TY - CONF A1 - Silbernagl, Dorothee A1 - Szymoniak, Paulina A1 - Tavasolyzadeh, Zeynab A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - Interpenetrating networks with tuned thermal and mechanical properties N2 - Text Multiphoton lithography (MPL) has recently attracted significant research interest as a versatile tool capable of producing 2D and 3D micro- and nanoscopic features with high spatial resolution. The integrity of MPL microstructures, or their ability to respond to external stimuli, is of critical importance. However, achieving the desired properties of fabricated microcomponents for a specific application remains a challenge. In this work, we present new MPL materials based on epoxy-acrylate interpenetrating networks (IPNs). We aim at 3D microstructures, whose properties can be easily tuned by varying the ratio of the IPN components and fabrication parameters (Figure 1). The resulting library of 3D microstructures was investigated for their thermal and mechanical properties using highly-sensitive space-resolved methods. Flash scanning calorimetry revealed the influence of both, IPN composition and fabrication parameters, on glass transition temperature and material fragility. AFM force-distance curve and intermodulation methods were used to characterize the mechanical properties with a lateral resolution of 1 micron and 4 nm, respectively. The deformation, stiffness and elastic behavior are discussed in detail in relation to the morphology. Moreover, we found that some 3D IPN microstructures exhibit fully elastic behavior. Our funding encourages the further development of IPN systems as versatile and easily tunable MPL materials. T2 - Micro Nano Engineering (MNE conference) CY - Berlin, Germany DA - 25.09.2023 KW - Interpenetrating polymer network KW - Multiphoton Lithography KW - Two photon polymerisation KW - Direct laser writing KW - Polyethylene glycol diacrylate PY - 2023 AN - OPUS4-58879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Fritzsche, Sven A1 - Pauw, Brian Richard A1 - Weimann, Christiane A1 - Sturm, Heinz T1 - Test artifact for fs-LDW N2 - Data to generate the given graphs in the publication as well as raw images of the shown images. KW - stl code KW - Images KW - Graphs KW - Data PY - 2023 DO - https://doi.org/10.5281/zenodo.7671945 PB - Zenodo CY - Geneva AN - OPUS4-58096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Xps/Haxpes at (core shell) nanoparticles N2 - The principles of (Hard) X-ray photoelectron spectroscopy and some application in the field of (core-shell) nanoparticles will be presented. The presentation should answer hoe to get reliable results. Furthermore, examples of the correlation between physical-chemical measurments and toxicological results are given which are crucial for the risk assessment of nanoparticles. T2 - Training Course Metrological Determination of Micro and Nano Contaminants in Food CY - Berne, Switzerland DA - 05.09.2023 KW - X-ray photoelectron spectroscopy KW - Core-shell nanoparticles KW - Reliabiilty KW - Risk assessment PY - 2023 AN - OPUS4-59496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - How to measure the chemical composition of industrial graphene - New insights from an interlaboratory comparison N2 - International standards describing reliable protocols will facilitate the commercialization of graphene and related 2D materials. One physico-chemical key property next to flake size and thickness is the chemical composition of the material. Therefore, an ISO standard is under development with X-ray photoelectron spectroscopy having a prominent role. With its information depth of around 10 nm which is the similar length scale as the thickness as of particles of 2D materials consisting of a few monolayer XPS seems to be highly suitable for this purpose. Different sample preparation methods like pressing the powders onto adhesive tapes, into recesses, or into solid pellets result in inconsistencies in the quantification. For the validation of the quantification with XPS an interlaboratory comparison was initiated under the auspice of the “Versailles Project on Advanced Materials and Standards” (VAMAS). First results confirm that the sample preparation method (pellet vs. powder) influences the quantification results clearly. T2 - Characterization of Nanomaterials Colloquium CY - Berlin, Germany DA - 04.07.2023 KW - X-ray photoelectron spectroscopy KW - Functionalized graphene KW - Interlaboratory comparison PY - 2023 AN - OPUS4-57897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Chemello, Giovanni A1 - Hodoroaba, Vasile-Dan A1 - Reed, B.P. A1 - Pollard, A.J. A1 - Clifford, C.A. T1 - An interlaboratory comparison on measuring the chemical composition of functionalized graphene nanoplatelets N2 - The results of the international interlaboratory comparison ""Chemical Composition of functionalized graphene with X-ray photoelectron spectroscopy (XPS) under the auspice of VAMAS TWA 2 (Surface Chemical Analysis) will be presented. T2 - Kratos German User Meeting 2023 CY - Berlin, Germany DA - 25.10.2023 KW - Graphene KW - Interlaboratory Comparison KW - X-ray photoelectron spectroscopy PY - 2023 AN - OPUS4-58683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized Ce0.75Zr0.25O2 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized Ce0.75Zr0.25O2 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - Ce0.75Zr0.25O2 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7966133 PB - Zenodo CY - Geneva AN - OPUS4-57673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized Ce0.25Zr0.75O2 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized Ce0.25Zr0.75O2 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - Ce0.25Zr0.75O2 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7966165 PB - Zenodo CY - Geneva AN - OPUS4-57674 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized Ce0.1Zr0.9O2 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized Ce0.1Zr0.9O2 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - Ce0.1Zr0.9O2 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7965602 PB - Zenodo CY - Geneva AN - OPUS4-57672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized Ce0.5Zr0.5O2 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized Ce0.5Zr0.5O2 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - Ce0.5Zr0.5O2 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7965445 PB - Zenodo CY - Geneva AN - OPUS4-57670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized ZrO2 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized ZrO2 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - ZrO2 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7965536 PB - Zenodo CY - Geneva AN - OPUS4-57671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -