TY - CONF A1 - Resch-Genger, Ute A1 - Pauli, J. A1 - Güttler, Arne A1 - Richter, Maria A1 - Fiedler, Saskia A1 - Frenzel, Florian A1 - Wegner, Karl David A1 - Würth, Christian T1 - Photoluminescence Quantum Yields of Luminescent Nanocrystals and Particles in the UV/vis/NIR/SWIR N2 - The rational design of functional luminescent materials such as semiconductor quantum dots and lanthanide-based upconversion nanoparticles, all photophysical and mechanistic studies, and the comparison of different emitters require accurate and quantitative photoluminescence measurements. Particularly the reliable determination of the key performance parameter photoluminescence quantum yield (f), the number of emitted per absorbed photons, and the brightness are of special importance for luminescence applications in the life and material sciences and nano(bio)photonics.[1] In this context, examples for absolute measurements of the photoluminescence quantum yields of UV/vis/NIR/SWIR emissive semiconductor quantum dots and rods, made from different materials, and spectrally shifting lanthanide upconversion nanocrystals with different surface chemistries in transparent matrices are presented including excitation wavelength and power density dependent studies utilizing integration sphere spectroscopy.[2,3] In addition, procedures for the absolute determination of the photoluminescence quantum yields of scattering dispersions of larger size quantum rods and differently sized inorganic particles have been developed as well as procedures for the characterization of solid luminescent nanomaterials such as different perovskites and YAG:Cer converter materials.[4] Thereby, challenges and pitfalls of f measurements in different wavelength regions including the SWIR and material-specific effects related to certain emitter classes are addressed, achievable uncertainties are quantified, and relative and absolute measurements of photoluminescence quantum yield measurements are compared to underline limitations of the former approach. Finally, a set of novel UV/vis/NIR quantum yield standards is presented including their certification with a complete uncertainty budget.[5] T2 - NANAX 10 CY - Klosterneuburg, Austria DA - 03.07.2023 KW - Fluorescence KW - Optical spectroscopy KW - Reference data KW - Traceability KW - NIR KW - Scattering KW - Reference material KW - Certification KW - Quality assurance KW - Dye KW - Reference product KW - SWIR KW - Nano KW - Particle KW - Perovskite KW - Integrating sphere spectroscopy KW - Quantum yield PY - 2023 AN - OPUS4-58238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella T1 - A Multimodal Approach to Quantify Surface Functional Groups and Ligands on Amorphous Silica Nanoparticles N2 - Nowadays amorphous silica nanoparticles (SiO2-NP) are one of the most abundant engineered nanomaterials, that are highly stable and can be easily produced on a large scale at low cost. Surface functionalized SiO2-NP are of great interest in the life and material sciences, as they can be used e.g. as drug carriers, fluorescent sensors, and multimodal labels in bioanalytical assays and imaging applications. Their performance in such applications depends not only on particle size, size distribution, and morphology, but also on surface chemistry, i.e. the total number of surface functional groups (FG) and the number of FG accessible for subsequent functionalization with ligands or biomolecules, which in turn determines surface charge, colloidal stability, biocompatibility, and toxicity. Aiming at the development of simple, versatile, and multimodal tools for the quantification of many bioanalytically relevant FG and ligands, we investigated and compared various analytical methods commonly used for FG quantification. This includes electrochemical titration methods, dye-based optical assays, and other instrumental analytical techniques such as nuclear magnetic resonance and thermal analysis methods. The potential of our multimodal approach for FG quantification was demonstrated for commercial and custom-made silica particles of varying FG, showing not only an influence of the synthesis methods on the number of FG but also on the performance. In the future, our strategy can contribute to establish multi-method characterization strategies to provide a more detailed picture of the structure-properties relationship. T2 - Advanced Materials Safety 2023 CY - Saarbrücken, Germany DA - 08.11.2023 KW - Amorphous silica particles KW - Surface group analysis KW - Ligands KW - Reference material KW - Optical spectroscopy KW - Quantitative NMR KW - Optical assays KW - Titration KW - Engineered nanomaterials KW - Advanced Materials PY - 2023 AN - OPUS4-59124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR ED - Resch-Genger, Ute ED - Koch, Matthias ED - Meermann, Björn ED - Weller, Michael G. T1 - Topical collection: Analytical methods and applications in the materials and life sciences N2 - Current trends in materials and life sciences are flanked by the need to push detection limits to single molecules or single cells, enable the characterization of increasingly complex matrices or sophisticated nanostructures, speed up the time of analysis, reduce instrument complexity and costs, and improve the reliability of data. This requires suitable analytical tools such as spectroscopic, separation and imaging techniques, mass spectrometry, and hyphenated techniques as well as sensors and their adaptation to application-specific challenges in the environmental, food, consumer product, health sector, nanotechnology, and bioanalysis. Increasing concerns about health threatening known or emerging pollutants in drinking water, consumer products, and food and about the safety of nanomaterials led to a new awareness of the importance of analytical sciences. Another important driver in this direction is the increasing demand by legislation, particularly in view of the 17 sustainable development goals by the United Nations addressing clean energy, industry, and innovation, sustainable cities, clean water, and responsible consumption and production. In this respect, also the development of analytical methods that enable the characterization of material flows in production processes and support recycling concepts of precious raw materials becomes more and more relevant. In the future, this will provide the basis for greener production in the chemical industry utilizing recycled or sustainable starting materials. This makes analytical chemistry an essential player in terms of the circular economy helping to increase the sustainability of production processes. In the life sciences sector, products based on proteins, such as therapeutic and diagnostic antibodies, increase in importance. These increasingly biotechnologically produced functional biomolecules pose a high level of complexity of matrix and structural features that can be met only by highly advanced methods for separation, characterization, and detection. In addition, metrological traceability and target definition are still significant challenges for the future, particularly in the life sciences. However, innovative reference materials as required for the health and food sector and the characterization of advanced materials can only be developed when suitable analytical protocols are available. The so-called reproducibility crisis in sciences underlines the importance of improved measures of quality control for all kinds of measurements and material characterization. This calls for thorough method validation concepts, suitable reference materials, and regular interlaboratory comparisons of measurements as well as better training of scientists in analytical sciences. The important contribution of analytical sciences to these developments is highlighted by a broad collection of research papers, trend articles, and critical reviews from these different application fields. Special emphasis is dedicated to often-overlooked quality assurance and reference materials. T2 - 150 years BAM: Science with impact CY - Berlin, Germany DA - 01.01.2021 KW - 150th anniversary KW - ABC KW - Analysis KW - Analytical sciences KW - BAM KW - Collection KW - Environment KW - Fluorescence KW - Life sciences KW - Limit of detection KW - Material sciences KW - Method KW - Nanoparticle KW - Pollutant KW - Quality assurance KW - Reference material KW - Sensor KW - Special issue KW - Bundesanstalt für Materialforschung und -prüfung KW - Jahrestag PY - 2022 UR - https://link.springer.com/journal/216/topicalCollection/AC_16a2ef9b81853377e321ef84d9c4a431 SN - 1618-2642 SN - 1618-2650 VL - 414 SP - 4267 EP - 4529 PB - Springer CY - Berlin AN - OPUS4-55670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geißler, Daniel T1 - Standardisation of concentration measurements of extracellular vesicles for medical diagnoses N2 - Extracellular vesicles (EVs) are cell-derived particles in body fluids, which have excellent potential as next generation biomarkers for the early diagnosis of common diseases, such as cancer and thrombosis. This project aims to tap into the clinical potential of EVs by developing traceable measurements of number concentration, size distribution, refractive index (RI) and fluorescence intensity of cell-specific EVs in human blood and urine. To realise our aims, we will develop synthetic reference materials with physical properties resembling EVs (WP1), instrumentation and procedures to standardise EV measurements in clinical laboratories (WP2), and ready-to-use biological test samples (WP3). These will then be evaluated in an inter-laboratory comparison study across a range (>20) of standard flow cytometers in clinical labs (WP4). T2 - MetVesII M18 Interim Meeting CY - Berlin, Germany DA - 20.10.2020 KW - EMPIR 18HLT01 MetVesII KW - Extracellular vesicles (EV) KW - Flow cytometry (FCM) KW - Reference materials KW - Fluorescent particles KW - Integrating sphere spectroscopy PY - 2020 AN - OPUS4-51653 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella T1 - Quantification of the Total and Accessible Number of Functional Groups and Ligands on Nanomaterials N2 - Surface-functionalized organic and inorganic nanoparticles (NP) are of great interest in the life and material sciences, as they can be used e.g. as drug carriers, fluorescent sensors, and multimodal labels in bioanalytical assays and imaging applications. NP performance in such applications depends not only on particle size, size distribution, and morphology, but also on surface chemistry, i.e. the total number of surface functional groups (FG) and the number of FG accessible for subsequent functionalization with ligands or biomolecules, which in turn determines surface charge, colloidal stability, biocompatibility, and toxicity. Methods for FG quantification should be simple, robust, reliable, fast, and inexpensive, and allow for the characteriza-tion of a broad variety of nanomaterials differing in size, chemical composition, and optical properties. Aiming at the development of simple, versatile, and multimodal tools for the quantification of many bioanalytically relevant FG such as amine, carboxy, thiol and aldehyde functionalities, we investigated and compared various analytical methods commonly used for functional group quantification. This includes electrochemical titration methods, dye-based optical assays, and other instrumental analytical techniques such as nuclear magnetic resonance, mass spectrometry, and thermal analysis methods. T2 - Nanotech France CY - Paris, France DA - 15.06.2022 KW - Optical assays KW - Functionalized nano- and microparticles KW - Particle surface analysis KW - Surface group quantification KW - Terminal functional groups PY - 2022 AN - OPUS4-55208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Standardization of Flourescence Measurements in the UV/VIS/NIR/IR at BAM N2 - Photoluminescence techniques are amongst the most widely used tools in the life sciences, with new and exciting applications in medical diagnostics and molecular imaging continuously emerging. Advantages include their comparative ease of use, unique sensitivity, non-invasive character, and potential for multiplexing, remote sensing, and miniaturization. General drawbacks are, however, signals, that contain unwanted wavelength- and polarization contributions from instrument-dependent effects, which are also time-dependent due to aging of instrument-components, and difficulties to measure absolute fluorescence intensities. Moreover, scattering systems require special measurement geometries and the interest in new optical reporters with emission > 1000 nm strategies for reliable measurements in the second diagnostic for the comparison of material performance and the rational design of new fluorophores with improved properties. Here, we present strategies to versatile method-adaptable liquid and solid fluorescence standards for different fluorescence parameters. Examples are multi-emitter glasses, spectral fluorescence standards, and quantum yield standards for the UV/vis/NIR. T2 - Konsortiumtreffen Mikroskopie CY - Universität Münster, Germany DA - 20.01.2020 KW - Fluorescence standard KW - Instrument calibration KW - Integrating sphere spectroscopy KW - Fluorescence quantum yield KW - Fluorescent glasses KW - Fluorescence microscopy KW - Particle, imaging PY - 2020 AN - OPUS4-50308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - Nanoparticle Characterisation - The long way to standardisation N2 - Diese Präsentation gibt einen Überblick über die Entwicklung der Nanopartikelforschung von ca. 2005 bis heute. Beginnend mit den Besonderheiten von Nanopartikeln und der Aufnahme in den menschlichen Körper über Messmethoden bis hin zur Entwicklung einer Prüfrichtlinie im Rahmen der OECD und einem Ausblick über die absehbaren digitalen Entwicklungen. T2 - Abteilungsseminar der Abteilung 4 CY - Berlin, Germany DA - 27.02.2025 KW - Nanomaterials KW - Nano KW - OECD KW - Standardisierung KW - Advanced Materials PY - 2025 AN - OPUS4-64977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - da Rocha, Morgana A1 - Chaves, Eduardo T1 - Assessment of Pd Nanoparticles as Chemical Modifiers and Preconcentration Agents for Cd Determination in River Water by HR-CS GFAAS N2 - Cadmium is a heavy metal that can be hazardous to environmental and human health, even in trace levels.[1] In this way, the extraction and/or preconcentration of this element from environmental samples, such as river water, is important to obtain information about the composition and monitoring of potential contamination.[2] High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS) is widely used for Cd determination. However, the determination of this element at trace-level can be challenging, especially in complex matrices. Thus, nanoparticles (NPs) can be used as an alternative for the extraction and preconcentration of Cd in environmental samples, minimizing the potential interferences and improving the method´s limit of detection (LOD). Considering that Pd is also widely used as a “universal” chemical modifier, this project aims todevelop PdNPs capped with 3-mercaptopropionic acid (MPA) to assess its potential as a chemical modifier and preconcentration agent for Cd determination by HR-CS GF AAS in river water. In this way, the synthesis of PdNPs was performed in an aqueous medium by using ascorbic acid as a reducing agent. The characterization of PdNPs was performed by checking the size via dynamic light scattering (DLS), transmission electron microscopy (TEM), and inductively coupled plasma mass spectrometer in single particle mode (spICP-MS), where the median size was 56 ± 14 nm. The temperature program of HR-CS GFAAS was optimized for river water under three conditions: using Pd(NO3)2/Mg2+ (0.01%/0.5% m/v) as a chemical modifier (condition A), using Pd NPs as a chemical modifier (condition B), and without chemical modifiers (condition C). The pyrolysis and atomization temperatures for condition A were 900 and 1900 ºC, for condition B were 700 ºC and 1900 ºC, and for condition C were 500 and 1900ºC, respectively. Besides the temperature of pyrolysis for the universal chemical modifier being higher than that of PdNPs, using the PdNPs, the absorbance is significantly greater, according to the t-test for pairs, at a 95% confidence level. In addition, the evaluation of the preconcentration property of the PdNP was performed by adding 1 µg L-1 of Cd2+ in buffer pH 4 in two systems: one with and the other without PdNPs. After 1 h of stirring, both systems were centrifuged at 3600 rpm for 10 min, and the absorbance in HR-CS GFAAS for Cd in both supernatants was evaluated. According to ANOVA from the t-test, at a 95% confidence level, there was a significant difference in the absorbance, indicating that Cd is interacting with the PdNPs. A multifactorial planning 2k, where k is the number of parameters of the extraction, which was time of extraction (10; 35; 60 min), Volume of Pd NPs (100; 300; 500 µL), pH (3; 5; 7), was used to evaluate the parameters with significant influence in the preconcentration of Cd2+. According to ANOVA, with 95% confidence, there is no lack of fit, and the parameters volume of PdNP and pH significantly influenced the response. In this way, the Doehlert methodology surface will be applied to both significant parameters. The goal is to achieve optimal conditions that increase the extraction efficiency of Cd2+ from environmental samples. The results indicate that the developed material is promising to use as a chemical modifier and for the preconcentration of Cd2+ in environmental samples. T2 - 17th Rio Symposium on Atomic Spectrometry (RSAS 2025) CY - Sao Pedro, Brazil DA - 12.11.2025 KW - Pd Nanoparticles KW - HR-CS GFAAS KW - Cadmium Ion Sensing KW - Particle Characterization KW - Particle Surface PY - 2025 AN - OPUS4-64997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Batatia, Ilyes A1 - Benner, Philipp A1 - Chiang, Yuan A1 - Elena, Alin M. A1 - Kovács, Dávid P. A1 - Riebesell, Janosh A1 - Advincula, Xavier R. A1 - Asta, Mark A1 - Avaylon, Matthew A1 - Baldwin, William J. A1 - Berger, Fabian A1 - Bernstein, Noam A1 - Bhowmik, Arghya A1 - Bigi, Filippo A1 - Blau, Samuel M. A1 - Cărare, Vlad A1 - Ceriotti, Michele A1 - Chong, Sanggyu A1 - Darby, James P. A1 - De, Sandip A1 - Della Pia, Flaviano A1 - Deringer, Volker L. A1 - Elijošius, Rokas A1 - El-Machachi, Zakariya A1 - Fako, Edvin A1 - Falcioni, Fabio A1 - Ferrari, Andrea C. A1 - Gardner, John L. A. A1 - Gawkowski, Mikołaj J. A1 - Genreith-Schriever, Annalena A1 - George, Janine A1 - Goodall, Rhys E. A. A1 - Grandel, Jonas A1 - Grey, Clare P. A1 - Grigorev, Petr A1 - Han, Shuang A1 - Handley, Will A1 - Heenen, Hendrik H. A1 - Hermansson, Kersti A1 - Ho, Cheuk Hin A1 - Hofmann, Stephan A1 - Holm, Christian A1 - Jaafar, Jad A1 - Jakob, Konstantin S. A1 - Jung, Hyunwook A1 - Kapil, Venkat A1 - Kaplan, Aaron D. A1 - Karimitari, Nima A1 - Naik, Aakash A. A1 - Csányi, Gábor T1 - A foundation model for atomistic materials chemistry N2 - Atomistic simulations of matter, especially those that leverage first-principles (ab initio) electronic structure theory, provide a microscopic view of the world, underpinning much of our understanding of chemistry and materials science. Over the last decade or so, machine-learned force fields have transformed atomistic modeling by enabling simulations of ab initio quality over unprecedented time and length scales. However, early machine-learning (ML) force fields have largely been limited by (i) the substantial computational and human effort required to develop and validate potentials for each particular system of interest and (ii) a general lack of transferability from one chemical system to the next. Here, we show that it is possible to create a general-purpose atomistic ML model, trained on a public dataset of moderate size, that is capable of running stable molecular dynamics for a wide range of molecules and materials. We demonstrate the power of the MACE-MP-0 model—and its qualitative and at times quantitative accuracy—on a diverse set of problems in the physical sciences, including properties of solids, liquids, gases, chemical reactions, interfaces, and even the dynamics of a small protein. The model can be applied out of the box as a starting or “foundation” model for any atomistic system of interest and, when desired, can be fine-tuned on just a handful of application-specific data points to reach ab initio accuracy. Establishing that a stable force-field model can cover almost all materials changes atomistic modeling in a fundamental way: experienced users obtain reliable results much faster, and beginners face a lower barrier to entry. Foundation models thus represent a step toward democratizing the revolution in atomic-scale modeling that has been brought about by ML force fields. KW - Materials Design KW - Thermal Conducitivity KW - Nanoparticles KW - Batteries PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647829 DO - https://doi.org/10.1063/5.0297006 SN - 0021-9606 VL - 163 IS - 18 SP - 1 EP - 89 PB - AIP Publishing AN - OPUS4-64782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wegner, Karl David T1 - SWIR luminescent nanomaterials – key chemical parameters for bright probes for in vivo bioimaging N2 - A current challenge for studying physio-pathological phenomena and diseaserelated processes in living organisms with non-invasive optical bioimaging is the development of bright optical reporters that enable deep tissue penetration, a high detection sensitivity, and a high spatial and temporal resolution. The focus of this project are nanomaterials, which absorb and emit in the shortwave infrared (SWIR) between ~900–2500 nm where scattering, absorption, and autofluorescence of the tissue are strongly reduced compared to the visible and NIR. T2 - QD2024 - 12th International Conference on Quantum Dots CY - Munich, Germany DA - 18.03.2024 KW - Quantum dots KW - Advanced nanomaterials KW - Fluorescence KW - Quality assurance KW - Gold nanocluster KW - Shortwave infrared KW - Spectroscopy KW - Bioimaging PY - 2024 AN - OPUS4-59783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -