TY - JOUR A1 - Monavari, Mahshid A1 - Homaeigohar, Shahin A1 - Medhekar, Rucha A1 - Nawaz, Qaisar A1 - Monavari, Mehran A1 - Zheng, Kai A1 - Boccaccini, Aldo R. T1 - A 3D-Printed Wound-Healing Material Composed of Alginate Dialdehyde–Gelatin Incorporating Astaxanthin and Borate Bioactive Glass Microparticles N2 - In this study, a wound dressing composed of an alginate dialdehyde−gelatin (ADA-GEL) hydrogel incorporated by astaxanthin (ASX) and 70B (70:30 B2O3/CaO in mol %) borate bioactive glass (BBG) microparticles was developed through 3D printing. ASX and BBG particles sti.ened the composite hydrogel construct and delayed its in vitro degradation compared to the pristine hydrogel construct, mainly due to their cross-linking role, likely arising from hydrogen bonding between the ASX/BBG particles and ADA-GEL chains. Additionally, the composite hydrogel construct could hold and deliver ASX steadily. The composite hydrogel constructs codelivered biologically active ions (Ca and B) and ASX, which should lead to a faster, more e.ective wound-healing process. As shown through in vitro tests, the ASX-containing composite hydrogel promoted fibroblast (NIH 3T3) cell adhesion, proliferation, and vascular endothelial growth factor expression, as well as keratinocyte (HaCaT) migration, thanks to the antioxidant activity of ASX, the release of cell-supportive Ca2+ and B3+ ions, and the biocompatibility of ADA-GEL. Taken together, the results show that the ADA-GEL/BBG/ASX composite is an attractive biomaterial to develop multipurposed wound-healing constructs through 3D printing. KW - General Materials Science PY - 2023 DO - https://doi.org/10.1021/acsami.2c23252 SP - 1 EP - 12 PB - American Chemical Society (ACS) AN - OPUS4-58548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Favres, Georges T1 - European Metrology Network (EMN) for Advanced Manufacturing N2 - The European Commission has identified Advanced Manufacturing and Advanced Materials as two of six Key Enabling Technologies (KETs). By fully utilizing these KETs, advanced and sustainable economies will be created. It is considered that Metrology is a key enabler for the advancement of these KETs. EURAMET, the association of metrology institutes in Europe, has strengthened the role of Metrology for these KETs by enabling the creation of a European Metrology Network for Advanced Manufacturing. The EMN is made up of National Metrology Institutes (NMIs) and Designated Institutes (DIs) from across Europe and was formally established in October 2021. The EMN aims to provide a high-level coordination of European metrology activities for the Advanced Materials and Advanced Manufacturing community. The EMN itself is organized in three sections representing the major stages of the manufacturing chain: 1) Advanced Materials, 2) Smart Manufacturing Systems, and 3) Manufactured Components & Products. The EMN for Advanced Manufacturing is engaging with stakeholders in the field of Advanced Manufacturing and Advanced Materials (Large companies & SMEs, industry organisations, existing networks, and academia), as well as the wider metrology community (including TCs) to provide input for the preparation of a Strategic Research Agenda (SRA) for Metrology for Advanced Manufacturing. This presentation will describe the progress in the development of the SRA by the EMN for Advanced Manufacturing. The metrology challenges identified across the various key industrial sectors, which utilise Advanced Materials and Advanced Manufacturing will be presented. The EMN for Advanced Manufacturing is supported by the project JNP 19NET01 AdvManuNet. T2 - 21st International Metrology Congress, CIM 2023 CY - Lyon (Chassieu), France DA - 07.03.2023 KW - Advanced Materials KW - EMN KW - European Metrology Network for Advanced Manufacturing, Strategic Research Agenda KW - SRA PY - 2023 AN - OPUS4-59208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - O'Connor, Daniel A1 - Evans, Alexander A1 - Balsamo, Alessandro A1 - Favres, Georges A1 - Przyklenk, Anita A1 - Bosse, Harald A1 - Phillips, Dishi T1 - European Metrology Network (EMN) for Advanced Manufacturing ─ Development of the Strategic Research Agenda (SRA) N2 - The European Commission has identified Advanced Manufacturing and Advanced Materials as two of six Key Enabling Technologies (KETs). It is considered that Metrology is a key enabler for the advancement of these KETs. Consequently, EURAMET, the association of metrology institutes in Europe, has strengthened the role of Metrology for these KETs by enabling the creation of a European Metrology Network (EMN) for Advanced Manufacturing. The EMN is comprised of National Metrology Institutes (NMIs) and Designated Institutes (DIs) from across Europe and was formally established in October 2021. The aim of the EMN is to provide a high-level coordination of European metrology activities for the Advanced Manufacturing community. The EMN itself is organized in three sections representing the major stages of the manufacturing chain: 1) Advanced Materials, 2) Smart Manufacturing Systems, and 3) Manufactured Components & Products. The EMN for Advanced Manufacturing is engaging with stakeholders in the field of Advanced Manufacturing (large companies & SMEs, industry organisations, existing networks, and academia), as well as the wider Metrology community, including Technical Committees, to provide input for the Strategic Research Agenda (SRA) on Metrology for Advanced Manufacturing. This contribution will give an overview about the first version of the SRA prepared by the EMN for Advanced Manufacturing T2 - Euspen, 23rd International Conference & Exhibitio CY - Copenhagen, Danmark DA - 12.06.2023 KW - European Metrology Network (EMN) KW - Advanced Manufacturing KW - Metrology KW - Strategic Research Agenda (SRA) PY - 2023 SP - 363 EP - 364 AN - OPUS4-59196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sprachmann, J. A1 - Grabicki, N. A1 - Möckel, Anna A1 - Maltitz, J. A1 - del Refugio Monroy Gómez, J. A1 - Smales, Glen Jacob A1 - Dumele, O. T1 - Substituted Benzophenone Imines for COF Synthesis via Formal Transimination N2 - Covalent organic frameworks (COFs) are a prominent class of organic materials constructed from versatile building blocks via reversible reactions. The quality of imine-linked COFs can be improved by using amine monomers protected with benzophenone forming benzophenone imines. Here, we present a study on substituted benzophenones in COF synthesis via formal transimination. 12 para-substituted N-aryl benzophenone imines, with a range of electron-rich to electron-poor substituents, were prepared and their hydrolysis kinetics were studied spectroscopically. All substituted benzophenone imines can be employed in COF synthesis and lead to COFs with high crystallinity and high porosity. The substituents act innocent to COF formation as the substituted benzophenones are cleaved off. Imines can be tailored to their synthetic demands and utilized in COF formation. This concept can make access to previously unattainable, synthetically complex COF monomers feasible. KW - Materials Chemistry KW - Metals and Alloys KW - Surfaces, Coatings and Films KW - General Chemistry KW - Ceramics and Composites KW - Electronic, Optical and Magnetic Materials KW - Catalysis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586449 DO - https://doi.org/10.1039/D3CC03735E SN - 1359-7345 SP - 1 EP - 4 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Digital Everything: X-ray Scattering and Synthesis Laboratories N2 - In our (dramatically understaffed) X-ray scattering laboratory, developing a systematic, holistic methodology let us provide scattering and diffraction information for more than 2100 samples for 200+ projects led by 120+ collaborators. Combined with automated data correction pipelines, and our analysis and simulation software, this led to more than 40 papers in the last 5 years with just over 2 full-time staff members. This year, our new, modular synthesis platform has made more than 1000 additional samples for us to analyse and catalogue. By virtue of the automation, the synthesis of these samples is automatically documented in excruciating detail, preparing them for upload and exploitation in large-scale materials databases. This talk is intended to spark ideas and invite collaborations by providing an overview of: 1) the current improvements in our wide-range X-ray scattering laboratory methodology, and 2) introducing our open, modular robotic platform for systematic sample preparation. T2 - Seminar at KIT CY - Karlsruhe, Germany DA - 17.08.2023 KW - Lab automation KW - Data stewardship KW - Scattering KW - X-ray scattering KW - Automated synthesis KW - Data pipelines PY - 2023 AN - OPUS4-58234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Glimpses of the future: a “full stack”, highly automated materials research laboratory N2 - In our (dramatically understaffed) X-ray scattering laboratory, developing a systematic, holistic methodology let us provide scattering and diffraction information for more than 2100 samples for 200+ projects led by 120+ collaborators. Combined with automated data correction pipelines, and our analysis and simulation software, this led to more than 40 papers in the last 5 years with just over 2 full-time staff members. This year, our new, modular synthesis platform has made more than 1000 additional samples for us to analyse and catalogue. By virtue of the automation, the synthesis of these samples is automatically documented in excruciating detail, preparing them for upload and exploitation in large-scale materials databases. Having developed these proof-of-concepts, we find that materials research itself is changed dramatically by automating dull tasks in a laboratory. This talk is intended to spark ideas and collaborations by providing an overview of: 1) the current improvements in our scattering laboratory methodology, 2) introducing our open, modular robotic platform that is used for systematic sample preparation, and 3) demonstrating the data structure of the synthesis logs and measurements. Finally, the remaining bottlenecks and points of attention across all three are highlighted. T2 - FAIRmat seminar CY - Berlin, Germany DA - 28.09.2023 KW - Data stewartship KW - Metadata collection KW - Laboratory methodology KW - MOUSE KW - Robotics KW - Lab automation KW - Holistic science PY - 2023 UR - https://www.fairmat-nfdi.eu/events/brian-pauw AN - OPUS4-58464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Glimpses of the Future : Advancing X-ray Scattering in an Automated Materials Research Laboratory N2 - In our (dramatically understaffed) X-ray scattering laboratory, developing a systematic, holistic methodology1 let us provide scattering and diffraction information for more than 2100 samples for 200+ projects led by 120+ collaborators. Combined with automated data correction pipelines, and our analysis and simulation software, this led to more than 40 papers2 in the last 5 years with just over 2 full-time staff members. This year, our new, modular synthesis platform has made more than 1000 additional samples for us to analyse and catalogue. By virtue of the automation, the synthesis of these samples is automatically documented in excruciating detail, preparing them for upload and exploitation in large-scale materials databases. Having developed these proof-of-concepts, we find that materials research itself is changed dramatically by automating dull tasks in a laboratory. This talk is intended to spark ideas and invite collaborations by providing an overview of: 1) the current improvements in our wide-range X-ray scattering laboratory methodology, 2) Introduce some of our open-source analysis and simulation software, touching on scattering, diffraction and PDF, and 3) introducing our open, modular robotic platform for systematic sample preparation. Finally, the remaining bottlenecks and points of attention across all three are highlighted. T2 - Swiss Society for Crystallography (SSCr) annual meeting CY - Zurich, Switzerland DA - 08.09.2023 KW - Lab automation KW - Fourier transforms KW - X-ray scattering KW - Robotic synthesis KW - Data stewardship KW - Holistic experimental procedures KW - MOUSE KW - Metal-organic frameworks KW - High-throughput measurements PY - 2023 AN - OPUS4-58237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Glimpses of the Future : Oh my god it’s full of metadata! N2 - In this talk, the importance of metadata is underscored by real-world examples. Metadata is essential to alleviating the reproducibility crises in science. This imples that a wide range of metadata must be collected, with a heavy emphasis on the automated collection of such metadata. This must subsequently be organized in an intelligible, archival structure, when possible with units and uncertainties. Such metadata can aid in improving the usage efficiency of instrumentation, as is demonstrated on the MOUSE instrument. This metadata can now be used to connect the various aspects of the holistic experimental procedure to gain better insights on the materials structure. A second example shows the extraction and organization of such metadata from an automated materials development platform, collected during the synthesis of 1200 samples. These metadata from the synthesis can then be linked to the results from the analysis of these samples, to find direct correlations between the synthesis parameters and the final structure of the materials. T2 - Helmholtz Incubator Summer Academy - Next Level Data Science CY - Online meeting DA - 18.09.2023 KW - Metadata KW - Lab automation KW - Data provenance KW - High-throughput KW - Correlative analysis KW - MOUSE KW - X-ray scattering KW - Robotics PY - 2023 AN - OPUS4-58463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - A holistic experiment chain for scattering-powered materials science investigations N2 - In our (dramatically understaffed) X-ray scattering laboratory, developing a systematic, holistic methodology1 let us provide scattering and diffraction information for more than 2100 samples for 200+ projects led by 120+ collaborators over the last five years. Combined with universal, automat-ed data correction pipelines, as well as our analysis and simulation software, this led to more than 40 papers2 in the last 5 years with just over 2 full-time staff members. While this approach greatly improved the consistency of the results, the consistency of the samples and sample series provided by the users was less reliable nor necessarily reproducible. To address this issue, we built an EPICS-controlled, modular synthesis platform to add to our laboratory. To date, this has prepared over 1200 additional (Metal-Organic Framework) samples for us to meas-ure, analyse and catalogue. By virtue of the automation, the synthesis of these samples is automat-ically documented in excruciating detail, preparing them for upload and exploitation in large-scale materials databases alongside the morphological results obtained from the automated X-ray scat-tering analysis. Having developed these proof-of-concepts, we find that the consistency of results are greatly im-proved by virtue of their reproducibility, hopefully adding to the reliability of the scientific findings as well. Additionally, the nature of the experiments has changed greatly, with much more emphasis on preparation and careful planning. This talk will discuss the advantages and disadvantages of this highly integrated approach and will touch upon upcoming developments. T2 - canSAS-XIII CY - Grenoble, France DA - 16.10.2023 KW - Methodology KW - Lab automation KW - X-ray scattering KW - Automated synthesis KW - Data stewardship KW - Holistic experimental procedures KW - Scicat PY - 2023 AN - OPUS4-58643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dal Molin, E. S. A1 - Henning, L. M. A1 - Müller, J. T. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Bekheet, M. F. A1 - Gurlo, A. A1 - Simon, U. T1 - Robocasting of ordered mesoporous silica‐based monoliths: Rheological, textural, and mechanical characterization N2 - Hierarchically porous, high‐surface‐area silica materials are excellent candidates for multiple applications like catalysis and environmental remediation. Shaping these materials with additive manufacturing (AM) techniques, like robocasting, could enable their use with the benefit of on‐demand, customized shaping and maximizing performance. Herein, ordered mesoporous silica COK‐12 slurries were robocasted into monoliths, containing different ratios of uncalcined COK‐12 and sodium bentonite (0–25 wt.%). The rheology of the mixed slurries is characterized by lower flow indexes (0.69 vs. 0.32) and higher yield stresses (96 vs. 259 Pa) compared to pure COK‐12 ones. Monoliths were printed in woodpile structures and calcined at 600°C. Micro‐CT measurements showed a linear shrinkage of 25% after calcination. Mechanical characterization showed increased uniaxial strength (0.20 ± 0.07 to 1.0 ± 0.3 MPa) with increasing binder/solids ratio from 13 to 25%. The amorphous, mesoporous structure of COK‐12 was retained. The structures exhibited open porosities of 52 ± 4% and showed higher specific mesopore volumes, and increased average mesopore size (6 vs. 8 nm) compared to COK‐12. Small‐angle x‐ray scattering analysis revealed an increased lattice parameter (10.3 vs. 11.0 nm) and reduced wall thickness (3.1 nm vs. 4.1 nm) of the COK‐12 in the monoliths. These properties indicate suitability for their application as porous supports and adsorbents. KW - Industrial and Manufacturing Engineering KW - Additive manufacturing KW - OMS KW - Porous materials KW - Robocasting KW - X-ray scattering KW - MOUSE PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582503 DO - https://doi.org/10.1002/nano.202300109 VL - 4 IS - 11-12 SP - 615 EP - 631 PB - Wiley-VCH GmbH AN - OPUS4-58250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -