TY - CONF A1 - Rhode, Michael A1 - Wetzel, Annica A1 - Oczan, Ozlem A1 - Nietzke, Jonathan A1 - Richter, Tim A1 - Schröpfer, Dirk T1 - Hydrogen diffusion and local Volta potential in high- and medium-entropy alloys N2 - High-entropy alloys (HEAs) are characterized by a solid solution of minimum five and medium-entropy alloys (MEAs) of minimum three principal alloying elements in equiatomic proportions. They show exceptional application properties, such as high-strength and ductility or corrosion resistance. Future HEA/MEA-components could be exposed to hydrogen containing environments like vessels for cryogenic or high-pressure storage where the hydrogen absorption and diffusion in these materials is of interest. In our study, we investigated the HEA Co20Cr20Fe20Mn20Ni20 and the MEA Co33.3Cr33.3Ni33.3. For hydrogen ingress, cathodic charging was applied and diffusion kinetic was measured by high-resolution thermal desorption spectros-copy using different heating rates up to 0.250 K/s. Peak deconvolution resulted in high-temperature desorption peaks and hydrogen trapping above 280 °C. A total hydrogen concentration > 40 ppm was identified for the MEA and > 100 ppm for HEA. This indicates two important effects: (1) delayed hydrogen diffusion and (2) considerable amount of trapped hydrogen that must be anticipated for hydrogen assisted cracking phenomenon. Local electrochemical Volta potential maps had been measured for the hydrogen free condition by means of high-resolution Scanning Kelvin Probe Force Microscopy (SKPFM). T2 - Symposium on Materials and Joining Technology CY - Online meeting DA - 07.09.2020 KW - Hydrogen KW - High-entropy alloy KW - Diffusion KW - Scanning kelvin probe force microscopy KW - Corrosion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511684 DO - https://doi.org/10.1088/1757-899X/882/1/012015 VL - 882 SP - 1 EP - 15 PB - IOP Publishing CY - Bristol AN - OPUS4-51168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded T1 - Hydrogen assisted cracking phenomena in duplex stainless steels elucidated by in- and ex-situ ToF-SIMS experiments N2 - In the presented research, the high potential and abilities of secondary ion mass spectrometry (ToF-SIMS) to detect and locally map the hydrogen distribution in two types of duplex stainless steels are shown. The research validates certain proposed mechanisms by combining ToF-SIMS with high-resolution scanning electron microscopy and electron-backscattered diffraction. The combination of data from several techniques on the same region was conducted in this field for the first time by applying data treatment of the ToF-SIMS raw data and data fusion approach. This powerful combination of methods allows reviewing of the occurring processes related to hydrogen assisted cracking. The step beyond the state of the art in this field was gained here by developing permeation and mechanical loading experiments within the ToF-SIMS during chemometric imaging of the hydrogen distribution in the microstructure. The research presents the necessary correlation between the hydrogen distribution and the resulted structural changes, the diffusion behavior in a duplex microstructure and stress induced diffusion of hydrogen by applying external load at the microscale. T2 - 6th WMRIF Early Career Scientist Summit CY - NPL Teddington UK DA - 18.06.2018 KW - ToF-SIMS KW - Duplex stainless steel KW - LDX KW - EBSD KW - Data-fusion PY - 2018 AN - OPUS4-46865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Sobol, Oded T1 - Hydrogen assisted cracking and transport studied by ToF-SIMS and data fusion with HR-SEM N2 - For almost 150 years it is known that hydrogen has a deleterious effect on the mechanical properties of metallic components. Nowadays, the problem of hydrogen assisted degradation is highly relevant in energy related fields due to the massive use of steel as a structural component in these applications and its sensitivity to hydrogen. Since the discovery of hydrogen assisted cracking (HAC), researchers studied intensively and suggested possible explanations and mechanisms in order to define how hydrogen is affecting the material. In general, it is considered that hydrogen changes the mechanical properties more in terms of ductility (deformation capacities) than in strength (load capacities). Hydrogen concentration is one of three crucial factors in the degradation process, together with the microstructure of the material and the internal/external mechanical load. The relatively high concentration of hydrogen resulting in this loss of ductility can originate during production or before service (e.g. welding processes) and during service (i.e. catholically protected systems to eliminate corrosion processes in sour environments). In parallel to the theoretical work, tremendous efforts were, and are still, invested in searching for a proper method to elucidate, map and quantify the hydrogen in the microstructure, which is the basis for this work. For steels, the focus is mainly on the observations of diffusion processes and the interaction of hydrogen with the microstructure in regions with high local stresses/strains (for example around evolving cracks). The challenge for reaching this goal arises from the fact that accurate indication of hydrogen by means of position, unlike heavier atoms, can be made only by mass spectrometry or by interaction with another element (e.g. silver decoration, special coating and resonant nuclear reaction by nitrogen). In addition to this, the difficulty recording the hydrogen behavior while it rapidly diffuses through the material, leaving only the unpredicted failure, should be taken into account. Although using powerful characterization methods, models and computational simulations, the key to defining the mechanisms behind HAC is still under debate and not fully understood. The relationship between material and hydrogen is determined by three factors, i.e., the material structure and microstructure – determining the physical properties, the mechanical load applied on the material and the hydrogen concentration. It is well known that in order to have a complete definition of HAC these three factors must be examined locally with the minimal scale and the maximal resolution reachable. The major gap is the lack in such a characterization method or a technique by which one has the ability to detect and observe the hydrogen in the metallic microstructure. The commonly used techniques nowadays are capable of characterization of the microstructure without the ability to observe the hydrogen distribution. Global hydrogen concentration and localized hydrogen observation are possible by some techniques which are incapable of indicating a change in the structure or microstructure therefore a comprehensive overview can be gained only by combining several methods. In the presented research, secondary ion mass spectrometry (SIMS) was adopted as the main tool to detect and locally map the hydrogen distribution in two types of duplex stainless steel grades: EN 1.4462 (standard 2205 duplex stainless steel) and EN 1.4162 (2101 lean duplex stainless steel). The term duplex stainless steel (DSS) refers to the austenitic-ferritic microstructure of the steel where the combination of physical and mechanical properties of the two phases is achieved. The DSS was selected as a case study for this work due to the wide use of this grade in many energy and the lack of knowledge on hydrogen behavior in two-phase containing microstructures. ToFSIMS was exploited in-situ and ex-situ in three experimental approaches during or following an electrochemical charging procedure. This type of hydrogen charging was selected as it simulated a procedure of cathodic protection of most sub-water oil and gas extraction and delivery systems. The experimental procedures were: 1. Ex-situ charging followed by ToF-SIMS imaging for basic understanding of hydrogen distribution. 2. Ex-situ charging followed by in-situ mechanical loading to obtain information on hydrogen behavior around a propagating crack. 3. In-situ permeation of hydrogen through a steel membrane inside the ToF-SIMS to obtain information on diffusion behavior of hydrogen in a two-phase microstructure. The comprehensive view of the effect of hydrogen on steel was gained by using supplementary methods, such as high resolution scanning electron microscopy (HR-SEM), focused ion beam (FIB) and electron back-scattered diffraction (EBSD). The state of the art in this work lies in applying both: in-situ experimental approaches and data treatment of the ToF-SIMS raw data. The data treatment includes the combination of data from several sources (data fusion). The results for the ex-situ charging followed by static sample imaging and data fusion showed that when the analyzed surface is directly exposed to the electrolyte the degradation is pronounced differently in the ferrite, austenite and interface. The degradation mechanisms in the ferrite and austenite were reflected by the formation of cracks on the surface of both, where a high concentration of hydrogen was obtained. This result supports the assumption that hydrogen is attracted to highly deformed regions. The advantage of using in-situ charging/permeation in comparison to ex-situ charging is that the effect of hydrogen on the ferrite and austenite phases when the hydrogen is evolving from within the microstructure is realized, in comparison to when the analyzed surface is initially exposed directly to the electrolyte. In both experiments the ferrite was observed as a fast diffusion path for the hydrogen. The faster diffusion of hydrogen through the ferrite is expected due to the higher diffusion coefficient, however, a direct proof for the diffusion sequence in this scale was never shown. Most significant results were achieved by the ‘core’ experiments of this research. These experiments included the design of a novel dynamic mechanical loading device to apply an external load during SIMS imaging of a hydrogen precharged-notched sample. For the first time it was shown that plastic deformation induced by applying a mechanical load is resulting in a redistribution of hydrogen locally around the notch. T3 - BAM Dissertationsreihe - 160 KW - Duplex stainless steels KW - Hydrogen assisted cracking KW - Time-of-Flight secondary ion mass spectrometry KW - Data fusion PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-447331 SN - 1613-4249 VL - 160 SP - I EP - 180 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-44733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meinderink, D. A1 - Kielar, C. A1 - Sobol, Oded A1 - Ruhm, L. A1 - Rieker, F. A1 - Nolkemper, K. A1 - Orive, A. G. A1 - Özcan Sandikcioglu, Özlem A1 - Grundmeier, G. T1 - Effect of PAA-induced surface etching on the adhesion properties of ZnO nanostructured films N2 - Zinc oxide - polymer interfaces are known to exhibit interesting properties regarding molecular adhesion. This work is aimed at the investigation of the effect of the morphology and surface chemistry on the macroscopic adhesion of a model epoxy-based adhesive to nanorod (ZnO NR) and nanocrystalline (ZnO NC) ZnO-modified surfaces. Both ZnO films have been prepared using hydrothermal synthesis on hot-dip galvanized steel (HDG) surfaces by varying the precursor chemistry in order to control the film morphology. Poly (acrylic acid) (PAA) was used to improve the interfacial adhesion by modifying the morphology and surface chemistry of ZnO nanostructured films. The strong interaction of PAA from a dilute and neutral aqueous solution with the ZnO nanocrystallites was shown to significantly improve the interfacial adhesion by means of a nanoetching process. It was shown that the wet peel-forces correlate well with the considered morphology and surface chemistry. KW - Interfacial stability KW - Morphology control KW - Poly(acrylic acid) KW - Adhesion by mechanical interlocking KW - ZnO films KW - ZnO nanorods Nanocrystalline PY - 2021 DO - https://doi.org/10.1016/j.ijadhadh.2021.102812 SN - 0143-7496 VL - 106 SP - 102812 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-52600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wetzel, Annica A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia A1 - Rhode, Michael T1 - Corrosion Properties and Protective Oxide Film Characteristics of CrMnFeCoNi High Entropy Alloy and CrCoNi Medium Entropy Alloy N2 - High and medium entropy alloys gained increasing academic and industrial interest as novel materials for engineering applications. This project is aiming to clarify and compare the general and local corrosion properties of high entropy alloy CrMnFeCoNi and medium entropy alloy CrCoNi in different aqueous environments. The focus lies on the local corrosion processes that result either from microstructural imperfections (inclusions, defects at grain boundaries etc.) in the base material or processing related changes in the microstructure and/or local composition. The corrosion behavior of the alloys was monitored via potentiodynamic polarization experiments and the local corrosion characteristics were further investigated by means of scanning electrochemical microscopy (SECM). Their passivation behavior was analyzed in two different electrolyte systems (NaCl and H2SO4 c = 0.1M). The characterization of the surface morphology and composition of the passive film was performed by means of atomic force microscopy (AFM), scanning electron microscopy coupled with energy dispersive X-Ray spectroscopy (SEM/EDX) and X-Ray photoelectron spectroscopy (XPS), respectively. To analyze the semiconducting properties of the passive film Mott-Schottky analysis was conducted. Considering long term corrosion effects, electrochemical work was supported with immersion tests and the analysis of corrosion products by SEM/EDX, ICP-MS and XPS depth-profiling. Our results indicate that the medium entropy alloy CrCoNi has a significantly higher corrosion resistance due to the higher concentration of chromium in comparison to the high entropy alloy CrMnFeCoNi. The presentation will summarize our results on the mechanistical aspects of the observed high corrosion resistance. T2 - ISE Annual 72nd meeting CY - Online meeting DA - 29.08.2021 KW - High Entropy Alloys KW - Aqueous Corrosion KW - Medium Entropy Alloys KW - Atomic Forc Microscopy KW - Scanning Kelvin Probe Force Microscopy KW - Potentiodynamic Polarization KW - Electrochemical Impedance Spectroscopy KW - ICP-MS PY - 2021 AN - OPUS4-53789 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wetzel, Annica A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia A1 - Rhode, Michael T1 - Corrosion Properties and Protective Oxide Film Characteristics of CrMnFeCoNi High Entropy Alloy and CrCoNi Medium Entropy Alloy N2 - High and medium entropy alloys gained increasing academic and industrial interest as novel materials for engineering applications. This project is aiming to clarify and compare the general and local corrosion properties of high entropy alloy CrMnFeCoNi and medium entropy alloy CrCoNi in different aqueous environments. The focus lies on the local corrosion processes that result either from microstructural imperfections (inclusions, defects at grain boundaries etc.) in the base material or processing related changes in the microstructure and/or local composition. The corrosion behavior of the alloys was monitored via potentiodynamic polarization experiments and the local corrosion characteristics were further investigated by means of scanning electrochemical microscopy (SECM). Their passivation behavior was analyzed in three different electrolyte systems (NaCl, H2SO4 and NaClO4; c = 0.1M). The characterization of the surface morphology and composition of the passive film was performed by means of atomic force microscopy (AFM), scanning electron microscopy coupled with energy dispersive X-Ray spectroscopy (SEM/EDX) and X-Ray photoelectron spectroscopy (XPS), respectively. Considering long term corrosion effects, electrochemical work was supported with immersion tests and the analysis of corrosion products by SEM/EDX and XPS depth-profiling. Our results indicate that the medium entropy alloy CrCoNi has a significantly higher corrosion resistance due to the higher concentration of Chromium in comparison to the high entropy alloy CrMnFeCoNi. The presentation will summarize our results on the mechanistical aspects of the observed high corrosion resistance. T2 - EuroMat 2021 CY - Online meeting DA - 12.09.21 KW - High Entropy Alloys KW - Aqueous Corrosion KW - Medium Entropy Alloys KW - Atomic Forc Microscopy KW - Scanning Kelvin Probe Force Microscopy KW - Potentiodynamic Polarization KW - Electrochemical Impedance Spectroscopy KW - ICP-MS PY - 2021 AN - OPUS4-53790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wetzel, Annica A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia A1 - Rhode, Michael T1 - Corrosion Properties and Protective Oxide Film Characteristics of CrMnFeCoNi High Entropy Alloy and CrCoNi Medium Entropy Alloy N2 - High and medium entropy alloys gained increasing academic and industrial interest as novel materials for engineering applications. This project is aiming to clarify and compare the general and local corrosion properties of high entropy alloy CrMnFeCoNi and medium entropy alloy CrCoNi in different aqueous environments. The focus lies on the local corrosion processes that result either from microstructural imperfections (inclusions, defects at grain boundaries etc.) in the base material or processing related changes in the microstructure and/or local composition. The corrosion behavior of the alloys was monitored via potentiodynamic polarization experiments and the local corrosion characteristics were further investigated by means of scanning electrochemical microscopy (SECM). Their passivation behavior was analyzed in three different electrolyte systems (NaCl, H2SO4 and NaClO4; c = 0.1M). The characterization of the surface morphology and composition of the passive film was performed by means of atomic force microscopy (AFM), scanning electron microscopy coupled with energy dispersive X-Ray spectroscopy (SEM/EDX) and X-Ray photoelectron spectroscopy (XPS), respectively. Considering long term corrosion effects, electrochemical work was supported with immersion tests and the analysis of corrosion products by SEM/EDX and XPS depth-profiling. Our results indicate that the medium entropy alloy CrCoNi has a significantly higher corrosion resistance due to the higher concentration of Chromium in comparison to the high entropy alloy CrMnFeCoNi. The presentation will summarize our results on the mechanistical aspects of the observed high corrosion resistance. T2 - EUROCORR 2021 CY - Online meeting DA - 20.09.2021 KW - High Entropy Alloys KW - Aqueous Corrosion KW - Medium Entropy Alloys KW - Atomic Forc Microscopy KW - Scanning Kelvin Probe Force Microscopy KW - Potentiodynamic Polarization KW - Electrochemical Impedance Spectroscopy KW - ICP-MS PY - 2021 AN - OPUS4-53791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - Comprehensive study of deuterium-induced effects in in austenitic stainless steel AISI 304L N2 - The damaging impact of hydrogen on the austenitic stainless steel AISI 304 L was analysed. To this aim, samples were charged electrochemically with the hydrogen isotope deuterium (2H, D) and examined with time-of-flight secondary ion mass spectrometry (ToF-SIMS) and electron backscatter diffraction (EBSD). The fusion of the obtained chemical and structural information revealed local enrichment of deuterium in austenite, transformation into martensite, crack formation and severe roughening of the specimen surface. The results indicated that martensite was not only formed during charging but also during Desorption and ToF-SIMS examinations. Furthermore, cross-sections of deuterium-charged samples revealed that in preferred deformation bands a g/ε/a 0 evolution is taking place. By means of microscopic analyses and carrier gas hot extraction (CGHE), it was found that the use of NaAsO2 as recombination poison decreased the uptake of hydrogen significantly and resulted in severe precipitation on the specimen surfaces. This is in contrast to the popular presumption that NaAsO2 enhances the uptake of hydrogen (and deuterium) during electrochemical charging by hampering its recombination from Atoms to molecules. KW - AISI 304L KW - Hydrogen KW - ToF-SIMS KW - Deuterium KW - Martensite PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-477540 DO - https://doi.org/10.1016/j.ijhydene.2019.03.058 SN - 0360-3199 SN - 1879-3487 VL - 44 IS - 23 SP - 12228 EP - 12238 PB - Elsevier Ltd. AN - OPUS4-47754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded A1 - Böllinghaus, Thomas T1 - BAM’s role in materials science and hydrogen in metals: TOF-SIMS imaging N2 - Due to its low mass and high diffusivity in presence of compositional, thermal and mechanical gradients, hydrogen within a metallic microstructure can result in severe loss in ductility even at low concentrations and might lead eventually to a catastrophic and unpredictable failure of structural components during service. In this context, hydrogen mapping at the microscale is still considered among the most important challenges on the pathway towards a better understanding of the hydrogen transport and assisted cracking phenomena in metals, specifically in structural components, e.g. steels. Among the very few available techniques to localize hydrogen at the microscale, Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was proven to be a reliable tool. Based on the assumption that deuterium influence the microstructure similarly to hydrogen, in the following contribution ToF-SIMS was applied as the main technique to detect and locally map the deuterium distribution in several alloys: lean 2101 and standard 2205 duplex stainless steel (DSS), AISI 304L austenitic stainless steel and titanium 6Al-4V alloy. These alloys were selected as case studies in this work due to the wide use of them in many applications and environments which frequently provide critical conditions for hydrogen absorption and assisted degradation. The innovative design of in-situ and ex-situ experiments enabled us to elucidate the permeation, transport and trapping of deuterium in the microstructure in sub-micron resolution for the first time. In addition to the novel experimental setups, further progress was gained by applying computational multivariate data analysis (MVA) on the raw data and data fusion with high resolution structural characterization methods (scanning electron microscopy and electron back-scattered diffraction – SEM/EBSD). This combination allowed us to correlate the deuterium distribution and the influence on the microstructure. T2 - 4th Symposium on Innovative Measurement and Analysis for Structural Materials CY - Tokyo, Japan DA - 13.11.2018 KW - ToF-SIMS KW - Duplex stainless steel KW - Austenitic stainless steel KW - Principal Component Analysis KW - Data-fusion PY - 2018 UR - https://unit.aist.go.jp/tia-co/project/SIP-IMASM/sympo/2018/index.html AN - OPUS4-46867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Nolze, Gert A1 - Böllinghaus, Thomas A1 - Unger, Wolfgang T1 - Analysis of deuterium in austenitic stainless steel AISI 304L by Time-of-Flight Secondary Ion Mass Spectrometry N2 - Due to their excellent combination of ductility, strength and corrosive resistance, austenitic stainless steels (ASS) are widely used in many industrial applications. Thus, these steel grades can be found as structural components in the (petro-)chemical industry, in offshore applications and more recent for storage and transport of hydrogen fuel. Steels employed for these applications are exposed to aggressive environments and hydrogen containing media. The ingress and accumulation of hydrogen into the microstructure is commonly observed during service leading to a phenomenon called “hydrogen embrittlement”. A loss in ductility and strength, the formation of cracks and phase transformations are typical features of this hydrogen-induced degradation of mechanical properties. Although, great efforts are made to understanding hydrogen embrittlement, there is an ongoing debate of the underlying mechanisms. This knowledge is crucial for the safe use and durability of components on the one side and the development of new materials on the other. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was proven to be a powerful tool for depicting the distribution of the hydrogen isotope deuterium in the microstructure of austenitic and duplex steels. The combination with imaging techniques such as electron backscatter diffraction (EBSD) and scanning electron microscopy (SEM), delivering structural and morphological information, creates a comprehensive picture of the hydrogen/deuterium-induced effects in the materials. All the gathered data is treated with principal component analysis (PCA) and data fusion to enhance the depth of information. The mobility of hydrogen and deuterium in a steel microstructure is affected by external mechanical stress. To investigate the behaviour of deuterium in a strained microstructure, a new in situ experimental approach was developed. This gives the possibility of analysing samples in the SIMS instrument simultaneously to four-point-bending-tests. Specimens made from ASS AISI 304L were electrochemically charged with deuterium instead of hydrogen. This necessity stems from the difficulty to separate between artificially charged hydrogen and hydrogen existing in the pristine material or adsorbed from the rest gas in the analysis chamber. Nonetheless, similar diffusion, permeation and solubility data allow to draw qualitative conclusions from the experiments, which are relevant for the application addressed. T2 - SIMS Europe 2018 CY - Münster, Germany DA - 16.09.2018 KW - Hydrogen KW - Deuterium KW - Austenitic stainless steel KW - SIMS PY - 2018 AN - OPUS4-46029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -