TY - CONF A1 - Klinger, Christian T1 - Systematische Schadensanalyse: Vergleich und Anwendung von Richtlinien und Prozeduren N2 - Recherche verschiedener jeweils nationaler/internationaler Regelwerke und Prozeduren für die Systematische Schadensanalyse • Literaturrecherche zu Methoden der systematischen interdisziplinären Schadensanalyse • Vergleich der Regelwerke VDI 3822, ASTM, ASM sowie der Methoden • Anwendung der Regelwerke/Prozeduren und Methoden am Beispiel T2 - 46. VDI Jahrestagung: Schadensanalyse in der Energietechnik CY - Online meeting DA - 06.10.2020 KW - Regelwerke KW - Systematische Schadensanalysen, Prozeduren PY - 2020 AN - OPUS4-51401 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Pavlov, V. A1 - Volvenko, S. A1 - Rethmeier, Michael T1 - In situ determination of the critical straining condition for solidification cracking during laser beam welding N2 - A self-restraint hot cracking test (free edge test) was used in combination with a novel optical measurement technique to determine the critical straining conditions for solidification cracking for the stainless steel grade 1.4828 (AISI 309). The Lucas-Kanade algorithm for the optical flow (OF) calculation was implemented to obtain the full-field displacement and then the full-field strain. The use of external laser illumination with appropriate filters allows to obtain good image quality with good contrast. The critical straining conditions required for solidification cracking can be obtained by means the proposed technique in the immediate vicinity of the solidification front. A very good repeatability was demonstrated for the used measurement technique. The critical straining conditions for solidification cracking for the tested steel und under this welding conditions has been detected KW - Laser beam welding KW - Solidification cracking KW - Critical strain KW - Critical strain rate KW - Optical flow PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513070 DO - https://doi.org/10.1016/j.procir.2020.09.104 SN - 2212-8271 VL - 94 SP - 666 EP - 670 PB - Elsevier AN - OPUS4-51307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Tim T1 - Der Einfluss moderner Bearbeitungsverfahren auf die Oberflächenintegrität von Hoch- und Medium-Entropie-Legierungen N2 - High Entropy Alloys (HEAs) are a recent class of materials. In contrast to conventional alloys, HEAs consist of five alloying elements in equiatomic equilibrium. The high entropy effect is due, among other things, to the increased configuration entropy, which promotes solid solution formation. Many HEAs have enormous application potential due to excellent structural property combinations from very low to high temperatures. For the introduction of HEAs in real components, however, the question of the applicability of machining production technologies for component manufacture is of central importance. This has so far received Little attention in global materials research. Reliable and safe processing is essential for the demand of economical component production for potential areas of application, e.g. in power plant technology. For metals, milling is the standard machining process. This article presents the results of machining analyses. It focuses on the surface integrity resulting from the milling process on a Co20Cr20Fe20Mn20Ni20-HEA. For this purpose, investigations were carried out using ball nose end milling tools for conventional milling process in comparison to an innovative hybrid process available at BAM Berlin, Ultrasonic-Assisted Milling (USAM). USAM promises a lower Degradation of the surface properties due to lower loads on the workpiece surface during machining. For this purpose, basic milling parameters (cutting speed and tooth feed) were systematically varied and cutting forces were measured during the milling experiments. The subsequent Analysis of these forces allows an understanding of the mechanical loads acting on the tool and component surface. These loads cause topographical, mechanical and microstructural influences on the surface and consequently on the surface integrity. For their characterization, light and scanning electron microscopy were used, and the roughness and residual stresses via X-ray diffraction were measured. The results indicate significant advantages using USAM, especially due to reduced cutting forces compared to the conventional milling process. This causes lower mechanical loads on the tool and surface, combined with lower tensile residual stresses on and below the surface, and ultimately results in a significantly enhanced surface integrity. N2 - Hochentropie Legierungen (engl. High Entropy Alloys, HEAs) sind eine relativ neue Werkstoffklasse. Seit ersten Veröffentlichungen im Jahr 2004, steigt das Forschungsinteresse an diesem Werkstoffkonzept stetig an. Im Gegensatz zu herkömmlichen Legierungen bestehen HEAs aus fünf Legierungselementen in äquiatomaren Gleichgewicht. Der Hochentropie-Effekt ist dabei u.a. auf die erhöhte Konfigurationsentropie zurückzuführen, der die Mischkristallbildung fördert. Viele HEAs weisen aufgrund hervorragender struktureller Eigenschaftskombinationen von sehr tiefen bis zu hohen Temperaturen enormes Anwendungspotential auf. Für ihre Anwendung als reale Bauteile stellt sich aber die zentrale Frage der Anwendbarkeit von trennenden Fertigungstechnologien für HEAs. Dies findet in der bisherigen weltweiten Materialforschung bisher kaum Beachtung. Für die Forderung nach wirtschaftlicher Bauteilfertigung ist für potenzielle Anwendungsbereiche, bspw. in der Energietechnik, eine zuverlässige und sichere Verarbeitung von wesentlicher Bedeutung. Fräsen ist dabei ein Standardprozess für die zerspanende Bearbeitung von Metallen. Der vorliegende Beitrag stellt Ergebnisse durchgeführter Zerspanbarkeitsanalysen vor. Diese konzentriert sich auf die aus dem Fräsprozesse resultierende Oberflächenintegrität an einem sogenannten „Cantor-HEA“ (mit der Zusammensetzung Co20Cr20Fe20Mn20Ni20). Hierfür wurden Untersuchungen mit konventionellem Kugelkopffräsen durchgeführt und mit dem an der BAM Berlin verfügbaren innovativen Hybridverfahren, dem ultraschallunterstützten Fräsen (engl. Ultrasonic Assisted Milling, USAM), verglichen. USAM verspricht dabei eine geringere Degradation der Oberflächeneigenschaften aufgrund geringerer Belastungen auf die Werkstückoberfläche beim Spanen. Dazu wurden grundlegende Fräsparameter (Schnittgeschwindigkeit und Zahnvorschub) systematisch variiert und während der Fräsexperimente die Zerspankräfte gemessen, deren anschließende Analyse ein Verständnis für die mechanischen Beanspruchungen ermöglicht, die auf Werkzeug und Bauteiloberfläche wirken. Diese Beanspruchungen bedingen eine topographische, mechanische und mikrostrukturelle Beeinflussung der Oberfläche und letztlich der Oberflächenintegrität. Zur deren Charakterisierung wurden Licht- und Rasterelektronen-mikroskopie eingesetzt, sowie die Rauheit mittels 3D-Mikroskop und die Eigenspannungen mittels Röntgendiffraktion gemessen. Die Ergebnisse belegen einen signifikanten den positiven Effekt beim USAM, insbesondere durch reduzierte Zerspankräfte im Vergleich zum konventionellen Kugelkopffräsen. Dies führt zu geringerer mechanischer Beanspruchung von Werkzeug und Oberfläche verbunden mit geringeren Zugeigenspannungen an und unter der Oberfläche und bewirkt schließlich eine wesentlich höhere Oberflächenintegrität. T2 - Symposium on Materials and Joining CY - Magdeburg, Germany DA - 07.09.2020 KW - High entropy alloy KW - Machining KW - Ultrasonic machining PY - 2020 AN - OPUS4-51586 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Wetzel, Annica A1 - Oczan, Ozlem A1 - Nietzke, Jonathan A1 - Richter, Tim A1 - Schröpfer, Dirk T1 - Hydrogen diffusion and local Volta potential in high- and medium-entropy alloys N2 - High-entropy alloys (HEAs) are characterized by a solid solution of minimum five and medium-entropy alloys (MEAs) of minimum three principal alloying elements in equiatomic proportions. They show exceptional application properties, such as high-strength and ductility or corrosion resistance. Future HEA/MEA-components could be exposed to hydrogen containing environments like vessels for cryogenic or high-pressure storage where the hydrogen absorption and diffusion in these materials is of interest. In our study, we investigated the HEA Co20Cr20Fe20Mn20Ni20 and the MEA Co33.3Cr33.3Ni33.3. For hydrogen ingress, cathodic charging was applied and diffusion kinetic was measured by high-resolution thermal desorption spectros-copy using different heating rates up to 0.250 K/s. Peak deconvolution resulted in high-temperature desorption peaks and hydrogen trapping above 280 °C. A total hydrogen concentration > 40 ppm was identified for the MEA and > 100 ppm for HEA. This indicates two important effects: (1) delayed hydrogen diffusion and (2) considerable amount of trapped hydrogen that must be anticipated for hydrogen assisted cracking phenomenon. Local electrochemical Volta potential maps had been measured for the hydrogen free condition by means of high-resolution Scanning Kelvin Probe Force Microscopy (SKPFM). T2 - Symposium on Materials and Joining Technology CY - Online meeting DA - 07.09.2020 KW - Hydrogen KW - High-entropy alloy KW - Diffusion KW - Scanning kelvin probe force microscopy KW - Corrosion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511684 DO - https://doi.org/10.1088/1757-899X/882/1/012015 VL - 882 SP - 1 EP - 15 PB - IOP Publishing CY - Bristol AN - OPUS4-51168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Tim A1 - Schröpfer, Dirk A1 - Rhode, Michael A1 - Börner, Andreas T1 - Influence of modern machining processes on the surface integrity of high-entropy alloys N2 - High Entropy Alloys (HEAs) are a recent class of materials. In contrast to conventional alloys, HEAs consist of five alloying elements in equiatomic equilibrium. The high entropy effect is due, among other things, to the increased configuration entropy, which promotes solid solution formation. Many HEAs have enormous application potential due to excellent structural property combinations from very low to high temperatures. For the introduction of HEAs in real components, however, the question of the applicability of machining production technologies for component manufacture is of central importance. This has so far received Little attention in global materials research. Reliable and safe processing is essential for the demand of economical component production for potential areas of application, e.g. in power plant technology. For metals, milling is the standard machining process. This article presents the results of machining analyses. It focuses on the surface integrity resulting from the milling process on a Co20Cr20Fe20Mn20Ni20-HEA. For this purpose, investigations were carried out using ball nose end milling tools for conventional milling process in comparison to an innovative hybrid process available at BAM Berlin, Ultrasonic-Assisted Milling (USAM). USAM promises a lower Degradation of the surface properties due to lower loads on the workpiece surface during machining. For this purpose, basic milling parameters (cutting speed and tooth feed) were systematically varied and cutting forces were measured during the milling experiments. The subsequent Analysis of these forces allows an understanding of the mechanical loads acting on the tool and component surface. These loads cause topographical, mechanical and microstructural influences on the surface and consequently on the surface integrity. For their characterization, light and scanning electron microscopy were used, and the roughness and residual stresses via X-ray diffraction were measured. The results indicate significant advantages using USAM, especially due to reduced cutting forces compared to the conventional milling process. This causes lower mechanical loads on the tool and surface, combined with lower tensile residual stresses on and below the surface, and ultimately results in a significantly enhanced surface integrity. T2 - Symposium on Materials and Joining Magdeburg 2020 CY - Online meeting DA - 07.09.2020 KW - High entropy alloy KW - Machining KW - Ultrasonic machining PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512958 DO - https://doi.org/10.1088/1757-899X/882/1/012016 VL - 882 IS - 012016 SP - 1 EP - 11 PB - Institute of Physics CY - London AN - OPUS4-51295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wetzel, Annica T1 - Local corrosion properties of high/medium entropy alloys in aqueous environments N2 - High and medium entropy alloys gained increasing academic and industrial interest as novel materials for engineering applications. This project is aiming to clarify and compare the general and local corrosion properties of high entropy alloy CrMnFeCoNi and medium entropy alloy CrCoNi in different aqueous environments. The focus lies on the local corrosion processes that result either from microstructural imperfections (inclusions, defects at grain boundaries etc.) in the base material or processing related changes in the microstructure and/or local composition. The corrosion behavior of the alloys was monitored via potentiodynamic polarization experiments and the local corrosion characteristics were further investigated by means of scanning electrochemical microscopy (SECM). Their passivation behavior was analyzed in three different electrolyte systems (NaCl, H2SO4 and NaClO4; c = 0.1M). The characterization of the surface morphology and composition of the passive film was performed by means of atomic force microscopy (AFM), scanning electron microscopy coupled with energy dispersive X-Ray spectroscopy (SEM/EDX) and X-Ray photoelectron spectroscopy (XPS), respectively. Considering long term corrosion effects, electrochemical work was supported with immersion tests and the analysis of corrosion products by SEM/EDX and XPS depth-profiling. Our results indicate that the medium entropy alloy CrCoNi has a significantly higher corrosion resistance in comparison to the high entropy alloy CrMnFeCoNi. The presentation will summarize some of our results on the mechanistical aspects of the observed high corrosion resistance. T2 - EUROCORR 2020 CY - Online meeting DA - 07.09.2020 KW - High Entropy Alloys KW - Corrosion KW - Medium Entropy Alloys KW - Atomic Forc Microscopy KW - Scanning Kelvin Probe Force Microscopy KW - Potentiodynamic Polarization PY - 2020 AN - OPUS4-53787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk T1 - Influence of welding stresses on relaxation cracking during heat treatment of a creep-resistant 13CrMoV steel, Part III N2 - Efficiency and flexibility are currently a major concern in the design of modern power plants and chemical processing facilities. The high requirements for economic profitability and in particular climate change neutrality are driving this development. Consequently, plant equipment and chemical reactor components are designed for higher operating pressure and temperature. Creep-resistant CrMo steels had been used as constructional materials for decades but came to operational limitations, for example the resistance against so-called high-temperature hydrogen attack in petrochemical reactors. For that purpose, 20 years ago V-modified CrMo steels had been developed for use in the petrochemical industry due to their very good creep-strength and hydrogen pressure resistance at elevated temperatures enabling long service life of the respective components. For example, the 13CrMoV9-10 steel is applicable for process temperatures of up to 482 °C and hydrogen pressures of up to 34.5 MPa. Due to the large dimensions and wall thickness of the reactors (wall thickness up to 475 mm) and the special alloy concept, reliable weld manufacturing of the components is extremely challenging. First, low toughness and high strength of the weld joint in the as-welded condition are critical regarding weld cracking. High welding residual stresses are the result of the highly restrained shrinkage of the component welds. For this purpose, the entire component must be subjected to Post-Weld Heat Treatment (PWHT) after completion of the welding operation. The aim is to increase the toughness of the weld joints as well as to reduce the welding induced residual stresses. Before and during PWHT, extreme caution is required to prevent cracking. Unfortunately, V-modified CrMo steels possess an increased susceptibility to cracking during stress relaxation the so-called stress relief cracking (SRC). Available literature studies have largely focused on thermal and metallurgical factors. However, little attention has been paid on the influence of the welding procedure on crack formation during PWHT considering actual manufacturing conditions. For that reason, we investigated in our previous studies (part I and II), the influence of heat control on the mechanical properties by simulating actual manufacturing conditions prevailing during the construction of petrochemical reactors using a special 3D- acting testing facility. The focus of part I was put on the influence of the welding heat control on mechanical stresses and the effect on cracking during PWHT. Part II was mainly dedicated to the metallurgical causes of SRC during PWHT and the interaction with the occurring mechanical stresses. It could be shown that not only high welding-induced stresses due to increased weld heat input cause higher susceptibility for SRC formation. It was further intensified by an altered precipitation behaviour in presence of mechanical stresses that are caused by the component related restraint. The present part III shows how residual stresses, which are present in such welded components and significantly influence the crack formation, can be transferred to the laboratory scale. As a result, the effect on the residual stresses on the SRC behaviour can be evaluated on simplified small-scale specimens instead of expensive mock-ups. For this purpose, experiments with test set-ups at different scales and under different rigidity conditions were designed and carried out. T2 - IIW Annual Assembly, Meeting of Commission II-A CY - Online meeting DA - 20.07.2020 KW - Welding KW - Creep-resistant steel KW - Residual stresses KW - Post weld heat treatment KW - Stress relief cracking PY - 2020 AN - OPUS4-51587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Welding of high-entropy alloys - New material concept vs. old challenges N2 - HEAs represent a relatively new class of materials. The the alloy concept is fundamentally different from the most conventional materials and alloys that are used today. Recently, the focus of HEA designs is more application-based. For that purpose, the elements of interest are carefully selected and multiple phases as well as micro-structures are deliberately adjusted. Currently, only limited attention has been paid to weldability of HEA. This encompasses possible effects on metallurgy and its influence on the desired properties. It remains open if welding causes e.g. considerable number of intermetallic phases or segregations and their effect on weld joint properties. For that reason, the scope of this study is to summarize already available studies on welding of HEAs with respect to the HEA-type, the applied welding process and its influence on the weld joint properties. T2 - IIW Annual Assembly, Meeting of Commission II-A CY - Online meeting DA - 20.07.2020 KW - High-entropy alloy KW - Welding KW - Review PY - 2020 AN - OPUS4-51116 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria T1 - Reliable welding of high-entropy alloys N2 - The importance of high-entropy alloy (HEAs) in the field of materials research is increasing continuously and numerous studies have been published, recently. These are mainly focused on manufacturing of different alloy systems having excellent structural properties from low to high temperatures. Therefore, HEAs are of high potential for many applications in very demanding conditions. However, this is so far limited by poor knowledge and experience regarding economic and reliable component manufacturing. The processability of HEAs has hardly been investigated so far, indicated by the small number of publications worldwide: welding <30 and machining <5. Hence, this contribution provides an overview about the current state of the art on processing of HEAs. Fundamental principles are shown for safe weld joints while ensuring high component integrity. For safe welding, the combined consideration of complex interactions of material, construction and process is necessary. Recent studies on different HEAs showed the influence of heat input by means of different welding processes on the microstructure and respective properties. Based on intensive literature survey and on our initial study, the main research objectives of processing HEAs are presented. T2 - ICHEM 2020 - Third International Conference on High Entropy Materials CY - Berlin, Germany DA - 27.09.2020 KW - High Entropy Alloy KW - Welding KW - Welding processing influences PY - 2020 AN - OPUS4-51591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holtappels, Kai T1 - Hydrogen - Trust through safety N2 - In den Virtual Talks der DECHEMA wurden allgemeine Aspekte der Sicherheit und Akzeptanz von Wasserstofftechnologien vorgestellt. Wie kann Vertrauen in neue Technologien geschaffen werden, wenn Unfälle aus der Vergangenheit zu Mythen und Märchen führten? Der Vortrag räumt mit allgemeinen Vorurteilen auf und zeigt, dass der Umgang mit Wasserstoff weder unsicherer, noch sicherer ist als der Umgang mit anderen Brenngasen. Basis für den sicheren Umgang mit Wasserstoff ist immer eine Risikoanalyse. N2 - In the DECHEMA Virtual Talks, general aspects of the safety and acceptance of hydrogen technologies were presented. How can trust in new technologies be built when past accidents led to myths and fairy tales? The presentation does away with general prejudices and shows that handling hydrogen is neither more unsafe nor safer than handling other fuel gases. The basis for the safe handling of hydrogen is always a risk analysis. T2 - DECHEMA Virtual Talks CY - Online meeting DA - 23.11.2020 KW - Hydrogen KW - Wasserstoff KW - Safety KW - Sicherer Umgang KW - Sicherheit PY - 2020 AN - OPUS4-52082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -