TY - JOUR A1 - Andreato, E. A1 - Panov, N. A1 - Artiga, A. A1 - Osipova, Viktoriia A1 - Resch-Genger, Ute A1 - Ximendes, E. A1 - Molina, P. A1 - Canton, P. A1 - Marin, R. T1 - Indium-Based Fluoride Nanoparticles Doped with Chromium for Near-Infrared Luminescence N2 - Transition metal (TM) and rare earth (RE) ion-doped nanoparticles (NPs) are photoluminescent materials of technological relevance in bioimaging, sensing, and light conversion. Fluoride NPs are particularly attractive in this context, since they combine low-energy phonons, high chemical stability, optical transparency, size, and architecture tunability. Yet, nearly all reported colloidal fluoride NPs (e.g., NaYF4 and LiYF4) can only be efficiently doped with RE3+ and not with luminescent TM ions. Herein, we contribute to filling this gap in materials science by reporting Na3InF6 NPs doped with Cr3+ as a model luminescent TM ion. We unveil the heat-driven NP formation mechanism, which involves a cubic-to-monoclinic phase conversion, similarly to the cubic-tohexagonal phase conversion in NaYF4. Reaction temperatures above 225 °C and reaction time have a limited impact on the NP morphology, while the amount of fluoride precursor and oleylamine grants control over the NP size. After verifying that Na3InF6 NPs show negligible cytotoxicity toward U-87 cell line, we study the optical properties of these NPs upon Cr3+ doping. Temperature-dependent photoluminescence measurements indicate that Cr3+ ions experience a weak crystal field in the Na3InF6 host lattice, while their photoluminescence lifetime varies linearly in the 20−50 °C range. These results set the ground for further studies of photoluminescent TM-doped fluoride NPs, toward their applications in bioimaging, sensing, and light-converting devices. KW - Quality assurance KW - Fluorescence KW - Traceability KW - Nano KW - Particle KW - Synthesis KW - Quantum yield KW - NIR KW - Mechanism KW - Characterization KW - XRD KW - Phase transition KW - Ligand KW - Surface KW - Doping KW - Lifetime PY - 2025 DO - https://doi.org/10.1021/acs.chemmater.4c03335 SN - 1520-5002 SP - 1 EP - 14 PB - American Chemical Society AN - OPUS4-63073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Matiushkina, Anna T1 - Quantification of Citrate Ligands on Nanoparticle Surfaces N2 - To ensure the successful advancement of nanomaterials (NM) in applications and their safe use, it is crucial to develop reliable methods to control and quantify ligands and functional groups (FG) on the nanoparticle (NP) surface as surface chemistry largely determines the interactions of NPs with their surroundings. Many analytical methods can be used for this purpose. However, their applicability strongly depends on the type of NM and ligand(s) and most of them require challenging protocols for sample preparation, i.e., the removal of the NPs or their dissolution, which can influence the accuracy of the measurements. While some methods allow the precise quantification of specific ligands such as quantitative nuclear magnetic resonance (qNMR), others provide only semi-quantitative results like Fourier Transform infrared spectroscopy (FTIR) or target more general analyte groups like thermogravimetric analysis (TGA) detecting mass losses (total organic content) or conductometry (e.g., (de)protonable FGs such as carboxyl or amine groups). [1] The calculation of the coverage of the NP surface with ligands, additionally requires knowledge of their total surface area, which can be obtained, e.g., from a precise characterization of NP size and concentration. Citrate is one of the most frequently utilized surface ligand for stabilizing metal, metal oxide, and lanthanide-based upconversion NPs in hydrophilic environments. However, its quantification on NP surfaces has rarely been addressed although it is a frequent analyte in medical or food analysis. In this study we compare several methods for quantifying citrate as capping ligands of iron oxide NPs (IONPs), exemplarily chosen because of their broad applications in the life science. [2] The size of the IONPs was characterized by electron microscopy (EM) and dynamic light scattering (DLS), while their concentration was determined by quantifying iron ions after acidic particle dissolution using a colorimetric assay and inductively coupled plasma optical emission spectroscopy (ICP-OES). The simplest approach for citrate quantification, direct photometric UV-detection after acidic digestion of the IONPs, yielded only reasonable results when combined with reversed phase high-performance liquid chromatography (HPLC). These results were cross validated with qNMR that required the development of a reliable sample preparation protocol addressing not only particle dissolution in deuterated solvents but also the removal of the paramagnetic iron ions interfering with NMR measurements. Comparison with results from TGA gives insight into the sensitivity and specificity of these methods and their potential for quantifying surface ligands on NPs. T2 - Anakon 2025 CY - Leipzig, Germany DA - 10.03.2025 KW - Advanced material KW - Functional group KW - Iron oxide KW - Ligand KW - Nano KW - Particle KW - Quantification KW - Surface analysis PY - 2025 AN - OPUS4-64861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo T1 - Navigating the Nanoworld: Understanding Materials Properties with the Transmission Electron Microscope N2 - The field of materials science is defined as “the study of the properties of solid materials and how those properties are determined by a material’s composition and structure.”. Many –if not most– of the materials that are produced nowadays owe their properties to structures engineered down to the nanoscopic level. This need has been partly realized thanks to the understanding of materials’ building blocks via characterization techniques that reach this level of resolution. Transmission electron microscopy, since its first implementation in the early 1930s (in Berlin), has been implemented to achieve imaging –and spectral– analysis at lateral resolutions down to the atomic level. In this contribution, a series of practical examples will be presented, where applied materials are characterized by a range of transmission electron microscopy techniques to understand structural and functional properties of a wide range of materials. Among these materials examples will be presented on structural conventionally and additively manufactured metallic alloys, high entropy alloys, dissimilar aluminum-to-steel welds, magnetic nanoparticles, ceramic coatings, high temperature oxidation products. Addressed will be either the effect of processing route or that of the exposure to experimental conditions similar to those found in the respective intended applications. T2 - UA/UAB/UAH MSE Graduate Seminar CY - Online meeting DA - 19.01.2022 KW - Transmission electron microscopy (TEM) KW - Characterization KW - Microstructure KW - 3D PY - 2022 AN - OPUS4-54238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strommer, Bettina T1 - Anisotropy in natural rubber / graphene nanocomposites N2 - The incorporation of nanoscale particles into elastomers enable a boost in performance and/or a distinct reduction of conventional filler loadings due to their high surface to volume ratio. 2D layered nanoparticles like graphene and graphene-related materials provide a great potential as effective fillers in rubber, especially by enhancing mechanical and barrier properties. The type and properties of the nanoparticles, their interface and the elastomeric matrix materials influence the technical behavior, and therefore the potential application fields of such rubber nanocomposites. Especially crucial for the efficiency of the nanofiller, however, is its best possible incorporation into the elastomer. The dispersing of nanoparticles without agglomerates usually constitutes a challenge when using conventional two-roll milling or internal mixing. Academic approaches for highly dispersed nanocomposites solve this problem but are often energy and time consuming with no feasible scale up possibility. Therefore, an ultrasonic assisted NR latex premixing process was established to produce highly filled masterbatches, enabling the main processing with conventional rubber processing techniques. Two carbon-based nanoparticles with similar specific surface areas were investigated and incorporated in natural rubber as nanocomposites: A commercially available multilayer graphene (MLG) and a nanoscale carbon black (nCB). The mentioned premixed masterbatches were further processed to nanocomposites by the addition of matrix NR, two-roll milling, and hot pressing (vulcanization). By this procedure an increase in Young’s modulus of 157% (MLG) and 71% (nCB) could be obtained at a concentration level of 3 phr. As anisotropic material behavior was observable for the nanocomposites containing MLG, different measurement methods were investigated to quantify the orientation of the nanoparticles in the nanocomposites: Sorption measurements (swelling in 2 dimensions), hardness and dynamical mechanical analysis (in-plane vs. cross-plane), X-Ray diffraction and transmission and scanning electron microscopy. T2 - DKT IRC 21 CY - Nuremberg, Germany DA - 27.06.2022 KW - Processing KW - Elastomers KW - Nanocomposites KW - Graphene KW - Orientation KW - Anisotropy PY - 2022 AN - OPUS4-55205 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawlitza, Kornelia T1 - Using Dual Fluorescent Molecularly Imprinted Particles Coupled with a Miniaturized Opto-Microfluidic Platform for On-Site Detection of Perfluoroalkyl Carboxylic Acids N2 - Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic organofluorine chemicals widely used in the production of various materials, including firefighting foams, adhesives, and coatings that resist stains and oil. In recent years, PFAS have gained attention as emerging environmental contaminants, with particular emphasis on perfluoroalkyl carboxylic acids (PFCAs), the most common type of PFAS. PFCAs are defined by a fully fluorinated carbon chain and a charged carboxylic acid group. They have been classified as Substances of Very High Concern and included in the REACH Candidate List due to their persistence, resistance to biodegradation, and toxicological impacts. Traditional methods for analyzing PFCAs, like GC-MS, HRMS, and HPLC-based techniques, are time-consuming, non-portable, expensive, and require specialized expertise. On the other hand, fluorescence assays offer a user-friendly, portable, and cost-effective alternative with high sensitivity and quick results, particularly when the binding of the analyte causes a specific increase in the probe’s fluorescence. Combining these probes with a carrier platform and a miniaturized optofluidic device presents a promising approach for PFCA monitoring. In this study, a new guanidine BODIPY fluorescent indicator monomer was synthesized, characterized, and incorporated into a molecularly imprinted polymer (MIP) designed for the specific detection of perfluorooctanoic acid (PFOA). The MIP layer was formed on silica core nanoparticles doped with tris(bipyridine)ruthenium(II) chloride, serving as an optical internal reference for calibration-free assays. In combination with an extraction step prior to sample analysis, this system enables selective and reliable detection of PFCAs in surface water samples, minimizing interference from competing substances, matrix effects, and other factors. When integrated into an opto-microfluidic setup, the assay provided a compact, user-friendly detection system capable of detecting micromolar levels of PFOA in under 15 minutes from surface water samples. T2 - ANAKON2025 CY - Leipzig, Germany DA - 10.03.2025 KW - Perfluorooctanoic Acid (PFOA) KW - On-site detection KW - Fluorescence KW - Microfluidics KW - Molecularly Imprinted Polymers PY - 2025 AN - OPUS4-62712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - López-Puertollano, Daniel T1 - Superparamagnetic core-shell particles application: from cytometry assay to simplified fluidic system N2 - Superparamagnetic hybrid polystyrene-core silica-shell beads have emerged as promising alternatives to traditional in flow cytometry-based competitive antibody assays [1]. These materials consist of a polystyrene core and a silica shell, in which magnetic nanoparticles are embedded, facilitating the handling and retention in tests. The outer silica surface allows for easy modification through silane chemistry, allowing the attachment of antibodies, or other molecules of interest. Ochratoxin A (OTA), a mycotoxin that can be found in grain products, coffee, cacao, or grapes, was chosen as the main target analyte to detect [2]. In this study, previously in house produced anti-OTA antibodies [3] were attached to the surface of the particles and the whole system was used as detection entity. In a first approach, the system was used for the development of a competitive cytometry assay using an OTA-fluorescein (OTA-F) adduct as competitor and marker. In this assay the fluorescence emitted by the OTA-F competitor on the surface of the particle was detected at a wavelength of 518 nm using a 533/30.H filter and was correlated to the forward scatter (FSC) to distinguish it from the excess of competitor still in solution. Under optimised conditions, the final assay showed a limit of detection of 0.03 nM. In a second approach, a simplified ready-to-inject fluidic system was built based on a laser (488 nm) and a photomultiplier detector to measure the signal of competitor still in solution. The competition step was carried out in a vial and the whole mixture was injected into the fluidic system. To avoid signal scattering, the particles were separated in-line using a magnet and only the OTA-F competitor still in solution was detected, reaching a limit of detection of 1.2 nM. With the aim to reduce user manipulation, the final assay is still under development for in-line incubation during the competitive step. T2 - 15th Rapid Methods Europe Conference CY - Amsterdam, Netherlands DA - 06.11.2023 KW - Microfluidics KW - Flow cytometry KW - Bead-based assays KW - Magnetic beads KW - Core-shell particles KW - Immunoassays PY - 2023 AN - OPUS4-58817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weinel, Kristina T1 - Fabrication of 2D assemblies of disordered gold nanoparticles and investigation of localized surface plasmon resonances N2 - Interaction of electromagnetic waves, such as electron beams or light, with conductive material can lead to localized surface plasmon resonances (LSPRs) where the incoming energy can be deposited in a collective excitation of electrons of the conduction band, which in turn can result in coherent localized plasmon oscillations. LSPR in metallic nanostructures, such as nanoparticles (NPs), which are sensitive to geometry, material composition and environment, are currently utilized in a wide range of applications, such as surface-enhanced Raman spectroscopy, plasmonic wave guides, improved solar cells, on-chip particle accelerators and nanoantennas. A host of studies that focus on plasmonic NPs ranging from single NPs with several shapes (cubic, spherical, tetrahedral) over 1D assemblies of NPs such as chains, to ordered 2D assemblies of NPs show an increase of the complexity regarding the hybridization behavior of LSPRs eventually lead to delocalized Surface Plasmons. Furthermore, Anderson predicted in 1977 the absence of diffusion or delocalization of waves in disordered systems, which has been discussed as the underlying mechanism for LSPRs localization in disordered metallic thin films and ultrathin 2D networks. Our aim is to further develop these studies on the surface plasmon localization in disordered structures by (1) developing a novel NPs assembly fabrication method that allows fabricating disordered assemblies of NPs of a wide range of NPs sizes, and (2) probing the LSPR with high-resolution electron energy-loss spectroscopy (EELS). Moreover, the dominant dipolar interaction between the NPs, also facilitates an efficient numerical modeling of these systems, which in comparison with the experiments allows for an in-depth study of the impact of various geometric parameters as well as retardation and life-time damping on the observed localization behavior. To synthesize 2D disordered assemblies of gold NPs on a TEM transparent silicon oxide substrate, a new synthesis routine was developed. This procedure is based on sublimation and redeposition of a gold microparticle precursor induced by an electron beam in a scanning electron microscope (SEM) operated at 30 kV. To characterize the assembly of synthesized NPs in terms of size, shape and spreading over the substrate, TEM measurements were conducted subsequently. To study LSPRs experimentally, EELS in scanning transmission electron microscopy (STEM) mode was carried out. The numerical modelling of LSPRs was performed using a self-consistent dipole model. The synthesized 2D disordered gold NPs assemblies exhibit a gradient in the NPs mean size, which ranges from 100 nm close to the precursor location down to 2 nm at a distance of more than 20 µm from the precursor location. Additionally, the interparticle distance between the gold NPs increases with increasing distance to the precursor location. The experimental investigation as well as the numerical simulation of the LSPRs demonstrate a localization behavior that decreases toward larger energies, which is driven by the disorder of the NPs assembly (mainly the random particle distance). That localization behavior stays in contrast to what was found in ultrathin 2D gold networks showing increasing of localization towards higher LSPRs energies. By varying the geometric parameters of the NPs assembly in the simulation, we could identify the NPs thickness as the parameter, that determines the energy-dependence of the localization. Specifically, a critical thickness of approx. 10 nm separates the two localization regimes, which correlates to the energy of the dipole mode resonance crucially depending on the thickness of the NPs. 2D disordered assemblies of gold NPs of a wide range of NPs sizes and distances can be synthesized directly on thin substrates facilitating structural characterization and EELS measurements in a TEM. It could be shown that such assemblies exhibit LSPRs with a localization behavior that may be tuned by the NPs sizes (including thickness) and interparticle distances. The proposed synthesis of random NPs assemblies opens new avenues for fundamental studies on Anderson localization in disordered plasmonic structures as well as its applications such as surface-enhanced Raman spectroscopy where localization behavior must be tuned to specific wave lengths. T2 - 17th European Microscopy Congress (EMC 2024) CY - Copenhagen, Denmark DA - 26.08.2024 KW - Transmission electron microscopy KW - Scanning electron microscopy KW - Localized surface plasmon resonances KW - Gold nanoparticle synthesis KW - Disordered assemblies PY - 2024 AN - OPUS4-60947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawlitza, Kornelia T1 - On-Site Detection of PFAAs with Dual Fluorescent MIPs Coupled to a Miniaturized Microfluidics Platform N2 - Per- and polyfluoroalkyl substances (PFAS) represent a class of synthetic organofluorine chemicals extensively utilized in the manufacturing of various materials such as firefighting foams, adhesives, and stain- and oil-resistant coatings. In recent years, PFAS have been considered as emerging environmental contaminants, with particular focus on perfluoroalkyl carboxylic acids (PFCAs), the most prevalent type among PFAS. PFCAs are characterized by a fully fluorinated carbon backbone and a charged carboxylic acid headgroup. Notably, they have been designated as Substances of Very High Concern and added to the REACH Candidate List due to their persistence in the environment, non-biodegradability and toxicological effects. Conventional techniques for the analysis of PFCA, such as GC-MS, HRMS and HPLC-based methods, are laborious, not portable, costly and require skilled personnel. In contrast, fluorescence assays can be designed as easy-to-operate, portable and cost-effective methods with high sensitivity and fast response, especially when analyte binding leads to a specific increase of a probe’s emission. Integration of such probes with a carrier platform and a miniaturized optofluidic device affords a promising alternative for PFCA monitoring. Here, a novel guanidine BODIPY fluorescent indicator monomer has been synthesized, characterized, and incorporated into a molecularly imprinted polymer (MIP) for the specific detection of perfluorooctanoic acid (PFOA). The MIP layer was formed on tris(bipyridine)ruthenium(II) chloride doped silica core particles for optical internal reference and calibration-free assays. Such system allows selective and reliable detection of PFCA from surface water samples, with minimum interference by competitors, matrix effects and other factors. Integration of the assay into an opto-microfluidic setup resulted in a miniaturized and easy-to-operate detection system allowing for micromolar detection of PFOA in less than 15 minutes from surface water sample. T2 - MIP2024: The 12th International Conference on Molecular Imprinting CY - Verona, Italy DA - 18.06.2024 KW - Sensor KW - PFAS KW - Molecularly imprinted polymers KW - Guanidine receptor KW - BODIPY PY - 2024 AN - OPUS4-60438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fayis Kalady, Mohammed A1 - Schultz, Johannes A1 - Weinel, Kristina A1 - Wolf, Daniel A1 - Lubk, Axel T1 - Geometry-dependent localization of surface plasmons on random gold nanoparticle assemblies N2 - Assemblies of plasmonic nanoparticles (NPs) support hybridized modes of localized surface plasmons (LSPs), which delocalize in geometrically well-ordered arrangements. Here, the hybridization behavior of LSPs in geometrically completely disordered two-dimensional arrangements of Au NPs fabricated by an e-beam synthesis method is studied. Employing electron energy loss spectroscopy in a scanning transmission electron microscope and numerical simulations, the disorder-driven spatial and spectral localization of the coupled LSP modes that depends on the NP thickness is revealed. Below a NP thickness of 0.4 nm, localization increases toward higher hybridized LSP mode energies. In comparison, above 10 nm thickness, a decrease of localization toward higher mode energies is observed. In the intermediate thickness regime, a transition of the energy dependence of the localization between the two limiting cases, exhibiting a mode energy with minimal localization, is observed. It is shown that this behavior is mainly driven by the energy and thickness dependence of the polarizability of the individual NPs. KW - Gold Nanoparticles KW - Surface plasmons KW - Electron enerdy loss spectroscopy (EELS) KW - scanning transmission electron microscopy PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647230 DO - https://doi.org/10.1103/44nk-6bp2 SN - 2643-1564 VL - 7 IS - 043053 EP - 4 PB - American Physical Society AN - OPUS4-64723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Homann, Christian A1 - Peeters, Régis A1 - Mirmajidi, Hana A1 - Berg, Jessica A1 - Fay, Michael A1 - Rodrigues, Lucas Carvalho Veloso A1 - Radicchi, Eros A1 - Jain, Akhil A1 - Speghini, Adolfo A1 - Hemmer, Eva T1 - Rapid microwave-assisted synthesis of morphology-controlled luminescent lanthanide-doped Gd2O2S nanostructures N2 - Gadolinium oxysulfide (Gd2O2S) is an attractive material of demonstrated suitability for a variety of imaging applications, leveraging its magnetic, scintillating, and luminescent properties, particularly when doped with optically active lanthanide ions (Ln3+). For many of these applications, control over size and morphology at the nanoscale is crucial. This study demonstrates the rapid microwave-assisted Synthesis of colloidal Ln2O2S (Ln = Gd and dopants Yb, Er, Tb) nanostructures in as little as 20 min. Structural characterization using X-ray diffraction analysis (XRD), Raman spectroscopy, as well as Transmission electron microscopy (TEM), including elemental mapping via energy dispersive X-ray spectroscopy (EDS), unveiled the key role of elemental sulphur (S8) in the reaction mixtures for materials growth. By systematically varying the Ln-to-S ratio from 1 : 0.5 to 1 : 15, controlled morphologies ranging from triangular nanoplatelets to berry- and flower-like shapes were achieved. Doping with Er3+/Yb3+ endowed the nano-triangles with upconverting and near-infrared emitting properties. Tb3+-doped Gd2O2S exhibited the characteristic green Tb3+ emission under UV excitation, while also showing X-ray excited optical luminescence (XEOL), rendering the material interesting as a potential nano-scintillator. KW - Upconversion KW - Microwave-assisted synthesis KW - Synthesis KW - Fluorescence KW - Nano KW - Particle KW - NIR KW - XRD KW - X-ray fluoressence KW - Morphology control KW - Raman PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647907 DO - https://doi.org/10.1039/D5TC01646K SN - 2050-7526 VL - 13 IS - 35 SP - 18492 EP - 18507 PB - Royal Society of Chemistry (RSC) AN - OPUS4-64790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -