TY - CONF A1 - Richter, Anja A1 - Mezera, Marek A1 - Buchberger, G. A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Heitz, J. A1 - Schwibbert, Karin T1 - Laser-processing – a tool to direct biofilm formation N2 - Using nanofiber-like cell appendages, secreted proteins and sugars, bacteria can establish initial surface contact followed by irreversible adhesion and the formation of multicellular biofilms, often with enhanced resistance towards antimicrobial treatment and established cleaning procedures. On e.g. medical implants, in water supply networks or food-processing industry, biofilms can be a fertile source of bacterial pathogens and are repeatedly associated with persisting, nosocomial and foodborne infections. Nowadays, the emergence of resistances because of extensive usage of antibiotics and biocides in medicine, agriculture and private households have become one of the most important medical challenges with considerable economic consequences. In addition, aggravated biofilm eradication and prolonged cell-surface interaction can lead to increased biodeterioration and undesired modification of industrial and medical surface materials. Various strategies are currently developed, tested, and improved to realize anti-bacterial surface properties through surface functionalization steps avoiding antibiotics. In this study, contact-less and aseptic large-area short or ultrashort laser processing is employed to generate different surface structures in the nanometer- to micrometer-scale on technical materials such as titanium-alloy and polyethylene terephthalate (PET). The laser processed surfaces were subjected to bacterial colonization studies with Escherichia coli test strains and analyzed with reflected-light and epi-fluorescence microscopy. Depending on the investigated surfaces, different bacterial adhesion patterns were found, ranging from bacterial-repellent to bacterial-attractant effects. The results suggest an influence of size, shape and cell appendages of the bacteria and – above all – the laser-processed nanostructure of the surface itself, emphasizing the potential of laser-processing as a versatile tool to control bacterial surface adhesion. T2 - International Biodeterioration & Biodegradation Symposium 2021 CY - Online meeting DA - 06.09.2021 KW - Bacterial adhesion KW - Biofilm formation KW - Laser-induced periodic surface structueres (LIPPS) KW - Laser processing PY - 2021 UR - https://www.ibbs18.org/programme AN - OPUS4-53223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fiedler, Saskia A1 - Mortensen, N. A. A1 - Wolff, C. A1 - Morozov, S. A1 - Illiushyn, L. A1 - Booth, T. J. A1 - Stenger, N. A1 - Tserkezis, C. T1 - Giant photon bunching of WS2 monolayer in cathodoluminescence N2 - Cathodoluminescence (CL) spectroscopy has become a powerful tool to study nanostructures due to its high spectral and spatial resolution down to sub-nanometer. More recently, CL technique has also been used for second order auto-correlation measurements (g(2)(t)) to identify different single photon emitters and photon bunching in different materials [1-2]. In this work, tungsten disulfide (WS2) monolayers encapsulated in hexagonal boron nitride (hBN) with and without monocrystalline Au nanodisks (NDs) have been studied, using CL and PL spectroscopy as well as g(2)-CL- and PL-measurements. CL and PL maps of different WS2 monolayers before/after Au ND deposition show a narrow peak at ~625 nm without any background emission. In CL, the hBN not only protects WS2 from the electron beam but also acts as a charge carrier sink which substantially increases the CL signal [3]. A further CL enhancement is achieved by Au ND deposition, exhibiting the maximum at the center of the NDs without any size dependence. The PL intensity is unaffected. This indicates that Purcell enhancement cannot be the underlying mechanism. Furthermore, a giant CL-photon bunching of the hBN-encapsulated WS2 monolayers is found which is independent of the applied voltage but highly dependent on the electron beam current. At the lowest current of ~2 pA, a CL bunching factor of up to 160 is observed. Varying thicknesses of the surrounding hBN increases the overall CL signal but does not affect the bunching factor, though it exhibits small local changes within the same flake. In contrast, there is no PL correlation (g(2)(0) = 1). Interestingly, this photon bunching can be further increased by Au NDs, resulting in the highest ever observed bunching factor of close to 2200. Once again, this enhancement is independent of the Au ND’s diameter although some disks show higher bunching factors than others. Most likely, the Au acts as shield for the incoming primary electrons, resulting in an even further decreased current, and thereby, increased bunching. In conclusion, large CL-photon bunching is found in hBN-encapsulated WS2 monolayers which can be substantially enhanced by Au NDs. References [1] M.A. Feldmann, E.F. Demitrescu, D. Bridges, M.F. Chisholm, R.B. Davidson, P.G. Evans, J.A. Hachtel, A. Hu, R.C. Pooser, R.F. Haglund, B.J. Lawrie, Phys. Rev. B, 97, 081404(R) (2018) [2] S. Meuret, L.H.G. Tizei, T. Cazimajou, R. Bourrellier, H.C. Chang, F. Treussartm M. Kociak, Phys. Rev. Letter, 114, 197401 (2015) [3] S. Zheng, J.-K. So, F. Liu, Z. Liu, N. Zheludev, H.J. Fan, Nano Lett., 17, 6475-6480 (2017) T2 - GSELOP2021 CY - Paris, France DA - 23.08.2021 KW - Cathodoluminescence KW - Photon bunching KW - 2D materials KW - TMDCs KW - Au nanodisks KW - Transition metal dichalcogenide KW - Au nanoparticles PY - 2021 AN - OPUS4-53153 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abram, Sarah-Luise A1 - Mrkwitschka, Paul A1 - Prinz, Carsten A1 - Rühle, Bastian A1 - Haase, Oskar A1 - Kuchenbecker, Petra A1 - Löhmann, Oliver A1 - Hodoroaba, Vasile-Dan A1 - Bresch, Harald A1 - Resch-Genger, Ute T1 - Iron oxide nanoparticles as a reference material candidate for particle size measurements N2 - This poster presentation covers the development of iron oxide nanoparticles as reference material candidate in the context of the project "Nanoplattform". T2 - EMRS Spring Meeting CY - Online meeting DA - 31.05.2021 KW - Iron oxide nanoparticles KW - Reference material KW - Particle size KW - Transmission electron microscopy KW - Small angle x-ray scattering PY - 2021 AN - OPUS4-52773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Omar, Hassan A1 - Schönhals, Andreas T1 - Spatial Inhomogeneity, Interfaces and Complex Vitrification Behavior of Epoxy-based Materials N2 - This work deals with an in-depth comparative investigation of the structure, molecular mobility and vitrification kinetics of three bisphenol A diglycidyl ether (DGEBA)-based materials with different nanofillers: taurine-modified layered double hydroxide (T-LDH) and halloysite nanotubes (HNTs). The chosen methodology comprises I) small – and wide – angle X-ray scattering (SAXS/WAXS) II) calorimetry in the forms of a) conventional DSC and b) static fast scanning calorimetry (FSC), III) broadband dielectric spectroscopy (BDS), as well as IV) specific heat spectroscopy in the forms of a) temperature modulated DSC, and b) temperature modulated FSC. T2 - Abteilungsseminar 6. - FB 6.6 CY - Online meeting DA - 06.05.2021 KW - Broadband dielectric spectroscopy KW - Epoxy nanocomposites KW - Halloysite nanotubes KW - X-ray scattering KW - Differential scanning calorimetry KW - Rigid amorphous fraction KW - Flash DSC PY - 2021 AN - OPUS4-52697 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Florian, Camilo A1 - Déziel, J.-L. A1 - Kirner, Sabrina V. A1 - Siegel, J. A1 - Bonse, Jörn T1 - Femtosecond laser-induced oxidation in the formation of periodic surface structures N2 - Laser-induced oxide graded layers may contribute to the formation of a new type of embedded low-spatial frequency LIPSS with an anomalous orientation parallel to the laser polarization. In this contribution, we explore this effect experimentally with femtosecond laser pulses and numerically by finite-difference time-domain (FDTD) calculations. T2 - 2021 Conference on Lasers and Electro-Optics/Europe – European Quantum Electronics Virtual Conferences CY - Online meeting DA - 21.06.2021 KW - Laser-induced periodic surface structures (LIPSS) KW - Surface oxidation KW - Femtosecond laser ablation KW - Finite-difference time-domain calculations PY - 2021 AN - OPUS4-52859 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bennet, Francesca A1 - Burr, L. A1 - Schmid, D. A1 - Hodoroaba, Vasile-Dan T1 - Towards a method for quantitative evaluation of nanoparticle from suspensions via microarray printing and SEM analysis N2 - As part of the development of a library of accurate and efficient methods for measurement of nanoparticle properties, we develop and optimize a method for the efficient analysis of nanoparticle size distribution from suspensions via microprinting and digital analysis of electron microscopy (SEM and TEM) images, with the ultimate aim of automated quantitative concentration analysis (calculated from drop volume). A series of different nanoparticle suspensions (gold, latex, and SiO2 in varying sizes and concentrations) were printed onto TEM grids in a 4 x 4 array in the concentration range 7x10^8 to 1x10^11 nanoparticles/mL and imaged with SEM. Concentrations and printing conditions (temperature, relative humidity) were varied in order to minimize the coffee-ring effect. KW - Nanoparticles KW - Particle size distribution KW - Electron microscopy KW - Microarray printing KW - Sample preparation KW - Nanoparticle concentration PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528455 DO - https://doi.org/10.1088/1742-6596/1953/1/012002 VL - 1953 SP - 012002 PB - IOP Publishing AN - OPUS4-52845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan T1 - BAM reference data - EDS raw data of Al-coated titania nanoparticles (JRCNM62001a and JRCNM62002a) N2 - EDS spectra of Al-coated titania nanoparticles (JRCNM62001 and JRCNM62002a) provided by the JRC repository are provided. KW - EDS KW - Titania nanoparticles KW - BAM reference data PY - 2021 DO - https://doi.org/10.5281/zenodo.4986420 PB - Zenodo CY - Geneva AN - OPUS4-52833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bennet, Francesca A1 - Hodoroaba, Vasile-Dan T1 - BAM reference data - SEM raw data for the particles size distribution of Al-coated titania nanoparticles (JRCNM62001a and JRCNM62002a) N2 - SEM raw images of Al-coated titania nanoparticles (JRCNM62001 and JRCNM62002a) provided by the JRC repository are provided together with the particle size distribution of the minimum Feret Diameter extracted from the given images. KW - SEM KW - Titania nanoparticles KW - Particle size distribution KW - BAM reference data PY - 2021 DO - https://doi.org/10.5281/zenodo.5007367 PB - Zenodo CY - Geneva AN - OPUS4-52836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Florian, Camilo A1 - Wonneberger, R. A1 - Undisz, A. A1 - Kirner, Sabrina V. A1 - Wasmuth, Karsten A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Surface oxidation accompanying the formation of various types of femtosecond laser-generated surface structures on titanium alloy N2 - Different types of laser-generated surface structures, i.e., Laser-induced Periodic Surface Structures (LIPSS, ripples), Grooves, and Spikes are generated on titanium and Ti6Al4V surfaces by means of femtosecond (fs) laser scan processing (790 nm, 30 fs, 1 kHz) in ambient air. Morphological, chemical and structural properties of the different surface structures are characterized by various surface analytical techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), Glow discharge optical emission spectroscopy (GD-OES), and depth-profiling Auger electron spectroscopy (AES). It is revealed that the formation of near-wavelength sized LIPSS is accompanied by the formation of a graded oxide extending several tens to a few hundreds of nanometers into depth. GD-OES performed on other superficial fs-laser generated structures produced at higher fluences and effective number of pulses per spot area such as periodic Grooves and irregular Spikes indicate even thicker graded oxide layers. These graded layers may be suitable for applications in prosthetics or tribology. T2 - E-MRS Spring Meeting 2021 CY - Online meeting DA - 31.05.2021 KW - Laser-induced periodic surface structures (LIPSS) KW - Titanium alloy KW - Oxidation KW - Glow-discharge optical emission spectroscopy PY - 2021 AN - OPUS4-52749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Rudenko, A. A1 - Déziel, J.-L. A1 - Florian, Camilo A1 - Krüger, Jörg A1 - Siegel, J. A1 - Colombier, J.-P. T1 - The role of electromagnetic scattering in the formation of laser-induced periodic surface structures N2 - Laser-induced periodic surface structures (LIPSS) are a universal phenomenon that is accompanying laser materials processing. These surface nanostructures pave a simple way for surface functionalization with numerous applications in optics, fluidics, tribology, medicine, etc. During the last decade remarkable experimental and theoretical improvements in understanding of their formation mechanisms were obtained - all pointing toward polarization-dependent energy deposition by absorption of optical radiation that is scattered at the surface roughness and interfering with the laser beam. This contribution reviews the current state-of-the-art on the role of electromagnetic scattering in the formation of LIPSS by ultrashort laser pulses. Special attention is drawn to recent finite-difference time-domain (FDTD) calculations that allow to visualize the radiation patterns formed in the vicinity of the sample surface and to the impact of a thin superficial laser-induced oxidation layer. T2 - E-MRS Spring Meeting 2021 CY - Online meeting DA - 31.05.2021 KW - Laser-induced periodic surface structures (LIPSS) KW - Optical scattering KW - Oxidation KW - Femtosecond laser PY - 2021 AN - OPUS4-52729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -