TY - CONF A1 - Konert, Florian T1 - Deep Dive: Visualizing hydrogen assisted cracks in hollow specimens utilizing µCT N2 - The Deep-Dive provides a short introduction and summary of the performed tests on API X65 Pipelinesteels. The aim of the tests is the visualization of hydrogen assisted crack popagation in hollow specimens. T2 - DAAD Green Hydrogen Workshop CY - Online meeting DA - 07.05.2024 KW - Hydrogen KW - Hollow specimen technique KW - µCT KW - Hydrogen embrittlement KW - Pipeline steel PY - 2024 AN - OPUS4-60001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Konert, Florian A1 - Freitas, Tomás A1 - Krzysch, Zephanja T1 - Evaluating X65 pipeline steel using the hollow specimen technique N2 - This presentation describes the usability of the hollow tensile specimen technique for in-situ material testing in a hydrogen atmosphere. In addition, the presentation provides an outlook on the methodology for investigating the suitability of pipeline steels and their weld seams for hydrogen operation. T2 - EPHyC 2024 CY - Ghent, Belgium DA - 19.03.2024 KW - Hydrogen embrittlement KW - Hollow specimen technique KW - Pipeline steel KW - SSRT PY - 2024 AN - OPUS4-59746 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Campari, Alessandro A1 - Konert, Florian A1 - Sobol, Oded A1 - Alvaro, Antonio T1 - A comparison of vintage and modern X65 pipeline steel using hollow specimen technique for in-situ hydrogen testing JF - Engineering Failure Analysis N2 - The transition toward a hydrogen-based economy requires a widespread transport and distribution network, and repurposed natural gas pipelines are a viable option. An assessment of the hydrogen-induced degradation of pipeline steels is needed to inject H2 gas into the existing infrastructure safely. The conservative and standardized method consists of in-situ tensile tests in an autoclave filled with high-pressure hydrogen gas. A proposed alternative method involves using a hollow specimen as containment volume and applying the gas pressure in the inner cavity. This technique has lower costs and shorter test preparation time but is not standardized yet. This study aims to evaluate and compare the tensile properties of API 5L X65 pipeline steel in two states: vintage and modern. The influence of the surface roughness is investigated through parallel tests with drilled and reamed specimens. Hydrogen tests are compared with reference tests in an inert environment. A significant hydrogen-induced decrease in tensile properties is observed, and no significant difference between vintage and modern X65 can be drawn. The reduction in tensile properties is more significant in specimens with higher inner surface roughness. The evaluation of surface conditions appears crucial when assessing the HE susceptibility of hydrogen transport and storage equipment. KW - Hydrogen embrittlement KW - Hollow specimen technique KW - Pipeline steel KW - SSRT PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-603013 DO - https://doi.org/10.1016/j.engfailanal.2024.108530 VL - 163 SP - 1 EP - 15 PB - Elsevier Ltd. AN - OPUS4-60301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -