TY - JOUR A1 - Hildebrandt, Jana A1 - Taubert, Andreas A1 - Thünemann, Andreas T1 - Synthesis and Characterization of Ultra‐Small Gold Nanoparticles in the Ionic Liquid 1‐Ethyl‐3‐methylimidazolium Dicyanamide, [Emim][DCA] N2 - AbstractWe report on gold clusters with around 62 gold atoms and a diameter of 1.15±0.10 nm. Dispersions of the clusters are long‐term stable for two years at ambient conditions. The synthesis was performed by mixing tetrachloroauric acid (HAuCl4 ⋅ 3 H2O) with the ionic liquid 1‐ethyl‐3‐methylimidazolium dicyanamide ([Emim][DCA]) at temperatures of 20 to 80 °C. Characterization was performed with small‐angle X‐ray scattering (SAXS), UV‐Vis spectroscopy, and MALDI‐TOF mass spectrometry. A three‐stage model is proposed for the formation of the clusters, in which cluster growth from gold nuclei takes place according to the Lifshitz‐Slyozov‐Wagner (LSW) model followed by oriented attachment to form colloidal stable clusters. KW - Reference materials KW - SAXS KW - Gold KW - Nanoparticle KW - Small-angle X-ray scattering KW - Ionic liquid PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588203 DO - https://doi.org/10.1002/open.202300106 SN - 2191-1363 VL - 44 SP - 1 EP - 19 PB - Wiley AN - OPUS4-58820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohammad, W. A1 - Wegner, Karl David A1 - Comby-Zerbino, C. A1 - Trouillet, V. A1 - Ogayer, M. P. A1 - Coll, J.-L. A1 - Marin, R. A1 - Jaque Garcia, D. A1 - Resch-Genger, Ute A1 - Antoine, R. A1 - Le Guevel, X. T1 - Enhanced brightness of ultra-small gold nanoparticles in the second biological window through thiol ligand shell control N2 - Gold-based nanoparticles below 2 nm in size are promising as luminescent probes for in vivo bioimaging, owing to their brightness and rapid renal clearance. However, their use as contrast agents in the near-infrared II (NIR-II, 1000–1700 nm) range remains challenging due to their low photoluminescence (PL) quantum yield. To address this, PL enhancement can be achieved by either rigidifying the ligand-shell structure or increasing the size of the ligand shell. In this study, we synthesized ultra-small gold nanoparticles stabilized by co-ligands, namely monothiol and short dithiol molecules. By precisely controlling the amount of reducing agent used during particle preparation, we successfully modulated the physicochemical properties of the co-ligand shell, including its size, composition, and structure. Consequently, we achieved a remarkable 60-fold increase in the absorption cross-section at 990 nm while maintaining the small size of the 1.5-nm metal core. The analytical and optical characterization of our thiol-capped gold nanoparticles indicates that the ligand shell size is governed by the quantity of the reducing agent, which, in turn, impacts the balance between radiative and non-radiative processes, thereby influencing the PL quantum yield. KW - Gold nanocluster KW - NIR-II fluorescence KW - SWIR KW - Nanomaterial design KW - Calibrated fluorescence measurements PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588117 DO - https://doi.org/10.1039/D3TC03021K SN - 2050-7526 VL - 11 IS - 42 SP - 14714 EP - 14724 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska T1 - SOP and reference data for determination of the Volume-specific Surface Area (VSSA) of a commercially available CeO2 nano powder N2 - Detailed SOP and reference data for the determination of the VSSA of a commercially available CeO2 nano powder: specific (BET-) Surface Area by gas adsorption (Ar and N2) skeletal (true solid state) density by gas pycnometry. Estimation of the particle size by VSSA screening method. KW - Nano powder KW - VSSA KW - Volume specific surface area KW - Screening method KW - Ceria KW - CeO2 PY - 2023 DO - https://doi.org/10.5281/zenodo.10061235 PB - Zenodo CY - Geneva AN - OPUS4-58786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shanmugam, Sankaran A1 - Peterlechner, Martin A1 - Iskandar, Mohamad Riza A1 - Saikia, Ujjal A1 - Kulitckii, Vladislav A1 - Lipińska-Chwałek, Marta A1 - Mayer, Joachim A1 - Rösner, Harald A1 - Hickel, Tilmann A1 - Divinski, Sergiy V. A1 - Wilde, Gerhard T1 - Coherent twin-oriented Al3Sc-based precipitates in Al matrix N2 - Al3(Sc,Zr,Ti) nanoparticles with an ideal twin-type orientation relationship to Al host matrix were found in cold-rolled and subsequently annealed Al-based alloy. Atomic-scale investigations using high-resolution scanning transmission electron microscopy identified particles that form prominent coherent (111) twin-type interfaces along their longer facets and semi-coherent twin interfaces on their shorter facets. Ab-initio calculations showed that a coherent Al/Al3Sc twin-like phase boundary corresponds to a local energy minimum. A model is proposed explaining the formation of the twin orientation relationship of an Al3Sc nanoparticle with the Al host matrix. KW - Al-based alloy KW - Precipitation KW - Twin orientation relationship KW - Ab initio calculations KW - Transition electron microscopy PY - 2023 DO - https://doi.org/10.1016/j.scriptamat.2023.115351 SN - 1359-6462 VL - 229 SP - 1 EP - 6 PB - Elsevier BV AN - OPUS4-58789 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Rühle, Bastian A1 - Bresch, Harald T1 - Competence Center nano@BAM Welcomes ISO/TC 229 Meeting in Berlin N2 - The Competence Center nano@BAM is presented. Examples directly related to the activities of the ISO Technical Committee TC 229 Nanotechnologies as well as BAM projects on nano reference measurement procedures, nano reference materials and nano reference data sets are showed. T2 - The 32nd ISO/TC 229 IEC/TC 113 JWG2 General Meeting CY - Berlin, Germany DA - 06.11.2023 KW - ISO/TC 229 Nanotechnologies KW - Nanoparticles KW - Nano@BAM KW - Reference materials KW - Reference data KW - Reference procedures PY - 2023 AN - OPUS4-58814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - López-Puertollano, Daniel A1 - Tobias, Charlie A1 - Bell, Jeremy A1 - Abad-Somovilla, A. A1 - Abad Fuentes, A. A1 - Rurack, Knut T1 - Superparamagnetic core-shell particles application: from cytometry assay to simplified fluidic system N2 - Superparamagnetic hybrid polystyrene-core silica-shell beads have emerged as promising alternatives to traditional in flow cytometry-based competitive antibody assays [1]. These materials consist of a polystyrene core and a silica shell, in which magnetic nanoparticles are embedded, facilitating the handling and retention in tests. The outer silica surface allows for easy modification through silane chemistry, allowing the attachment of antibodies, or other molecules of interest. Ochratoxin A (OTA), a mycotoxin that can be found in grain products, coffee, cacao, or grapes, was chosen as the main target analyte to detect [2]. In this study, previously in house produced anti-OTA antibodies [3] were attached to the surface of the particles and the whole system was used as detection entity. In a first approach, the system was used for the development of a competitive cytometry assay using an OTA-fluorescein (OTA-F) adduct as competitor and marker. In this assay the fluorescence emitted by the OTA-F competitor on the surface of the particle was detected at a wavelength of 518 nm using a 533/30.H filter and was correlated to the forward scatter (FSC) to distinguish it from the excess of competitor still in solution. Under optimised conditions, the final assay showed a limit of detection of 0.03 nM. In a second approach, a simplified ready-to-inject fluidic system was built based on a laser (488 nm) and a photomultiplier detector to measure the signal of competitor still in solution. The competition step was carried out in a vial and the whole mixture was injected into the fluidic system. To avoid signal scattering, the particles were separated in-line using a magnet and only the OTA-F competitor still in solution was detected, reaching a limit of detection of 1.2 nM. With the aim to reduce user manipulation, the final assay is still under development for in-line incubation during the competitive step. T2 - 15th Rapid Methods Europe Conference CY - Amsterdam, Netherlands DA - 06.11.2023 KW - Microfluidics KW - Flow cytometry KW - Bead-based assays KW - Magnetic beads KW - Core-shell particles KW - Immunoassays PY - 2023 AN - OPUS4-58817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Andresen, Elina A1 - Würth, Christian A1 - Weigert, Florian A1 - Frenzel, Florian T1 - Functional Luminophores – From Photophysics to Standardized Luminescence Measurements N2 - Inorganic nanocrystals with linear and nonlinear luminescence in the ultraviolet, visible, near infrared and short-wave infrared like semiconductor quantum dots and spectrally shifting lanthanide-based nanophosphors have meanwhile found applications in the life and material sciences ranging from optical reporters for bioimaging and sensing over security barcodes to solid state lighting and photovoltaics. These nanomaterials commonly have increasingly sophisticated core/shell particle architectures with shells of different chemical composition and thickness to minimize radiationless deactivation at the particle surface that is usually the main energy loss mechanism [1]. For lanthanide-based spectral shifters, particularly for very small nanoparticles, also surface coatings are needed which protect near-surface lanthanide ions from luminescence quenching by high energy vibrators like O-H groups and prevent the disintegration of these nanoparticles under high dilution conditions. [2,3,4]. The identification of optimum particle structures requires quantitative spectroscopic studies focusing on the key performance parameter photoluminescence quantum yield [5,6], ideally flanked by single particle studies to assess spectroscopic inhomogeneities on a particle-to-particle level for typical preparation methods [7,8], Moreover, in the case of upconversion nanoparticles with a multi-photonic and hence, excitation power density (P)-dependent luminescence, quantitative luminescence studies over a broad P range are required to identify particle architectures that are best suited for applications in fluorescence assays up to fluorescence microscopy. Here, we present methods to quantify the photoluminescence of these different types of emitters in the vis/NIR/SWIR and as function of P and demonstrate the importance of such measurements for a profound mechanistic understanding of the nonradiative deactivation pathways in semiconductor and upconversion nanocrystals of different size and particle architecture in different environments. T2 - Eingeladener Vortrag Uni Erlangen CY - Erlangen, Germany DA - 18.01.2023 KW - Semiconductor quantum dot KW - Upconversion nanocrystal KW - Luminescence KW - Quantitative spectroscopy KW - Photophysics KW - Quality assurance KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Standard KW - Reference material KW - Surface analysis KW - Quantification PY - 2023 AN - OPUS4-57011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - X-ray Scattering USAXS/SAXS/WAXS (/XRD/PDF) N2 - A ten minute introduction to the technique of X-ray scattering. This talk discusses the foundation and the resulting morphological parameters that can be obtained from the technique. The talk is prepared for discussion within the framework of the OECD REACH guideline for nanomaterials. T2 - Digitaler Info-Tag "Nano or not Nano" CY - Berlin, Germany DA - 16.02.2023 KW - X-ray scattering KW - BAM Academy KW - SAXS KW - XRD KW - WAXS KW - Nanomaterial KW - REACH KW - OECD KW - Guideline PY - 2023 AN - OPUS4-57013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Tavernaro, Isabella A1 - Nirmalananthan-Budau, Nithiya T1 - New project on the quantification of functional groups (FGS) on nanomaterials N2 - The surface chemistry of nanomaterials controls their interaction with the environment and biological species and their fate and is hence also relevant for their potential toxicity. This has meanwhile led to an increasing interest in validated and preferably standardized methods for the determination and quantification of surface functionalities on nanomaterials and initiated different standardization projects within ISO/TC 229 and IEC/TC 113 as well as interlaboratory comparisons (ILCs) of different analytical methods for the quantification of surface coatings by OECD. Here we present the results of a first ILC on the quantification of the amount of amino functionalities on differently sized inorganic nanoparticles done by division Biophotonics and the National Research Council of Canada (NRC) and the PWI 19257 on the Characterization and Quantification of Surface Functional Groups and Coatings on Nanoobjects approved by ISO/TC 229 (WG2) in fall 2022 that will result in a VAMAS study on this topic organized by division Biophotonics. Key words: nanoparticles, surface analysis, surface functional groups, quantification, optical assay, qNMR, VAMAS, standardization, ICL, quality assurance, reference material. T2 - Eingeladener Vortrag Universität Erlangen CY - Erlangen, Germany DA - 18.01.2023 KW - Quality assurance KW - Nano KW - Particle KW - Standard KW - Reference material KW - Surface analysis KW - Quantification KW - Interlaboratory comparison KW - Standardization KW - VAMAS PY - 2023 AN - OPUS4-57044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gawek, Marcel A1 - Omar, Hassan A1 - Szymoniak, Paulina A1 - Schönhals, Andreas T1 - Growth kinetics of the adsorbed layer of poly(2-vinylpyridine) - An indirect observation of desorption of polymers from substrates N2 - The growth kinetics of the adsorbed layer of poly(2-vinylpiridine) on silicon oxide is studied using a leaching technique which is based on the Guiselin brushes approach. The adsorbed layer is grown from a 200 nm thick P2VP film for several annealing time periods at different annealing temperatures. Then the film is solvent-leached, and the height of the remaining adsorbed layer is measured by atomic force microscopy. At the lowest annealing temperature only a linear growth regime is observed, followed by a plateau. Here, the molecular mobility of segments is too low to allow for a logarithmic growth. At higher annealing temperatures, both linear and logarithmic growth regimes are observed, followed by a plateau. At even higher annealing temperatures, the growth kinetics of the adsorbed layer changes. A linear growth followed by logarithmic growth kinetics is observed for short annealing time periods. For longer annealing time periods, an upturn of the growth kinetics is observed. At the highest annealing temperature, only a logarithmic growth regime is found. The change in the growth kinetics is discussed by an alteration in the structure of the adsorbed layer. Moreover, the interaction between the polymer segments and the substrate becomes weaker due to both enthalpic and entropic effects. Therefore, at high annealing temperatures the polymer segments might more easily desorb from the substrate. KW - Ultra thin polymer films PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575423 DO - https://doi.org/10.1039/d3sm00129f SN - 1744-683X SN - 1744-6848 VL - 19 IS - 21 SP - 3975 EP - 3982 PB - Royal Society of Chemistry (RSC) CY - London AN - OPUS4-57542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -