TY - JOUR A1 - Pomorska Gawel, A. A1 - Dąbkowska, M. A1 - Kosior, D. A1 - Batys, P. A1 - Szatanik, A. A1 - Witt, Julia A1 - Özcan Sandikcioglu, Özlem A1 - Michna, A. T1 - Multiscale insights into fibroblast growth factor 23 adsorption on polyelectrolyte layers: From molecular properties to biointerfaces N2 - Fibroblast growth factor 23 (FGF23) is a clinically significant protein hormone regulating phosphate and vitamin D metabolism, with elevated levels linked to chronic kidney disease, cardiovascular disorders, and impaired bone homeostasis. Despite its relevance as both a biomarker and a therapeutic target, its interactions with functional biomaterials remain poorly understood. In this work, we investigate the FGF23 adsorption on polyelectrolyte layers using a combination of theoretical modeling and experimental methods. Theoretical calculations provided insights into the protein's charge distribution and diffusion properties, while experimental measurements quantified its hydrodynamic diameter, electrophoretic mobility, and electrokinetic charge over a broad range of pH values. Microscale thermophoresis revealed quantitative binding affinities of FGF23 to hyaluronic acid, chitosan, and poly(diallyldimethylammonium chloride). Adsorption studies on mica, silica, and polyelectrolyte mono- and bilayers showed that FGF23 binds to both negatively and positively charged substrates, with binding affinities following: hyaluronic acid < poly(diallyldimethylammonium chloride) < chitosan. Desorption occurred more readily from negatively charged surfaces (mica, silica and hyaluronic acid), indicating weaker interactions compared to positively charged layers. These results reveal fundamental aspects of protein –polyelectrolyte interactions and highlight the reversible binding capacity of FGF23 to negatively charged surfaces. Such adsorption behavior provides a physicochemical framework for considering FGF23-polyelectrolyte systems in the design of therapeutic carriers and bioactive materials. However, any direct relevance to wound healing, chronic kidney disease, or cardiovascular disorders remains prospective and requires dedicated biological validation. KW - Molecular dynamics KW - Streaming potential measurements KW - Adsorption KW - Stability KW - Binding affinity PY - 2026 DO - https://doi.org/10.1016/j.ijbiomac.2026.150221 SN - 0141-8130 VL - 341 IS - Part 1 SP - 1 EP - 14 PB - Elsevier B.V. AN - OPUS4-65415 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Robust Data Generation, Heuristics and Machine Learning for Materials Design N2 - My talk covered, among other things, robust data generation for machine learning. It showed how heuristics can be used within machine learning models and how they might also be extracted from machine learning models. Beyond this, I showed an automated pipeline for training machine learning potentials. T2 - Workshop on AI in Sustainable Materials Science CY - Düsseldorf, Germany DA - 27.01.2026 KW - Automation KW - Digitalisation KW - Materials Design KW - Thermal Conductivity KW - Chemical bonding KW - Materials Acceleration Platforms PY - 2026 AN - OPUS4-65427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Robust Data Generation, Heuristics and Machine Learning for Materials Design N2 - My talk covered, among other things, robust data generation for machine learning. It showed how heuristics can be used within machine learning models and how they might also be extracted from machine learning models. Beyond this, I showed an automated pipeline for training machine learning potentials. T2 - Seminar Gruppe Stephan Roche CY - Barcelona, Spain DA - 22.01.2026 KW - Automation KW - Machine Learning KW - Materials Acceleration Platforms KW - Thermal Conductivity KW - Phonons KW - Bonding Analysis PY - 2026 AN - OPUS4-65428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rurack, Knut T1 - Functional polymeric coatings for sensory applications N2 - The growing demand for the detection of relevant chemical compounds as close as possible to their point of origin—whether in industrial processes, for (civilian or military) security, or for environmental monitoring—has increased the importance of functional polymers with molecular recognition capabilities. These materials must meet practical requirements arising from very different real-world scenarios in which simple, robust, and field-deployable approaches are needed and in which bioanalytical binders often suffer significant performance losses. Polymer recognition matrices therefore serve as an essential complement to established laboratory-based analytical technologies. The realization of rapid and reliable onsite detection places specific demands on material design: polymeric recognition layers must be produced with minimal thickness, integrated onto suitable carrier media, and designed for both selectivity and operational robustness. This presentation will introduce our work on molecularly imprinted polymers (MIPs) that have been specifically developed for the detection of relevant contaminants such as pesticides and perfluorinated compounds. Beyond these target analytes, the presentation will show how such polymer layers can support robust, sustainable diagnostic concepts, and it will outline generalizable design principles that enable their extension to a broad spectrum of analytical challenges. T2 - Institutskolloquium des Instituts für Chemie, Humboldt Universität zu Berlin CY - Berlin, Germany DA - 28.01.2026 KW - Functional organic materials KW - Responsive polymers KW - Sensing KW - Molecularly imprinted polymers PY - 2026 AN - OPUS4-65435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - The role of Critical Raw Materials in Advanced Materials for the Energy Transition N2 - Based on the UBA report “Advanced materials for energy transition” by Xenia Knigge and Jörg Radnik the role of critical raw materials is discussed. Critical raw materials are needed in main fields of the energy transition, like photovoltaic, fuel cells, wind energy, and batteries. For the optimisation of the use of these materials different scenarios are discussed like (i) decreasing the needed amount of raw materials, (ii) searching for alternatives, (iii) using technologies which do not require critical raw materials, (iv) increasing the recycling rates, and (v) expanding the raw material sources. T2 - IRISS policy dialogue CY - Online meeting DA - 12.01.2026 KW - Solar Cells KW - Fuel cells KW - Batteries KW - Multi-use materials PY - 2026 AN - OPUS4-65451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartczak, Dorota A1 - Sikora, Aneta A1 - Goenaga-Infante, Heidi A1 - Altmann, Korinna A1 - Drexel, Roland A1 - Meier, Florian A1 - Alasonati, Enrica A1 - Lelong, Marc A1 - Cado, Florence A1 - Chivas-Joly, Carine A1 - Fadda, Marta A1 - Sacco, Alessio A1 - Rossi, Andrea Mario A1 - Pröfrock, Daniel A1 - Wippermann, Dominik A1 - Barbero, Francesco A1 - Fenoglio, Ivana A1 - Booth, Andy M. A1 - Sørensen, Lisbet A1 - Igartua, Amaia A1 - Wouters, Charlotte A1 - Mast, Jan A1 - Barbaresi, Marta A1 - Rossi, Francesca A1 - Piergiovanni, Maurizio A1 - Mattarozzi, Monica A1 - Careri, Maria A1 - Caebergs, Thierry A1 - Piette, Anne-Sophie A1 - Parot, Jeremie A1 - Giovannozzi, Andrea Mario T1 - Multiparameter characterisation of a nano-polypropylene representative test material with fractionation, light scattering, high-resolution microscopy, spectroscopy, and spectrometry methods N2 - Reference and quality control materials with comparable physicochemical properties to nanoplastic contaminants present in environmental and food nanoplastics are currently lacking. Here we report a nanoplastic polypropylene material prepared using a top-down approach involving mechanical fragmentation of larger plastics. The material was found to be homogeneous and stable in suspension and has been characterised for average particle size, size distribution range, particle number concentration, polypropylene mass fraction and inorganic impurity Content using a wide range of analytical methods, including AF4, cFFF, PTA, (MA)DLS, MALS, SEM, AFM, TEM, STEM, EDS,Raman, ICP-MS and pyGC-MS. The material was found to have a broad size distribution, ranging from 50 nm to over 200 nm, with the average particle size value dependent on the technique used to determine it. Particle number concentration ranged from 1.7–2.4 × 1010 g−1 , according to PTA. Spectroscopy techniques confirmed that the material was polypropylene, with evidence of aging due to an increased level of oxidation. The measured mass fraction was found to depend on the marker used and ranged between 3 and 5 μg g−1 . Inorganic impurities such as Si, Al, Mg, K, Na, S, Fe, Cl and Ca were also identified at ng g−1 levels. Comparability and complementarity across the measurement methods and techniques is also discussed. KW - Polypropylene KW - Nanoplastics KW - Analytics KW - Reference material KW - Scattering methods PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654680 DO - https://doi.org/10.1039/D5EN00917K SN - 2051-8153 SP - 1 EP - 15 PB - Royal Society of Chemistry (RSC) AN - OPUS4-65468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rahner, E. A1 - Thiele, T. A1 - Voss, Heike A1 - Müller, F.A. A1 - Bonse, Jörn A1 - Gräf, S. T1 - Objective, high-throughput regularity quantification of laser-induced periodic surface structures (LIPSS) N2 - The growing demand for precise surface functionalization through laser-generated periodic surface structures highlights the necessity for efficient, reproducible, and objective evaluation methods to evaluate their structural regularity. We introduce ReguΛarity (v.1.2.7), a freely available, Python-based software with a graphical user interface for the automated, quantitative assessment of the regularity of laser-induced periodic surfaces structures (LIPSS), obtained from optical microscopy, SEM, or AFM. The software integrates image segmentation, one- and two-dimensional Fourier analyses, and gradient-based orientation determination to facilitate a comprehensive regularity analysis of grating-like (quasi-)periodic surface patterns with spatial periods Λ. This is achieved through the proposed regularity tuple R, composed of five key parameters: the normalized spread of the spatial period RΛ,2D (from 2D-FT), the normalized variation of the most frequent spatial period RΛ (from 1D-FT), the Gini coefficient G, the Dispersion of the LIPSS Orientation Angle δθ (DLOA), and the mean phase deviation . To demonstrate its applicability, we compare ideal sinusoidal patterns with SEM images obtained from LIPSS on stainless steel (AISI 316L) and aluminum alloy (AlMg5) surfaces, confirming the software’s ability to objectively distinguish between varying levels of structural regularity. ReguΛarity facilitates high-throughput analysis and data-driven process optimization in surface engineering and laser materials processing. KW - Laser-induced periodic surface structures (LIPSS) KW - Image processing KW - Regularity quantification KW - Fourier analysis KW - Structural homogeneity PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654070 DO - https://doi.org/10.1016/j.apsusc.2026.165919 SN - 0169-4332 VL - 726 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-65407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schusterbauer, Robert A1 - Mrkwitschka, Paul A1 - Sahre, Mario A1 - Corrao, Elena A1 - Zurutuza, Amaia A1 - Doolin, Alexander A1 - Pellegrino, Francesco A1 - Radnik, Jörg A1 - Donskyi, Ievgen S. A1 - Hodoroaba, Vasile-Dan T1 - Correlative Chemical Imaging to Reveal the Nature of Different Commercial Graphene Materials N2 - Proper physicochemical characterization of advanced materials and complex industrial composites remains a significant challenge, particularly for nanomaterials, whose nanoscale dimensions and mostly complex chemistry challenge the analysis. In this work, we employed a correlative analytical approach that integrates atomic force microscopy (AFM), scanning electron microscopy (SEM) coupled with energy‐dispersive X‐ray spectroscopy (EDS), time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS), Auger electron spectroscopy (AES), and Raman spectroscopy. This combination enables detailed chemical and structural characterization with sub‐micrometer spatial resolution. Three commercial graphene‐based materials of varying complexity were selected and investigated to test the analytical performance of this approach. Furthermore, one of the commercial graphene oxide samples was chemically functionalized via amination and fluorination. This allowed us to assess how surface modifications influence both the material properties and the limits of the applied analytical techniques. KW - Analytical methods KW - Commercial products KW - Correlative analysis KW - Graphene KW - Surface imaging PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654765 DO - https://doi.org/10.1002/smtd.202502344 SN - 2366-9608 SP - 1 EP - 10 PB - Wiley VHC-Verlag AN - OPUS4-65476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krause, Christina A1 - Szymoniak, Paulina A1 - Lohstroh, W. A1 - Juranyi, F. A1 - Zamponi, M. A1 - Frick, B. A1 - Al-Sabbagh, Dominik A1 - Emmerling, Franziska A1 - Zorn, R. A1 - Schönhals, Andreas T1 - Complex molecular dynamics of symmetric model discotic liquid crystals: Comparison of Hexakis(hepta-alkanoyloxy)triphenylene (HOT6) with Hexakis(hexa-alkyloxy)triphenylene (HAT6) N2 - This study investigates the complex molecular dynamics of discotic liquid crystals (DLCs) by comparing two structurally similar compounds: Hexakis(hepta-alkanoyloxy)triphenylene (HOT6) and Hexakis(hexa-alkyloxy)triphenylene (HAT6) having the same triphenyl core and the same length of the alkyl side chain. The difference of both materials is that the alkyl chain is linked by an oxygen bridge to the triphenylene core for HAT6 and by a ester group for HOT6. Using a combination of broadband dielectric spectroscopy, differential scanning calorimetry, X-ray scattering, and neutron scattering techniques, the research explores the glass transition phenomena and relaxation processes in these materials. HOT6, featuring ester linkages, exhibits distinct dynamic behavior compared to HAT6, including two separate glass transitions indicated by the 1- and 2-relaxation found by dielectric spectroscopy which are assigned to the glassy dynamics of the alkyl side chain in the intercolumnar space and that of the columns, respectively. The study reveals that the ester group in HOT6 leads to increased molecular rigidity and altered packing in the intercolumnar space, as evidenced by X-ray scattering and the vibrational density of states. Neutron scattering confirms localized methyl group rotations and a further relaxation process which relates to the -relaxation revealed by dielectric spectroscopy. The findings contribute to a deeper understanding of glassy dynamics in partially ordered systems and highlight the influence of molecular architecture on relaxation behavior in DLCs. KW - Discotic Liquid Crystals PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-655171 DO - https://doi.org/10.1039/d5sm01247c SP - 1 EP - 17 PB - Royal Society of Chemistry (RSC) AN - OPUS4-65517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rodriguez, Santiago A1 - Kumanski, Sylvain A1 - Ayed, Zeineb A1 - Fournet, Aurélie A1 - Bouanchaud, Charlène A1 - Sagar, Amin A1 - Allemand, Frédéric A1 - Baulin, Vladimir A. A1 - Resch‐Genger, Ute A1 - Cortés, Juan A1 - Sibille, Nathalie A1 - Chirot, Fabien A1 - Wegner, Karl David A1 - Antoine, Rodolphe A1 - Le Guével, Xavier A1 - Bernadó, Pau T1 - Programming the Optoelectronic Properties of Atomically Precise Gold Nanoclusters Using the Conformational Landscape of Intrinsically Disordered Proteins N2 - The rational design of hybrid nanomaterials with precisely controlled properties remains a central challenge in materials science. While atomically precise gold nanoclusters (Au‐NCs) offer molecule‐like control over a metallic core, tuning their optoelectronic behavior via surface engineering is often empirically driven. Here, we establish a design principle by demonstrating that the conformational landscape of intrinsically disordered proteins (IDP) can be used as a programmable scaffold to rationally modulate the photophysical properties of a covalently bound Au‐NC. We synthesized a series of bioconjugates between Au 25 nanoclusters and bioengineered IDPs containing a variable number of cysteine anchoring points. A combination of mass spectrometry, small‐angle X‐ray scattering, and modeling on the conjugates indicates that increasing the number of covalent anchors systematically restricts the conformational ensemble, inducing a progressively more compact protein shell around nanoclusters. This structural rigidification at the interface directly translates into a 15‐fold enhancement of the Au‐NC near‐infrared photoluminescence and a six‐fold increase in its average lifetime. Our findings demonstrate that the conformational plasticity of IDPs and the capacity to engineer them can be harnessed as a molecular tuning knob, moving to a new regime of programmable soft‐matter control over the properties of quantum‐confined nanomaterials for tailored biotechnological applications. KW - Fluorescence KW - Custer KW - Nano KW - Advanced material KW - Characterization KW - Fluorescence quantum yield KW - Integrating sphere spectroscopy KW - Thiol ligands KW - Gold KW - Surface chemistry KW - SWIR KW - Mass spectrometry KW - Protein PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-655086 DO - https://doi.org/10.1002/chem.202502991 SN - 0947-6539 SP - 1 EP - 9 PB - Wiley VHC-Verlag AN - OPUS4-65508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -