TY - CONF A1 - Voss, Heike T1 - Morphology and regularity of high-spatial frequency laser-induced periodic surface structures (HSFL) on titanium materials N2 - Titanium and its alloys are known to allow the straightforward laser‐based manufacturing of ordered surface nanostructures, so‐called high spatial frequency laser‐induced periodic surface structures (HSFL). These structures exhibit sub‐100 nm spatial periods – far below the optical diffraction limit. The resulting surface functionalities are usually enabled by both, topographic and chemical alterations of the nanostructured surfaces. For exploring these effects, HSFL were processed on different titanium materials (bulk, film) upon irradiation with near‐infrared ps‐laser pulses (1030 nm wavelength, ≈ 1 ps pulse duration) under different laser scan processing conditions. Here we extend our previous work on chemical analyses of HSFL on titanium materials towards a more detailed morphological and topographical surface characterization. For that, scanning electron and atomic force microscopic images are subjected to a regularity analysis using our self-developed ReguΛarity software. The regularity of the HSFL is assessed with respect to the influences of sample- and laser-related parameters, as well as the imaging method used. T2 - 13th International LIPSS Workshop CY - Enschede, Netherlands DA - 29.10.2025 KW - Laser-induced periodic surface structures (LIPSS) KW - Titanium KW - Ultrashort laser pulses KW - Laser processing PY - 2025 AN - OPUS4-64631 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Laser Nanotexturierung von Metalloberflächen zur Reduktion von Reibung und Verschleiß N2 - Die Reduktion von Reibung und Verschleiß in technischen Systemen bietet ein großes Potenzial zur Reduktion von CO2-Emissionen. Dieser Beitrag diskutiert die Erzeugung und tribologische Charakterisierung von Ultrakurzpuls-generierten Nanostrukturen auf Metallen (Stahl, Titan). Besonderes Augenmerk wird dabei auf die Rolle der laserinduzierten Oxidschicht im Zusammenspiel mit verschleißreduzierenden Additiven in ölbasierten Schmiermitteln gerichtet. T2 - Internationale Bodensee Fachtagung „Wärmebehandlung und Oberflächentechnik zur Verbesserung von Tribologie und Verschleissbeständigkeit" CY - Feldkirch, Austria DA - 20.03.2025 KW - Additive KW - Laser-induzierte periodische Nanostrukturen KW - Reibungsreduktion KW - Verschleißreduktion PY - 2025 AN - OPUS4-62757 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Generation and characterization of anisotropic nanostructures using ultrashort pulsed lasers N2 - The lecture gives an overview of the generation and characterization of anisotropic nanostructures using ultrashort pulsed laser radiation. Special attention will be paid to the phenomenon of so-called laser-induced periodic surface structures (LIPSS) on various materials. One focus will be on dielectrics and the dynamics of nanostructure formation. Further examples of bulk nanostructures from the literature will be discussed. T2 - 8th UKP-Workshop: Ultrafast Laser Technology CY - Aachen, Germany DA - 08.04.2025 KW - Laser-induced Periodic Surface Structures (LIPSS) KW - Dielectrics KW - Surface Nanostructures KW - Volume Nanostructures PY - 2025 AN - OPUS4-62947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Ultrafast optical probing of laser-induced formation of periodic surface nanostructures N2 - Laser-induced Periodic Surface Structures (LIPSS, ripples) are a universal phenomenon and can be generated in a contactless, single-step process on almost any type of solid upon irradiation with intense laser pulses. They represent a (quasi-)periodic modulation of the surface topography in the form of a linear grating and are typically formed in a “self-ordered” way in the focus of a coherent laser beam. Thus, they are often accompanying laser material processing applications. The structural sizes of LIPSS typically range from several micrometers down to less than 100 nanometers – far beyond the optical diffraction limit – while their orientations exhibit a clear correlation with the local polarization direction of the laser radiation. From a theoretical point of view, a controversial debate has emerged during the last decades, whether LIPSS originate from electromagnetic effects (seeded already during the laser irradiation) – or whether they emerge from matter-reorganization processes (distinctly after the laser irradiation). From a practical point of view, however, LIPSS represent a simple and robust way for the nanostructuring of solids that allows creating a wide range of different surface functionalities featuring applications in optics, tribology, medicine, energy technologies, etc. The presentation provides an overview of current theories on LIPSS and the quest to achieve ever smaller surface nanostructures. The historical development of the fundamental ideas behind LIPSS is presented, together with experimental approaches that make it possible to distinguish between the various LIPSS formation scenarios. Time-resolved experimental methods are required to investigate the dynamics of their formation. The presentation focuses on ultrafast time-resolved optical (pump-probe) techniques that can be used for localized point measurements or microscopic imaging, utilizing the reflection, diffraction, or coherent scattering of the probe radiation at the emerging LIPSS, while simultaneously capturing information about rapid melting, ablation, and solidification phenomena. However, given the sub-micrometric spatial periods of LIPSS, their analysis using optical radiation employed in far-field techniques remained a challenge. Therefore, short wavelengths of the probe beam in the UV range or even below are required to overcome the diffraction limit imposed in the optical spectral range. Fourth-generation light sources, namely short-wavelength (XUV or X-ray) short-pulse free-electron lasers (FELs), offer new and fascinating possibilities for resolving laser-induced structure formation on surfaces in the sub-micrometer to nanometer range and in time domains from picoseconds to several nanoseconds with a resolution in the sub-picosecond regime. On laser-irradiated semiconductor surfaces, this unique spatio-temporal resolution enables the detection of early signs of coherent/plasmonic electromagnetic scattering effects, followed by the excitation of hydrodynamic capillary waves – providing new insights into the above-mentioned debate. Recent experiments at the European XFEL used fs-time-resolved small-angle X-ray scattering (fs-SAXS) and even fs-time-resolved grazing incidence small-angle X-ray scattering (fs-GISAXS), combined with grazing-incidence diffraction (fs-GID), to reveal the dynamics of the formation of nanometric LIPSS on metals. T2 - CINSaT Herbstkolloquium 2025 CY - Kassel, Germany DA - 05.11.2025 KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser pulses KW - Pump-probe measurements KW - Free-electron laser KW - Small angle X-ray scattering (SAXS) PY - 2025 AN - OPUS4-64633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hassenstein, Christian T1 - Robotergestützte Ultraschallprüfung von Objekten mit komplexen Geometrien N2 - Durch den Einsatz moderner digitaler Design- und Fertigungsmethoden wachsen einerseits die Komplexität von Bauteilen, andererseits der Bedarf an Informationen über deren Qualität und Zustand. Damit steigen auch die Anforderungen an die zerstörungsfreie Prüfung, die im Zuge von ZfP 4.0 automatisierte und flexible, innovative Prüfmethoden erfordert. Das gilt insbesondere für Objekte, deren Oberflächengeometrien über plane Flächen und eindimensionale Krümmungen hinausgehen. Um zu zeigen, wie eine Ultraschallprüfung von Objekten mit komplexer Oberflächengeometrie realisiert werden kann, wurde an der BAM eine roboterbasierte Demonstratoranlage entwickelt. Dabei führt ein Roboterarm einen Array-Prüfkopf in Tauchtechnik senkrecht über die Prüffläche. Die dafür erforderliche Prüfbahn kann entweder anhand der CAD-Geometrie oder mithilfe einer Punktewolke der Prüffläche, die vorab mit einem am Roboter angebrachten Laser-Profilometer erfasst wird, ermittelt werden. Zur Erhöhung der Genauigkeit werden der Lasersensor und der Ultraschallprüfkopf automatisiert mit dafür entwickelten Routinen am Roboter eingemessen. Durch bildgebende Verfahren und eine automatische Auswertung der Bilder kann die in Tauchtechnik auftretende Brechung des Schallbündels an der Prüfteiloberfläche berücksichtigt werden, was die ortsrichtige Rekonstruktion von Anzeigen aus dem Prüfteilinneren bzw. der Rückwand ermöglicht. Durch Rückführung der Anzeigen in ein gemeinsames Koordinatensystem entsteht eine 3D-Rekonstruktion des Prüfteils. Der vorliegende Beitrag stellt die Demonstratoranlage und die angewendeten Methoden im Detail vor und nennt Anwendungsbeispiele. T2 - DGZfP Jahrestagung 2025 CY - Berlin, Germany DA - 26.05.2025 KW - Ultraschall KW - Robotik KW - Turbinenschaufel KW - Wanddicke KW - Defekterkennung PY - 2025 AN - OPUS4-63417 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Voss, Heike T1 - ReguΛarity - A free software for the objective quantification of the regularity of periodic surface structures generated by femtosecond laser irradiation N2 - The precise laser-based surface structuring on the micro- and nanoscale allows to create functional properties for innovative applications, e.g., in medicine, optics and biology. Among the various types of surface structures, laser-induced periodic surface structures (LIPSS) are characterized by their versatility and the relatively simple manufacturing process. However, the fabrication of highly regular LIPSS patterns remains challenging. The systematic investigation of LIPSS formation, as well as of the resulting functional properties requires a precise evaluation of the surface morphology, especially with regard to periodicity and regularity. Existing quantification methods such as Fast Fourier Transformation (FFT) tend to lack automation and objectivity, especially when dealing with large data sets and multi-scale structures. Although automated approaches exist with the Gini coefficient and the P³S method, their limited availability restricts a broader scientific use. We therefore introduce ReguΛarity as an innovative open-source software solution for objective, rapid and reproducible evaluation of structured surfaces concerning their regularity. In order to provide comprehensive surface morphological analysis, our software uses advanced image-processing techniques and integrates the already developed tools such as P³S method, Gini coefficient, FFT analysis, and the calculation of DLOA (Dispersion of LIPSS Orientation Angle). The software allows to evaluate any relevant image format as provided, e.g., by standard scanning electron micrographs. An intuitive PyQt5-based interface, enhanced by multi-threading capabilities, facilitates efficient data processing. Interactive features such as region-of-interest selection and plotting provide flexible adaptation to diverse applications. ReguΛarity offers a robust analysis tool that will contribute to the further development of precise laser-based surface structuring and to the optimization of the desired functional properties in both research and industry. T2 - 13th International Conference on Photoexcited Processes and Applications, ICPEPA-13 CY - Lecce, Italy DA - 14.09.2025 KW - Laser-induced periodic surface structures (LIPSS) KW - Laser processing KW - Fourier transformation KW - Regularity PY - 2025 AN - OPUS4-64176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rahner, E. T1 - From nightmare to numbers - A novel software tool for objective regularity analysis of LIPSS N2 - The precise laser-based surface structuring on the micro- and nanoscale allows for the creation of functional properties for innovative applications, e.g., in medicine, optics and biology. Among the various types of surface structures, laser-induced periodic surface structures (LIPSS) are distinguished by their versatility and the comparatively simple manufacturing process. Nevertheless, the fabrication of highly regular LIPSS patterns remains challenging. The systematic investigation of LIPSS formation, as well as of the resulting functional properties demands accurate and objective evaluation of surface morphology, especially regarding periodicity and regularity. Existing quantification methods such as Fast Fourier Transformation (FFT) tend to lack automation and objectivity, especially when dealing with large data sets and multi-scale structures. Although automated approaches, such as those based on the Gini coefficient or the P³S method, have been proposed, their limited availability hinders a broader scientific use. To overcome these limitations, we introduce ReguΛarity, a novel, freely available Python-based software tool featuring a graphical user interface for automated and quantitative assessment of regularity in period and (quasi-)periodic surface patterns including LIPSS. The software processes microscopic images obtained from optical, scanning electron microscopy (SEM), or atomic force microscopy (AFM), combining image segmentation with one- and two-dimensional Fourier analyses (1D-FT, 2D-FT), phase evaluation, and gradient-based orientation determination to facilitate a comprehensive regularity analysis of (quasi-)periodic surface patterns with spatial periods Λ. Regularity is quantified by the newly proposed five-dimensional regularity tuple R comprising the normalized spread of spatial periods from 2D-FT, the normalized local variation of the dominant spatial period from 1D-FT, the Gini coefficient G, the Dispersion of the LIPSS Orientation Angle (DLOA), and the mean phase deviation. The demonstration of the software’s capabilities is achieved by comparing idealized sinusoidal test patterns with SEM micrographs of fs-laser-generated LIPSS on stainless steel (AISI 316L) and aluminum alloy (AlMg5). This comparison highlights ReguΛarity’s objective differentiation between varying levels of structural regularity. The software facilitates high-throughput analysis and data-driven optimization in laser surface engineering processes. T2 - 13th International LIPSS Workshop CY - Enschede, Netherlands DA - 29.10.2025 KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - Fourier transform KW - Gini coefficient PY - 2025 AN - OPUS4-65047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gräf, S. T1 - Ion marker implantation as key to understand the formation of femtosecond LIPSS on steel N2 - Ultrashort laser (fs-laser) pulses can be used to generate laser-induced periodic surface structures (LIPSS, ripples) on different types of materials. A variety of potential applications of these grating-like LIPSS have already been demonstrated in the field of surface functionalization. Examples include structural colours (e.g. for optical effects or safety features), beneficial friction and wear reduction, modification of the wetting behaviour of surfaces, and antibacterial or cell adhesion promoting properties for medical implants. Despite decades of research, however, some aspects regarding the formation mechanism are still unclear and the subject of controversial debate. This involves the two main models of coherent electromagnetic scattering and matter reorganization, which are used for explaining aspects of LIPSS formation and phenomenology. One major issue is to quantify the actual amount of material removal during the fs-laser processing due to the lack of an independent depth reference and to visualize the so-called heat-affected zone accompanying intense fs-laser irradiation. In the present study, near-surface implantation of Mn and N ions into different material depth of Mn-free austenitic stainless steel alloy FeCrNiMo18-12-2 was used to create reference layers of a defined thickness containing the respective elements. LIPSS (type low-spatial frequency LIPSS, LSFL) were fabricated on the polished substrate surfaces in an air environment by fs-laser irradiation (λ = 1025 nm, τ = 300 fs, frep = 100 kHz, F = 1.5 J/cm2). The implanted layers subsequently served as a kind of coordinate system to assess the material removal during the formation process via cross-sectional Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Spectroscopy (EDXS). Using both analysis methods enabled in particular to determine the position of peaks and valleys of the LIPSS topography in relation to the initial surface before fs-laser irradiation. This confirmed the selective ablation in the LIPSS valleys. Moreover, linking changes in the material’s microstructure, e.g., the crystallinity and near surface elemental composition before and after fs-laser treatment, gave additional insights regarding the transient cooling rates, as recently shown for NiTi alloys. T2 - 13th International LIPSS Workshop CY - Enschede, Netherlands DA - 29.10.2015 KW - Energy dispersive X-ray analysis (EDX) KW - Ion implantation KW - Laser-induced periodic surface structures (LIPSS) KW - Steel KW - Transmission electron microscopy (TEM) PY - 2025 AN - OPUS4-64900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Bacterial adhesion on ultrashort pulse laser processed surfaces ― more than size matters! N2 - Bacterial biofilms are aggregates of bacterial cells, often attached to a surface, and enclosed by a self-produced extracellular matrix which confers increased stress tolerance and resistance to cleaning. Biofilm formation leads to biofouling which gives rise to high costs in numerous technical settings due to biocorrosion and biodegradation. However, biofilms can also be attractive for industrial settings such as wastewater treatment systems or for soil bioremediation processes. Hence, the control of bacterial adhesion to a surface is of major concern. Surface topography strongly influences bacterial adhesion. Therefore, one promising way to achieve bacteria-guiding surfaces lies in the contactless and aseptic large-area laser processing of technical surfaces. We used short and ultrashort pulsed laser systems to generate different surface textures, mainly high-spatial-frequency and low-spatial-frequency laser-induced periodic surface structures, LIPSS (HFSL and LFSL), on Ti, Ti-alloy, steel, and polymers (PET and PE). Pristine (polished) and laser processed samples were subjected to bacterial adhesion experiments with two different Escherichia coli strains and Staphylococcus aureus as test organisms. The bacterial strains differed in their cell wall structure (grampositive vs. gramnegative strains), in size, shape, the occurrence of cell appendages, and in their biofilm forming capabilities. Adhesion patterns were analyzed microscopically and compared regarding the respective test strain and surface topography. Our results revealed that adhesion behavior strongly depends not only on the material’s topography and chemistry, but also on the specific bacterial strain, the presence of cell appendages, and ambient growth conditions. T2 - 13th International LIPSS Workshop CY - Enschede, Netherlands DA - 29.10.2025 KW - Bacterial adhesion KW - Biofilm KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser pulses PY - 2025 AN - OPUS4-64632 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Voss, Heike T1 - Morphology and regularity of high-spatial frequency laser-induced periodic surface structures (HSFL) on titanium materials N2 - Titanium and its alloys are known to enable the straightforward laser‐based manufacturing of ordered surface nanostructures, so‐called high-spatial frequency laser‐induced periodic surface structures (HSFL). These structures exhibit sub‐100 nm spatial periods – far below the optical diffraction limit. The resulting surface functionalities are usually enabled by both, topographic and chemical alterations of the nanostructured surfaces. For exploring these effects, HSFL were processed on different titanium materials (bulk, film) upon irradiation with near‐infrared ps‐laser pulses (1030 nm wavelength, ≈1 ps pulse duration) under different laser scan processing conditions in normal air atmosphere. Here, we extend our previous work on chemical analyses of HSFL on titanium materials towards a more detailed large-area morphological and topographical surface characterization. For this purpose, scanning electron or atomic force microscopic images are subjected to a regularity analysis using our ReguΛarity software. The results are assessed with respect to the influences of sample- or laser-related parameters on the regularity of the HSFL. T2 - 13th International Conference on Photoexcited Processes and Applications, ICPEPA-13 CY - Lecce, Italy DA - 14.09.2025 KW - Laser-induced periodic surface structures (LIPSS) KW - Laser processing KW - Ulltrashort laser pulses KW - Titanium PY - 2025 AN - OPUS4-64173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -