TY - CONF A1 - Schröder, Nina A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Influence of Microalloying on Precipitation Behavior and Notched Impact Strength of Welded High Strength Structural Steels N2 - Microalloying elements, such as Nb and Ti, are essential for significantly increasing the strength of quenched and tempered, high-strength structural steels with a nominal yield strength ≥ 690 MPa and their welded joints. The standard specifications (e.g., EN 10025-6) for the chemical composition are only tolerated limit contents within which the steel manufacturers operate. The standard composition, however, says nothing per se about the properties of the material. Even small deviations in the alloy route can have a drastic effect on the mechanical properties. This makes it difficult or even impossible to adequately predict the weldability and integrity of the welded joint. An undesirable side effect is the possible softening of the heat-affected zone (HAZ), as well as the opposite hardening.Mechanical-technological investigations of the notched impact strength confirm the results of the simulation regarding the development of different microalloy routes in the welded state. From this, the influence of the heat effect of welding on the microstructure formation in the HAZ and the corresponding mechanical properties can be described qualitatively. T2 - 76th IIW Annual Assembly and International Conference on Welding and Joining CY - Singapore DA - 16.07.2023 KW - High-strength structural steel KW - Notched impact strength KW - HAZ-softening KW - Microalloying influences PY - 2023 AN - OPUS4-57997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Nina A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Thermodynamic prediction of precipitations behaviour in HAZ of a gas metal arc welded S690QL with varying Ti and Nb content JF - Welding in the World, The International Journal of Materials Joining N2 - For a significant increase in the strength of high-strength fine-grained structural steels with a nominal yield strength ≥690 MPa, the addition of microalloying elements such as Nb and Ti is required. The standard specifications for the chemical composition of these steels (e.g., in EN 10025-6) often only give the manufacturer limit contents to achieve the defined properties. The effect of the alloying elements in the heat affected zone (HAZ) is sometimes completely contrary. This makes it difficult to adequately predict the batch dependency regarding weldability and the load-bearing behaviour of the welded joint. Three different micro-alloyed steels of the grade S690QL were produced on a laboratory scale, focusing on different Nb and Ti contents. To investigate the tempering effect, these were gas metal arc welded in three layers. In addition to metallographic investigations of individual HAZ areas, thermodynamic phase calculations were carried out using Thermo-Calc, following variations in the chemical composition. This provides an understanding of phase transformation, precipitation growth, and dissolution during welding as a function of temperature and cooling conditions. The results show a divergent metallurgical behaviour in the HAZ of the three different micro-alloyed steels. Thereby, the Ti micro-alloyed grade showed a strong softening of the HAZ in contrast to the Nb micro-alloyed grade. This can be attributed to a contrary precipitation behaviour during welding. KW - High-strength structural steel KW - Gas metal arc welding KW - HAZ-softening KW - Microalloying influences KW - Thermodynamic simulation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579988 DO - https://doi.org/10.1007/s40194-023-01550-2 SN - 0043-2288 SP - 1 EP - 10 PB - Springer AN - OPUS4-57998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -