nuclear magnetic resonance (qNMR), X-ray electron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF-SIMS), and simpler optical and electrochemical methods. T2 - LNE Workshop CY - Paris, France DA - 04.11.2025 KW - Quality assurance KW - Fluorescence KW - Nano KW - Particle KW - Synthesis KW - Characterization KW - Advanced material KW - Surface KW - Standardization KW - Reference material KW - Functional group KW - Quantification KW - Coating KW - Automation KW - Potentiometry KW - Method KW - Validation KW - Optical assay KW - Fluram KW - Fluorescamine KW - qNMR KW - Comparison KW - ILC PY - 2025 AN - OPUS4-64726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Standardized Measurements of Surface - Functionalities on Nanoparticles N2 - Engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely fabricated for industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, optoelectronics, and information storage. NP function, interaction with biological species, and environmental fate are largely determined by surface functionalities. Reliable, reproducible, and standardized surface characterization methods are therefore vital for quality control of NPs, and mandatory to meet increasing concerns regarding their safety. Also, industry, international standardization organizations, regulatory agencies, and policymakers need validated and standardized measurement methods and reference materials. However, methodologies for determining NP surface properties, including the amount, chemical composition, and homogeneity of surface functionalities and coatings are largely non-standardized. Suitable methods for determining surface functionalities on ligand-stabilized core and core/shell NPs include advanced techniques such as traceable quantitative nuclear magnetic resonance (qNMR) as well as X-ray electron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF-SIMS), and simpler optical and electrochemical methods. The latter less costly methods are often used by SMEs, e.g., for quality control. To validate methods, establish measurement uncertainties, test reference materials, and produce reference data, international interlaboratory comparisons (ILC) on NP surface functionalization measurements are required and well characterized test and reference nanomaterials providing benchmark values.[1] These needs are addressed by the recently started European metrology project SMURFnano involving 12 partners from different National Metrology Institutes, designated institutes, and research institutes, two university groups as well as one large company and one SME producing NPs. This project as well as first results derived from the development of test and reference materials with a well characterized surface chemistry and ongoing interlaboratory comparisons will be presented. T2 - eMRS CY - Strasbourg, France DA - 27.05.2025 KW - Quality assurance KW - Fluorescence KW - Nano KW - Particle KW - Synthesis KW - Silica KW - Upconversion nanoparticles KW - Optical assay KW - qNMR KW - Surface analysis KW - Ligand KW - Quantification KW - Functional group KW - XPS KW - ToF-SIMS KW - Polymer particle KW - Surface modification KW - Potentiometry KW - Metrology KW - Method KW - Validation KW - ILC PY - 2025 AN - OPUS4-63339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Standardized Measurements of Surface Functionalities on Nanoparticles - F. Synthesis and characterization of functional nanocomposite materials N2 - Engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely and commonly fabricated for industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, opto-electronics, and information storage. NP function, their interaction with biological species, and also their environmental fate are largely determined by the surface functionalities of the particles. Reliable, reproducible, and standardized surface characterization methods are therefore vital for quality control of NPs, determination of their applicability, and mandatory to meet increasing concerns regarding their safety. In addition, industry as well as international standardization organizations, regulatory agencies, and policymakers need validated and standardized measurement methods and reference materials. However, methodologies for determining NP surface properties, including the amount, chemical composition, and homogeneity of surface functionalities and coatings are largely non-standardized up until now. Suitable methods for determining surface functionalities on ligand-stabilized core and core/shell NPs include advanced techniques such as traceable quantitative nuclear magnetic resonance (qNMR), as well as X-ray electron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF-SIMS), and simpler optical and electrochemical methods. The latter, typically less costly methods are often used by SMEs, e.g., for quality control. To validate methods, establish measurement uncertainties, test reference materials, and produce reference data, international interlaboratory comparisons (ILC) on NP surface functionalization measurements are required to provide well characterized test and reference nanomaterials including benchmark values.[1] These needs are addressed by the current European metrology project SMURFnano, involving 12 partners from different National Metrology Institutes, designated and research institutes, two university groups as well as one large company and one SME producing NPs. This project, as well as first results derived from the development of test and reference materials with a well characterized surface chemistry, and ongoing interlaboratory comparisons, will be presented. T2 - Shift 2025 CY - La Laguna, Tenerife DA - 13.10.2025 KW - Nano KW - Particle KW - Silica KW - Iron oxide KW - Lanthanide KW - Metrology KW - Quality assurance KW - Reference material KW - Surface chemistry KW - Size KW - Shape KW - Particle number concentration KW - Method KW - Optical assay KW - qNMR KW - Validation KW - Potentiometry KW - XPS KW - ILC KW - Standardization PY - 2025 AN - OPUS4-64370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized Fe2O3 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized Fe2O3 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - Fe2O3 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7941001 PB - Zenodo CY - Geneva AN - OPUS4-57665 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -