TY - CONF A1 - Omar, Hassan T1 - Investigations of Ultrathin Polymer Films Supported on Inorganic Substrates N2 - Interactions between a polymer and a substrate interface play a vital role in understanding the improvement in thin film material properties as well as serving as a model for nanocomposites. For any non-repulsive polymer-substrate interactions, polymer segments form an irreversibly adsorbed layer and show a slowdown in the glassy dynamics and thus an increase in the thermal glass transition temperature compared to the bulk-like values. The growth kinetics of the adsorbed layer showed a deviation for both poly (bisphenol-A carbonate) (PBAC) and polysulfone (PSU), two bulky polymers containing a functional group (phenyl ring) in the backbone. T2 - Royal Society of Chemistry (RSC) Online Poster Conference CY - Online meeting DA - 05.03.2024 KW - Adsorbed Layer KW - Thin Films KW - Atomic Force Microscopy KW - Ellipsometry PY - 2024 AN - OPUS4-59625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska T1 - Particle size determination of a commercially available CeO2 nano powder - SOPs and reference data N2 - Compilation of detailed SOPs for characterization of a commercially available CeO2 nano powder including - suspension preparation (indirect and direct sonication), - particle size determination (Dynamic Light Scattering DLS and Centrifugal Liquid Sedimentation CLS) with reference data, respectively. For sample preparation and analysis by Scanning Electron Microscopy (SEM) of this powder see related works (submitted, coming soon). KW - Wet dispersion KW - Nano powder KW - Particle size KW - CeO2 KW - Ceria KW - DLS KW - CLS PY - 2023 DO - https://doi.org/10.5281/zenodo.10061079 PB - Zenodo CY - Geneva AN - OPUS4-58785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska T1 - SOP and reference data for determination of the Volume-specific Surface Area (VSSA) of a commercially available CeO2 nano powder N2 - Detailed SOP and reference data for the determination of the VSSA of a commercially available CeO2 nano powder: specific (BET-) Surface Area by gas adsorption (Ar and N2) skeletal (true solid state) density by gas pycnometry. Estimation of the particle size by VSSA screening method. KW - Nano powder KW - VSSA KW - Volume specific surface area KW - Screening method KW - Ceria KW - CeO2 PY - 2023 DO - https://doi.org/10.5281/zenodo.10061235 PB - Zenodo CY - Geneva AN - OPUS4-58786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - BP150: Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement by Monte-Carlo based particle scattering Simulations N2 - Dose enhancement by gold nanoparticles (AuNP) increases the biological effectiveness of radiation damage in biomolecules and tissue. To apply them effectively during cancer therapy their influence on the locally delivered dose has to be determined. Hereby, the AuNP locations strongly influence the energy deposit in the nucleus, mitochondria, membrane and the cytosol of the targeted cells. In this work, two newly developed continuous and discrete-geometric models for simulations of AuNP in cells are presented. We apply the presented models in Monte-Carlo particle scattering simulations to characterize the energy deposit in cell organelles by radioactive 198AuNP. They emit beta and gamma rays and are therefore considered for applications with solid tumors. Differences in local dose enhancement between randomly distributed and nucleus targeted nanoparticles are compared. Hereby nucleus targeted nanoparticels showed a strong local dose enhancement in the radio sensitive nucleus. T2 - DPG Frühjahrstagung CY - Dresden, Germany DA - 26.03.2023 KW - AuNP KW - Beta decay KW - Brachytherapy KW - Cancer treatment KW - Clustered nanoparticles KW - DNA KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - LEE KW - Livermore model KW - Low energy electrons KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - OH radical KW - Penelope model KW - Radiation damage KW - Radiation therapy KW - Radiationtherapy KW - Radioactive decay KW - Radiolysis KW - Radiotherapy KW - Simulation KW - TOPAS KW - TOPAS-nbio KW - Beta particle KW - Particle scattering KW - Protein KW - Proteins PY - 2023 AN - OPUS4-57253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Omar, Hassan T1 - Probing Nanoscale Relaxation Behavior in Thin Polymer Films N2 - The investigations into the complicated effects of film thickness on bulk properties of thin polymer films has yielded conflicting results. The reduction in molecular mobility, and with it an increase in the glass transition temperature, for thin films of poly (bisphenol A carbonate) (PBAC) was assigned to the formation of an adsorbed layer. The adsorbed layer was obtained by washing away the loosely bounded chains using a good solvent. Next, using atomic force microscopy (AFM), the thickness of each sample was measured after annealing for various times at three different annealing temperatures. The growth of this adsorbed layer was shown to deviate from the previously reported 2-step mechanism seen for other polymers. For PBAC, after very long annealing times at high temperatures the thin films were dewetted, where segments of the adsorbed layer were removed from the substrate. T2 - Royal Society of Chemistry (RSC) Poster CY - Online meeting DA - 28.02.2023 KW - Thin films KW - Adsorbed Layer KW - Broadband dielectric spectroscopy KW - Atomic force microscopy KW - Growth Kinetics PY - 2023 AN - OPUS4-57196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arai, Marylyn Setsuko A1 - Kim, Hyunho A1 - Pascavis, Madeleine A1 - Cha, Baekdong A1 - Brambilla, Gabriel A1 - Cho, Young Kwan A1 - Park, Jinho A1 - Vilela, Raquel R. C. A1 - de Camargo, Andrea S. S. A1 - Castro, Cesar M. A1 - Lee, Hakho T1 - Upconverting Nanoparticle-based Enhanced Luminescence Lateral-Flow Assay for Urinary Biomarker Monitoring N2 - Development of efficient portable sensors for accurately detecting biomarkers is crucial for early disease diagnosis, yet remains a significant challenge. To address this need, we introduce the enhanced luminescence lateral-flow assay, which leverages highly luminescent upconverting nanoparticles (UCNPs) alongside a portable reader and a smartphone app. The sensor’s efficiency and versatility were shown for kidney health monitoring as a proof of concept. We engineered Er3+- and Tm3+-doped UCNPs coated with multiple layers, including an undoped inert matrix shell, a mesoporous silica shell, and an outer layer of gold (UCNP@mSiO2@Au). These coatings synergistically enhance emission by over 40-fold and facilitate biomolecule conjugation, rendering UCNP@mSiO2@Au easy to use and suitable for a broad range of bioapplications. Employing these optimized nanoparticles in lateral-flow assays, we successfully detected two acute kidney injury-related biomarkers-kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL)-in urine samples. Using our sensor platform, KIM-1 and NGAL can be accurately detected and quantified within the range of 0.1 to 20 ng/mL, boasting impressively low limits of detection at 0.28 and 0.23 ng/mL, respectively. Validating our approach, we analyzed clinical urine samples, achieving biomarker concentrations that closely correlated with results obtained via ELISA. Importantly, our system enables biomarker quantification in less than 15 min, underscoring the performance of our novel UCNP-based approach and its potential as reliable, rapid, and user-friendly diagnostics. KW - Biosensor KW - Upconverting nanoparticles KW - Lateral flow KW - Portable sensor KW - Kidney injury PY - 2024 DO - https://doi.org/10.1021/acsami.4c06117 SN - 1944-8244 VL - 16 IS - 29 SP - 38243 EP - 38251 PB - American Chemical Society (ACS) AN - OPUS4-60689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Iannuzzi, Maurizio A1 - Chowdhary, Suvrat A1 - Fiedler, Holly A1 - Haoues, Kilian A1 - Schade, Boris A1 - Thünemann, Andreas A1 - Quaas, Elisa A1 - Koksch, Beate T1 - Rational design of polyfluorinated peptide-based materials: Self-assembly of an amphiphilic motif N2 - Generation of a pH sensitive amphiphilic block oligopeptide containing the bioactive function RGD and a library of derivatives varying the length of the hydrophobic core and the degree of side chain fluorination. Peptide rational design enables us to obtain desired features (pH sensitivity etc.). The introduction of fluorine alters a wide range of peptide properties such as secondary structure propensity, folding, thermal and metabolic stability and proteolytic resistance. The RGD function is highly effective at promoting the attachment of numerous cell types to a plethora of materials. This small sequence is the principal integrin-binding domain present within ECM proteins such as fiobronectin, vibronectin and fibrinogen. For this reason, RGD containing peptides offer several advantages for biomaterials applications. The use of RGD compared with native ECM proteins, minimized the risk of immune reactivity or pathogen transfer. Herein in this work, we present the peptide motif X6RGD and its fluoro-derivates for prospective receptor-specific drug delivery in cancer theraphy. Overall, our results demonstrate that high degree of fluorination achieved triggers a selective modification of peptide self-assembly dramatically improving the structural properties, the carrier suitability, enzimatic degradation profiles and cytotoxic features of the fluoropeptide conjugate(s). T2 - 37th European Peptide Symposium CY - Florence, Italy DA - 25.08.2024 KW - Nanostructure KW - SAXS KW - Small-angle X-ray scattering PY - 2024 SN - 1099-1387 VL - 30 IS - S2 SP - 247 EP - 248 PB - Wiley CY - New York, NY AN - OPUS4-62191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Duarte Bernardino, Carolina T1 - Metal-Ion Loaded Silica Nanoparticles as Antimicrobial Coatings for Safer High-Touch Surfaces N2 - Not only since the Covid-19 pandemic have researchers focused their efforts on high touch surfaces to minimize the contraction of infectious diseases due to human contact. To help prevent the spread of infectious pathogens, surfaces and coatings are designed to minimize the presence or survivability of pathogens on surfaces in various settings, including healthcare centers, long-term care facilities, public transport, schools, and businesses. Extensive research has focused on finding solutions to prevent bacterial transmission and biofilm formation by killing or reducing the attachment of microbes. These solutions include surface-bound active antimicrobials, biocidal coatings, and passive pathogen-repellent surfaces, developed using nanomaterials, chemical modifications, and micro- and nano-structuring. Nanomaterials are a prime candidate for such a solution. Here, we developed mesoporous silica nanoparticles (MSNs) loaded with antimicrobially active silver and copper ions that can be used in sprayable formulations as surface coatings. The influence of different surface functionalization and metal ion loadings on the efficacy of these sprayable coatings was studied. Amine- (MSN-NH2), carboxy- (MSN-COOH) and thiol-functionalized mesoporous silica nanoparticles (MSN-SH) were synthesized and characterized using different techniques, such as transmission electron microscopy (TEM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), dynamic light scattering (DLS), electrophoretic light scattering (Zeta potential measurements) and nitrogen sorption measurements. After loading MSNs with antimicrobially active silver or copper ions, the nanoparticle dispersions were spray-coated on stainless steel substrates that were primed with sprayable polyelectrolyte solutions to enhance coating homogeneity and nanoparticle adhesion. The metal ion release was analyzed by Inductively coupled plasma optical emission spectroscopy (ICP-OES). The antimicrobial properties of the nanoparticle suspension and the coatings were tested against three commonly found pathogenic bacteria, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli as well as a fungal pathogen, Candida albicans. The toxicity of the coatings against human skin cells was also assessed. T2 - STOP Antimicrobial Coatings Conference CY - Mons, Belgium DA - 05.12.2024 KW - Mesoporous Silica Nanoparticles KW - Antimicrobial Coatings KW - Spray-Coating KW - Pathogens PY - 2024 AN - OPUS4-62180 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ruehle, Bastian T1 - Natural language processing for automated workflow and knowledge graph generation in self-driving labs N2 - Natural language processing with the help of large language models such as ChatGPT has become ubiquitous in many software applications and allows users to interact even with complex hardware or software in an intuitive way. The recent concepts of Self-Driving Labs and Material Acceleration Platforms stand to benefit greatly from making them more accessible to a broader scientific community through enhanced user-friendliness or even completely automated ways of generating experimental workflows that can be run on the complex hardware of the platform from user input or previously published procedures. Here, two new datasets with over 1.5 million experimental procedures and their (semi)automatic annotations as action graphs, i.e., structured output, were created and used for training two different transformer-based large language models. These models strike a balance between performance, generality, and fitness for purpose and can be hosted and run on standard consumer-grade hardware. Furthermore, the generation of node graphs from these action graphs as a user-friendly and intuitive way of visualizing and modifying synthesis workflows that can be run on the hardware of a Self-Driving Lab or Material Acceleration Platform is explored. Lastly, it is discussed how knowledge graphs – following an ontology imposed by the underlying node setup and software architecture – can be generated from the node graphs. All resources, including the datasets, the fully trained large language models, the node editor, and scripts for querying and visualizing the knowledge graphs are made publicly available. KW - Natural Language Processing KW - Large Language Models KW - Self-Driving Labs KW - Materials Acceleration Platforms KW - Workflows KW - Nanomaterials KW - Advanced Materials PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-631947 UR - https://github.com/BAMresearch/MAPz_at_BAM/tree/main/Minerva-Workflow-Generator DO - https://doi.org/10.1039/d5dd00063g SN - 2635-098X SP - 1 EP - 10 PB - Royal Society of Chemistry (RSC) AN - OPUS4-63194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Kolmangadi, Mohamed A. A1 - Schönhals, Andreas T1 - Application of Fast Scanning Calorimetry in Soft Matter Research – Two Examples: 1. Polymers for Gas separation membranes 2. Ionic Liquid Crystals N2 - The application of fast scanning calorimetry (FSC) with heating rates in the range from 10 K/s to 10,000 K/s in soft matter research is discussed through two examples. In the first part, FSC is applied to polymers of intrinsic microporosity (PIMs). No glass transition could be measured for these polymers by conventional calorimetry before their degradation. By decoupling the time scales of chemical degradation and the glass transition, it could be shown for the first time that PIMs undergo a glass transition. In the second part, FSC is applied to ionic liquid crystals to investigate their molecular mobility. In order to cover a broad dynamical range, FSC is combined with temperature-modulated differential scanning calorimetry, and temperature-modulated FSC. T2 - Colloqium at the physics department of the Charles university Prague CY - Prague, Czech Republic DA - 12.11.2024 KW - Fast Scanning Calorimetry PY - 2024 AN - OPUS4-61670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -