TY - CONF A1 - Nietzke, Jonathan A1 - Konert, Florian T1 - Experimental and numerical characterization of hydrogen diffusion in thick-walled submerged arc welded joint of S420G2+M offshore steel grade N2 - Offshore wind turbines are an important goal in national energy strategies worldwide. Foundation structures are manufactured from submerged arc welded (SAW) plates with thicknesses up to 200 mm. In that connection, high-strength steels like the S420G2+M are more and more applied offering the possibility for increased stability and load-bearing capacity of the foundations. These offshore steel grades can show a susceptibility for delayed hydrogen assisted cold cracking of the weld joints. For that purpose, a minimum waiting time (MWT) of up to 48 h (dependent on applied standards) is recommended before non-destructive testing is allowed and conducted. But this concept is based on older steel grades that have been used for three or more decades. Nowadays, the metallurgical improvements (clean steels, proper rolling, and heat treatment) of base materials and well as welding consumables must be anticipated. Hence, the MWT concept should be critically discussed as it is assumed to be very conservative. For that reason, the focus of this study was to investigate the diffusion behavior in S420G2+M steel and its multi-layer SAW joint. Electrochemical permeation experiments were carried at room temperature. Boundary conditions were anticipated in terms of using different sample thicknesses. From the experimental data, hydrogen diffusion coefficients and absorbed diffusible hydrogen concentrations had been calculated. It was shown that hydrogen diffusion in the base material is increased compared to the weld metal. In addition, the sample thickness had a significant on the calculated diffusion coefficients. The minimum and maximum diffusion coefficients had been used for numerical modelling of the hydrogen diffusion in the welding joint. It became clear that a MWT must be always regarded together with a critical initial diffusible hydrogen concentration for the evaluation of a possible delayed cracking as diffusion times were mostly > 48 h due to the thick plates. T2 - 4th International Conference on Metals and Hydrogen - Steely & Hydrogen 2022 CY - Ghent, Belgium DA - 11.10.2022 KW - Hydrogen KW - Submerged arc welding KW - Minimum Waiting Time KW - Cold Cracking KW - Offshore steel grade PY - 2022 AN - OPUS4-56008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernardy, Christopher A1 - Konert, Florian A1 - Popiela, Bartosz A1 - Sarif, Raduan T1 - H2Safety@BAM: Competence Center for safe hydrogen technologies N2 - Presentation of the competence center H2Safety@BAM at the European PhD Hydrogen Conference 2024 in Ghent, Belgium. T2 - European PhD Hydrogen Conference 2024 (EPHyC2024) CY - Ghent, Belgium DA - 20.03.2024 KW - H2safety KW - Hydrogen KW - Safety KW - Competence center PY - 2024 AN - OPUS4-59756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Drexler, Andreas A1 - Konert, Florian T1 - Hydrogen Solubility in Steels – What is the Role of Microstructure? N2 - Hydrogen gas plays a key role in the European energy transition strategy. When transmitting and storing compressed hydrogen gas, safety is one of the most important conditions. With increasing hydrogen pressure and temperature, more hydrogen is absorbed by the steel components, such as pipelines or valves, and may lead to embrittlement. Although, a deep understanding of microstructure on the hydrogen solubility in steels is missing. Classical Sieverts’ law is only valid at high temperatures and low gas pressures. For that purpose, new theory is presented, which explains the role of microstructure on hydrogen solubility. Hydrogen trapping at microstructural defects is a thermally activated mechanism and causes an increase of the hydrogen solubility with decreasing temperatures. This mechanism has to be considered in cryogenic applications, such liquid or compressed hydrogen storage. T2 - EPRI Workshop on Hydrogen Embrittlement 2024 CY - Oxford, UK DA - 23.06.2024 KW - Hydrogen KW - Sieverts’ law KW - Hydrogen solubility in steels KW - Hydrogen trapping PY - 2024 AN - OPUS4-60477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Component test for the assessment of hydrogen assisted cracking susceptibility of thick-walled submerged arc welded offshore steels N2 - Offshore wind turbines (OWT) are a key factor of the sustainable energy generation of tomorrow. The continuously increasing installation depths and weight of the OWTs require suitable foundation concepts like monopiles or tripods. Typically, mild steels like the S420ML are used with plate thicknesses up to several hundreds of mm causing high restraints in the weld joints. Due to the large plate thickness, submerged arc welding (SAW) with multiple wires is the state-of-the-art welding procedure. As a result of the very high stiffness of the construction, a certain susceptibility for time-delayed hydrogen-assisted cracking (HAC) may occur. The evaluation of crack susceptibility is very complex due to the component size and stiffness of real offshore structures. For this purpose, a near-component test geometry was developed to transfer the real stiffness conditions to laboratory (i.e., workshop) scale. The investigated mock-up, weighing 350 kg, comprised heavy plates (thickness 50 mm, seam length 1,000 m) joined by a 22-pass submerged arc weld. Additional stiffeners simulated the effect of high restraint or shrinkage restraint of the weld. Extreme scenarios of hydrogen absorption during welding were simulated via the use of welding fluxes in dry (HD < 5 ml/100g Fe) and moisture condition (HD > 15 ml/100g Fe). The residual stresses were determined by a robot X-ray diffractometer. Areas of critical tensile residual stress (at the level of the yield strength) were found in the weld metal and heat affected zone. To identify possible delayed cracking, the welds were tested by phased array ultrasonic testing (PAUT) after 48 h. Summarized, no significant occurrence of HAC was detected, indicating the high crack resistance of the welded joint, i.e., a suitable combination of base material, welding consumable and welding parameters. T2 - AJP 2023: 3rd International Conference on Advanced Joining Processes 2023 CY - Braga, Portugal DA - 19.10.2023 KW - Hydrogen assisted cracking KW - Submerged arc welding KW - Component test KW - NDT KW - Waiting time PY - 2023 AN - OPUS4-58672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Namwoonde, Andreas Sheuyange T1 - Polymer Composites Under Continuous and Reciprocating Sliding Conditions In Hydrogen N2 - The implementation of hydrogen as an alternative energy source to fossil fuels necessitates the use of compatible materials for safety purposes, and thermoplastics are widely utilized in this context. The application of polymers in gaseous and liquid hydrogen environments requires careful consideration of their tribological performance, as the operating environment is dramatically different from ambient conditions. Friction, wear, and lubrication are crucial factors to consider in this regard. Researchers have investigated various strategies to enhance the tribological performance of polymers in hydrogen environments, including modifying the composition and structure of polymers by incorporating fillers to improve their friction and wear resistance. The tribological properties of polymer composites based on matrices of PEEK, PPS, and PI have been mostly investigated using the continuous sliding test method, and the results indicate that these materials are suitable candidates for tribological applications in both gaseous and liquid hydrogen. This project explores the tribological properties of related polymer composites in hydrogen using continuous and reciprocating motion with a pin-on-disc testing method. T2 - Polytrib2024 CY - Portorož, Slovenia DA - 03.10.2024 KW - Polymers KW - Friction KW - Wear KW - Tribological behaviour KW - Hydrogen PY - 2024 AN - OPUS4-61378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nietzke, Jonathan T1 - Performance of Conventional and Additive Manufactured Austenitic Stainless Steels under Gaseous Hydrogen Environment using in-situ Hollow Specimen Technique N2 - Hydrogen and its derivatives (e.g. ammonia) are considered as a suitable energy carrier in the future supply of renewable energy. Hydrogen transportation systems require pipes, valves and fittings, among other components. In this sense, austenitic stainless steels are commonly used structural materials for pure hydrogen applications. Stable austenitic alloys, like AISI 316L, are often assumed to be practically unsusceptible to hydrogen embrittlement. At the same time, a number of studies show the influence of hydrogen even in 316L under some circumstances. Some other studies state that this embrittlement could be avoided by using steel grades with a higher nickel equivalent which contributes to a more stable austenitic phase. Nonetheless, 316L is widely used in hydrogen atmospheres since many years because of lower costs and positive practical experience. For these reasons, not only 316L but also 304 could be further utilized by identifying the exact constraints. With increasing demand for components regarding hydrogen applications, additive manufacturing technologies are getting increasingly important complementary to conventional manufacturing. In the context of additive manufacturing, 316L is a common material as well. The manufacturing process offers great advantages due to higher freedoms in design and the possibility for customized components in small batches. For example, valves with improved flow characteristics and reduced component weight can be produced. Nevertheless, there is still lack of experience and experimental results concerning additively manufactured parts under hydrogen service. Therefore, the influence on the material properties for additively manufactured parts in hydrogen environments needs to be further investigated. In the present work, slow strain rate testing (SSRT) has been applied using hollow specimens. This testing procedure allows to perform practicable and faster in-situ tests in comparison to tests in autoclaves and investigate the influence of hydrogen on the mechanical properties. Conventional AISI 304 and 316L specimens as well as additively manufactured 316L specimens were tested at room temperature and a pressure of 200 bar. Elongation at fracture and relative reduction of area (RRA) have been used to evaluate the influence of hydrogen. It is shown that the influence of hydrogen is more pronounced in 304 than in 316L. Furthermore, potentially influencing factors such as surface roughness, microstructure and porosity are discussed. T2 - International Hydrogen Conference CY - Park City, Utah, USA DA - 17.09.2023 KW - Hydrogen KW - Hollow Specimen Technique KW - Additive Manufacturing KW - Austenitic Steels PY - 2023 AN - OPUS4-58776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Konert, Florian A1 - Nietzke, Jonathan T1 - Application of an in-situ H2Test Method N2 - The degradation effect of hydrogen on the mechanical properties of steels is well known, but still not sufficiently understood. The fast and safe market ramp up of hydrogen technologies makes it evident to evaluate a wider understanding of this topic. In general it is often described as hydrogen embrittlement. Therefore it is desirable to achieve a test method which is able to provide material properties under hydrogen atmosphere in an easy way. Currently mechanical tests under hydrogen atmosphere are executed in autoclaves. For this technique complex hardware is needed, therefore tests are expensive and test capacities are only available in a small scale. The shown test method promises a trendsetting approach for reducing costs and machine time by using hollow specimen. T2 - 4th International Conference on Metals and Hydrogen - Steely & Hydrogen 2022 CY - Ghent, Belgium DA - 11.10.2022 KW - Hydrogen KW - Hollow specimen KW - In-situ KW - Test procedure PY - 2022 AN - OPUS4-56032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Konert, Florian T1 - Evaluation of hydrogen effect on hardened and annealed 100Cr6 steel N2 - The use of hydrogen demands high safety requirements, since hydrogen can be absorbed by metallic materials and may cause hydrogen embrittlement (HE) under certain conditions. Slow strain rate (SSR) tensile testing is a widespread method to quantify the hydrogen-induced ductility loss of alloys. Here, the hollow specimen technique was used to evaluate the effect of 150 bar hydrogen on the tensile properties of solution annealed and hardened 100Cr6 steel, which is a common material for bearing systems. This technique reduces the required amount of hydrogen and minimizes the duration and costs of the tests performed compared to in-situ tensile tests in autoclaves. T2 - EPRI Workshop on Hydrogen Embrittlement 2024 CY - Oxford, UK DA - 23.06.2024 KW - Hydrogen KW - Hydrogen Embrittlement KW - Hollow Specimen Technique KW - 100Cr6 PY - 2024 AN - OPUS4-60476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -