TY - CONF A1 - Dávila, Josué A1 - Kleba-Ehrhardt, Rafael A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Influence Of Initial Powder Oxidation Level On Process-induced Material Degradation During The Laser Powder Bed Fusion Of Nickel-based Haynes 282 N2 - This study examines the impact of varying oxidation levels in nickel-based Haynes 282 powder on particle degradation during laser powder bed fusion (PBF-LB|M). Four powder batches with oxygen content levels of approximately from 140 ppm to1400 ppm were processed using PBF-LB|M. A powder collection container was fabricated to sample unmelted powder from heat-affected regions of the powder bed. Recoating and melting proceeded without issues; however, increased fume emissions were observed at higher oxidation levels, indicating intensified spatter formation. Post-process analysis revealed that finer particles exhibited greater surface oxidation due to their higher surface-to-volume ratio. Despite significant oxygen uptake, chemical analysis showed no measurable changes in key alloying elements in either the unmelted or spatter particles. Additionally, changes in particle size distribution became more pronounced at high oxidation levels. These findings provide a basis for understanding oxidation-driven degradation and optimizing powder reuse strategies to maintain material performance. T2 - Euro Powder Metallurgy 2025 Congress & Exhibition CY - Glasgow, United Kingdom DA - 14.09.2025 KW - Recycling KW - Additive manufacturing KW - Laser powder bed fusion (PBF-LB/M) KW - Powder quality KW - Powder degradation KW - Powder oxidation KW - Spatter particles KW - Particles ejected KW - Powder reuse PY - 2025 DO - https://doi.org/10.59499/EP256767986 SP - 1 EP - 9 PB - EPMA AN - OPUS4-64369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shikomba, Nikanor A1 - Böllinghaus, Thomas A1 - Konert, Florian A1 - Sobol, Oded A1 - Blasón Gonzalez, Sergio A1 - Ohijeagbon, Idehai Olayemi A1 - Krafft, Eike A1 - Staudt, Thorsten T1 - Resistance of welded low-alloyed pressure vessel and pipeline steels in gaseous hydrogen N2 - Green hydrogen has become an essential energy carrier to achieve a climate-neutral economy. The production, storage, transport and usage of green hydrogen require safe and sustainable facilities and systems. The present contribution provides a procedure guideline to investigate the compatibility of steel welds for pressurised gaseous hydrogen applications under quasi-static mechanical loads, utilising the slow strain rate test and hollow specimen technique. Exemplarily, a weld of the low-alloyed steel P355NL1 was investigated and compared to an X65 weld. The results indicate that the base metal exhibits a higher ductility than the weld metal for both steels. Generally, hydrogen-exposed specimens exhibited a reduced strain, as compared to reference specimens. The hydrogen degradation, evaluated by the hydrogen embrittlement index, was more pronounced in the weld metal compared to the base P355NL1 material, whereas the X65 exhibited a larger hydrogen degradation of the base material than in the weld metal. Fractographic analysis of the test specimens revealed that hydrogen causes a transition from ductile to brittle features. Generally, the results of this study indicate a mild but significant degradation of the mechanical properties in terms of the ductility of the welds in the respective pressurised hydrogen atmosphere. KW - Hydrogen-assisted cracking KW - Welded joint KW - Slow strain rate test KW - Hollow Specimen KW - Structural steel PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634138 DO - https://doi.org/10.1007/s40194-025-02074-7 SN - 0043-2288 SP - 1 EP - 15 PB - Springer CY - Berlin AN - OPUS4-63413 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kardjilov, Nikolay T1 - Neutron Thermo Tomography N2 - This study presents an investigation of the neutron transmission signal as a function of martensitic steel sample temperature and phase transformation during a welding process. A theoretical description that includes the Debye-Waller factor was used to describe the temperature influence on the neutron cross-sections. Neutron imaging using a monochromatic beam helps to observe transmission variations related to the martensitic-austenitic phase transformations before the Bragg-edge and to the material temperature above the Bragg-edge. In-situ neutron imaging of welding experiments show the distribution of the phase transformation and of the temperature in bulk steel samples. The performed finite element modelling of expected temperature distributions shows good agreement with the obtained experimental data. T2 - Neutron Wavelength-Dependent Imaging Workshop (NEUWAVE-12) CY - Lund, Sweden DA - 01.09.2024 KW - Neutron Imaging KW - Energy Selective KW - Neutron Thermo Tomography PY - 2024 AN - OPUS4-61265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel T1 - Crystallographic phase transformations and corresponding temperature distributions during gtaw of supermartensitic stainless steel visualized by nbei N2 - We investigated the phase transformations during butt-welding of supermartensitic steel plates with help of Neutron-Bragg-Edge Imaging (NBEI). Gas tungsten arc welding (GTAW) was used with a motorized torch allowing for automated weldments. The austenitization in the heat affected zone (HAZ) could be clearly visualized at λ = 0.39 nm, a wavelength smaller than the Bragg edge wavelengths of both austenite and martensite. The re-transformation into the martensitic phase during cooling was clearly detected. However, we observed an unexpected additional change in transmission at λ = 0.44 nm, a wavelength larger than the wavelength of the Bragg edges of both the martensitic and austenitic phases. We attribute this change to the Deybe-Waller-Factor that describes the temperature dependence of coherent scattering at a crystal lattice. The observed two-dimensional attenuation map corresponds well with a temperature distribution modelling by software macros in ANSYS [3]. Here, the absolute temperature values could be achieved by calibrating the modelled attenuation with help of a thermocouple placed at the steel plate. This allows in return for a direct two-dimensional temperature reading based on the Debye-Waller-relation between neutron attenuation and sample temperature. T2 - WCNR-12 CY - Idaho Falls, Id, USA DA - 02.06.2024 KW - Neutron KW - Radiography KW - Welding PY - 2024 AN - OPUS4-60242 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Repair welding of pressurized in-service hydrogen pipelines - A review on current challenges and strategies N2 - As energy carrier of the future, green hydrogen can make a decisive contribution to a sustainable energy supply. Particularly important is the decarbonization of heavy industry. Therefore, a reliable supply of hydrogen must be guaranteed. A hydrogen pipeline grid can achieve this purpose. In Europe concrete plans for a hydrogen pipeline grid already exist, as the so called “European Hydrogen backbone”. As building a completely new pipeline grid is economically not justifiable, a dual-way strategy of repurposing natural gas (NG) pipelines and newly built pipelines is intended. Long distance pipeline grids require regular maintenance and repairs. For natural gas (NG) pipelines in-service welding is state of the art. Concepts such as hot-tapping (drilling into pressurized pipelines) and “stoppling” (sealing off pipeline sections after installing bypasses or pressure relieves) allow the repair of damaged pipeline sections or the installation of new branches without shutting the pipeline down, which in most cases isn’t possible from an economic standpoint. The EIGA 121/14 guideline already pointed out in 2014 that “a hydrogen hot-tap shall not be considered a routine procedure”. This shows that the determination of the transferability of these repair concepts to hydrogen pipelines is of utmost importance. Due to the degrading effects of hydrogen on mechanical proper-ties, commonly referred to as “hydrogen embrittlement” it is necessary to understand and investigate the occurring effects. In the special case of repair welding on in-service hydrogen pipelines an increased hydro-gen uptake due to a large heat input and microstructural changes in the material needs to be considered. Therefore, material degradation must be investigated to determine whether modifications of repair procedures are necessary to ensure a reliable and safe hydrogen transportation via pipelines. For this reason, this paper gives an overview on existing weld repair concepts and its risks and limitations in terms of hydrogen absorption and possible embrittlement effects when transferred to hydrogen pipelines. The complexity lies in a large variety of materials (low alloyed steels), pipeline diameters and corresponding welded joints. The material compatibility of materials in used (repurposed NG-pipelines) and new condition must be investigated. Particularly for repurposed/used pipelines the effect of a pre-matured/corroded inner surface and sometimes insufficient documentation of the material “history” needs to be considered. An overview on ongoing and completed R&D-projects with respect to repair concepts for hydrogen pipelines and hydrogen effects on pipeline materials is given. The focus hereby lies on possible methods of material testing and modeling. Its current difficulties, limits and possible solution will be discussed. T2 - IIW Intermediate Meeting, Com. II-A CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Hydrogen KW - Repair welding KW - Pipelines KW - In-service PY - 2024 AN - OPUS4-59674 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Combined effect of heating rate and restraint condition on stress relief cracking susceptibility during PWHT of thick-walled Cr-Mo-V steel submerged arc welded joints N2 - Contemporary steels creep-resistant steels like the 13CrMoV9-10 are used as thick plates e.g., for applications in hydrocrackers. The large plate thickness requires high efficiency welding processes like submerged arc welding (SAW) and a mandatory post weld heat treatment (PWHT). The PWHT-parameters stem from a combination of empirical knowledge and traditional experiments on free shrinking (FS) welds. In that connection, the formation of so-called stress-relief cracking (SRC) must be anticipated. The SRC susceptibility of a welded component is a complex combination and interaction of com-ponent specific, thermal, and metallurgical factors. Many of which have to date not been conclusively researched. For example, it is well known that SRCs develop during PWHT due to formation and growth of carbides on prior austenite grain boundaries, resulting in a significant hardness increase (secondary hardening) and toughness decrease. This leads to a high SRC susceptibility of the coarse grain heat-affected zone (CGHAZ) of the last weld bead during PWHT. This is intensified in case of high residual stresses from the component-specific, structurally induced stiffness. In combination with multi-layer welding this leads to a multiaxial stress distribution. Nonetheless, the combined effect of PWHT and high-residual stresses on the SRC formation is merely unknown. For that reason, this study presents the effect of different heating rates in conjunction with a certain component stiffness. For that reason, SAW joints of 13CrMoV9-10 steel were investigated under FS and defined external restraint condition. T2 - IIW Intermediate Meeting, Com. II-A CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Stress relief cracking KW - Welding KW - Post weld heat treatment KW - Submerged arc welding KW - Cr-Mo-V steel KW - Creep-resisting steel PY - 2024 AN - OPUS4-59673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernardy, Christopher A1 - Konert, Florian A1 - Popiela, Bartosz A1 - Sarif, Raduan T1 - H2Safety@BAM: Competence Center for safe hydrogen technologies N2 - Presentation of the competence center H2Safety@BAM at the European PhD Hydrogen Conference 2024 in Ghent, Belgium. T2 - European PhD Hydrogen Conference 2024 (EPHyC2024) CY - Ghent, Belgium DA - 20.03.2024 KW - H2safety KW - Hydrogen KW - Safety KW - Competence center PY - 2024 AN - OPUS4-59756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Erxleben, Kjell A1 - Richter, Tim A1 - Schröpfer, Dirk A1 - Mente, Tobias A1 - Michael, Thomas T1 - Local mechanical properties of dissimilar metal TIG welded joints of CoCrFeMnNi high entropy alloy and AISI 304 austenitic steel N2 - Multiple principal element alloys encompass the well-known high entropy alloys (HEA). The alloy system represents a new class of materials consisting of at least three alloying elements, each containing 5 to 35 at.%. Thus, this alloying concept differs fundamentally from conventional materials such as steel or nickel alloys. For this purpose, the alloying elements are specifically selected, the microstructures are adjusted in a single-phase and, in some cases, multi-phase manner. In particular, conflicting goals, such as the trade-off between strength and ductility in conventional steels, are overcome. However, in the last 20 years, the focus has been on material synthesis. With the increase in available material quantities, the focus is now on processing issues such as joining and welding processes. The weldability of HEAs has received very little attention so far. The experience with dissimilar metal welds is completely lacking but is essential for the application of these materials in combination with conventional materials. The present study presents comprehensive experimental results on the weldability of an equimolar CoCrFeMnNi-HEA in cold-rolled and heat-treated condition, which was joined by tungsten inert gas welding to an austenitic steel AISI 304. The mechanical properties of the dissimilar metal welds were characterized by cross-weld tensile samples, whereas the local deformation in the weld of the different welding zones was measured by digital image correlation. In accordance with the respective initial HEA condition (cold-rolled vs. heat-treated), the local strain behavior was divergent and influenced the global mechanical properties of both DMW types. Nonetheless, the experiments provided proof in principle of the weldability for dissimilar joints of the CoCrFeMnNi-HEA welded to conventional materials like austenitic stainless steels ensuring a corresponding capability for mechanical loading. This allows further considerations on the application of these innovative materials. KW - TIG welding KW - High-entropy alloys KW - Mechanical properties KW - Dissimilar metal weld PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595775 DO - https://doi.org/10.1007/s40194-024-01718-4 SN - 0043-2288 SP - 1 EP - 11 PB - Springer Science and Business Media LLC AN - OPUS4-59577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Drexler, Andreas A1 - Konert, Florian T1 - Hydrogen Solubility in Steels – What is the Role of Microstructure? N2 - Hydrogen gas plays a key role in the European energy transition strategy. When transmitting and storing compressed hydrogen gas, safety is one of the most important conditions. With increasing hydrogen pressure and temperature, more hydrogen is absorbed by the steel components, such as pipelines or valves, and may lead to embrittlement. Although, a deep understanding of microstructure on the hydrogen solubility in steels is missing. Classical Sieverts’ law is only valid at high temperatures and low gas pressures. For that purpose, new theory is presented, which explains the role of microstructure on hydrogen solubility. Hydrogen trapping at microstructural defects is a thermally activated mechanism and causes an increase of the hydrogen solubility with decreasing temperatures. This mechanism has to be considered in cryogenic applications, such liquid or compressed hydrogen storage. T2 - EPRI Workshop on Hydrogen Embrittlement 2024 CY - Oxford, UK DA - 23.06.2024 KW - Hydrogen KW - Sieverts’ law KW - Hydrogen solubility in steels KW - Hydrogen trapping PY - 2024 AN - OPUS4-60477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Konert, Florian T1 - Evaluating X65 pipeline steel using the hollow specimen technique N2 - This presentation describes the usability of the hollow tensile specimen technique for in-situ material testing in a hydrogen atmosphere. In addition, the presentation provides an outlook on the methodology for investigating the suitability of pipeline steels and their weld seams for hydrogen operation. T2 - EPHyC 2024 CY - Ghent, Belgium DA - 19.03.2024 KW - Hydrogen embrittlement KW - Hollow specimen technique KW - Pipeline steel KW - SSRT PY - 2024 AN - OPUS4-59746 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -