TY - JOUR A1 - Tran, T. A1 - Kodisch, C. A1 - Schöttle, M. A1 - Pech May, Nelson Wilbur A1 - Retsch, M. T1 - Characterizing the thermal diffusivity of single, micrometer-sized fibers via high-resolution lock-in thermography N2 - Many advanced materials consist of fibers. They are used as nonwovens, fabrics, or in composite materials. Characterization of individual fibers allows us to predict resulting material properties. We present a measurement setup and analysis software to characterize individual, micrometer-sized fibers fast and reliably. The setup is based on the lock-in thermography principle. Thermal diffusivity values of seven reference samples agree very well with previously reported values. We use our setup to investigate critical measurement parameters like excitation frequency, excitation power, pixel size, and fiber orientation. Our results show that fibers with subpixel diameters can be measured even if they are not aligned. However, special care has to be taken to choose an adequate excitation power. Measurements at high intensities can underestimate thermal diffusivity even though the raw data looks reasonable. By automatically measuring at different excitation powers, our setup solves this issue. KW - Surfaces, coatings and films KW - Physical and theoretical chemistry KW - General energy KW - Electronic, optical and magnetic materials PY - 2022 DO - https://doi.org/10.1021/acs.jpcc.2c04254 SN - 1932-7455 VL - 126 IS - 32 SP - 14003 EP - 14010 PB - American Chemical Society (ACS) CY - Washington, DC AN - OPUS4-58128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fricke, F. A1 - Brandalero, M. A1 - Liehr, Sascha A1 - Kern, Simon A1 - Meyer, Klas A1 - Kowarik, Stefan A1 - Hierzegger, R. A1 - Westerdick, S. A1 - Maiwald, Michael A1 - Hübner, M. T1 - Artificial Intelligence for Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy Using a Novel Data Augmentation Method N2 - Mass Spectrometry (MS) and Nuclear Magnetic Resonance Spectroscopy (NMR) are valuable analytical and quality control methods for most industrial chemical processes as they provide information on the concentrations of individual compounds and by-products. These processes are traditionally carried out manually and by a specialist, which takes a substantial amount of time and prevents their utilization for real-time closed-loop process control. This paper presents recent advances from two projects that use Artificial Neural Networks (ANNs) to address the challenges of automation and performance-efficient realizations of MS and NMR. In the first part, a complete toolchain has been realized to develop simulated spectra and train ANNs to identify compounds in MS. In the second part, a limited number of experimental NMR spectra have been augmented by simulated spectra, to train an ANN with better prediction performance and speed than state-of-the-art analysis. These results suggest that, in the context of the digital transformation of the process industry, we are now on the threshold of a strongly simplified use of MS and MRS and the accompanying data evaluation by machine-supported procedures, and can utilize both methods much wider for reaction and process monitoring or quality control. KW - Industry 4.0 KW - Cyber-Physical Systems KW - Artificial Neural Networks KW - Mass Spectrometry KW - Nuclear Magnetic Resonance Spectroscopy KW - Modular Production PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539412 UR - https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9638378 DO - https://doi.org/10.1109/TETC.2021.3131371 SN - 2168-6750 VL - 10 IS - 1 SP - 87 EP - 98 PB - IEEE AN - OPUS4-53941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kern, Simon A1 - Liehr, Sascha A1 - Wander, Lukas A1 - Bornemann-Pfeiffer, Martin A1 - Müller, S. A1 - Maiwald, Michael A1 - Kowarik, Stefan T1 - Artificial neural networks for quantitative online NMR spectroscopy N2 - Industry 4.0 is all about interconnectivity, sensor-enhanced process control, and data-driven systems. Process analytical technology (PAT) such as online nuclear magnetic resonance (NMR) spectroscopy is gaining in importance, as it increasingly contributes to automation and digitalization in production. In many cases up to now, however, a classical evaluation of process data and their transformation into knowledge is not possible or not economical due to the insufficiently large datasets available. When developing an automated method applicable in process control, sometimes only the basic data of a limited number of batch tests from typical product and process development campaigns are available. However, these datasets are not large enough for training machine-supported procedures. In this work, to overcome this limitation, a new procedure was developed, which allows physically motivated multiplication of the available reference data in order to obtain a sufficiently large dataset for training machine learning algorithms. The underlying example chemical synthesis was measured and analyzed with both application-relevant low-field NMR and high-field NMR spectroscopy as reference method. Artificial neural networks (ANNs) have the potential to infer valuable process information already from relatively limited input data. However, in order to predict the concentration at complex conditions (many reactants and wide concentration ranges), larger ANNs and, therefore, a larger Training dataset are required. We demonstrate that a moderately complex problem with four reactants can be addressed using ANNs in combination with the presented PAT method (low-field NMR) and with the proposed approach to generate meaningful training data. KW - Online NMR spectroscopy KW - Real-time process monitoring KW - Artificial neural networks KW - Automation KW - Process industry PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507508 DO - https://doi.org/10.1007/s00216-020-02687-5 SN - 1618-2642 VL - 412 IS - 18 SP - 4447 EP - 4459 PB - Springer CY - Berlin AN - OPUS4-50750 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bayerlein, Bernd A1 - Hanke, T. A1 - Muth, Thilo A1 - Riedel, Jens A1 - Schilling, Markus A1 - Schweizer, C. A1 - Skrotzki, Birgit A1 - Todor, A. A1 - Moreno Torres, Benjami A1 - Unger, Jörg F. A1 - Völker, Christoph A1 - Olbricht, Jürgen T1 - A Perspective on Digital Knowledge Representation in Materials Science and Engineering N2 - The amount of data generated worldwide is constantly increasing. These data come from a wide variety of sources and systems, are processed differently, have a multitude of formats, and are stored in an untraceable and unstructured manner, predominantly in natural language in data silos. This problem can be equally applied to the heterogeneous research data from materials science and engineering. In this domain, ways and solutions are increasingly being generated to smartly link material data together with their contextual information in a uniform and well-structured manner on platforms, thus making them discoverable, retrievable, and reusable for research and industry. Ontologies play a key role in this context. They enable the sustainable representation of expert knowledge and the semantically structured filling of databases with computer-processable data triples. In this perspective article, we present the project initiative Materials-open-Laboratory (Mat-o-Lab) that aims to provide a collaborative environment for domain experts to digitize their research results and processes and make them fit for data-driven materials research and development. The overarching challenge is to generate connection points to further link data from other domains to harness the promised potential of big materials data and harvest new knowledge. KW - Data infrastructures KW - Digital representations KW - Digital workflows KW - Knowledge graphs KW - Materials informatics KW - Ontologies KW - Vocabulary providers PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546729 DO - https://doi.org/10.1002/adem.202101176 SN - 1438-1656 SP - 1 EP - 14 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-54672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Das, A. A1 - Ott, C. A1 - Pechimuthu, Dinesh A1 - Moosavi, Robabeh A1 - Stoica, M. A1 - Derlet, P. M. A1 - Maaß, Robert T1 - Shear-band cavitation determines the shape of the stress-strain curve of metallic glasses N2 - Metallic glasses are known to have a remarkably robust yield strength, admitting Weibull moduli as high as for crystalline engineering alloys. However, their postyielding behavior is strongly varying, with large scatter in both flow stress levels and strains at failure. Using x-ray tomography, we reveal how a strain-dependent internal evolution of shear-band cavities underlies this unpredictable postyielding response.We demonstrate how macroscopic strain softening coincides with the first detection of internal shear-band cavitation. Cavity growth during plastic flow is found to follow a power law, which yields a fractal dimension and a roughness exponent in excellent agreement with self-similar surface properties obtained after fracture. These findings demonstrate how internal microcracking coexists with shear-band plasticity along the plastic part of a stress-strain curve, rationalizing the large variability of plastic flow behavior seen for metallic glasses. KW - Shear-band cavitation KW - Metallic glasses PY - 2023 DO - https://doi.org/10.1103/PhysRevMaterials.7.023602 SN - 2475-9953 VL - 7 IS - 2 SP - 1 EP - 11 PB - American Physical Society AN - OPUS4-57042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krankenhagen, Rainer T1 - Influence of Moisture in Concrete on the Photothermal Response—A New Approach for a Measurement Method? N2 - Recently, the photothermal determination of the thermophysical properties of concrete under lab conditions was reported. Their values are mainly needed to look at the energy consumption of buildings. Additionally, changes in their values in relation to the initial state might also be a good indicator for material quality or for moisture. The present contribution explains the photothermal method in a more general way to indicate the potential for on-site application. Secondly, a special application case is regarded: the detection of moisture in concrete. Two concrete samples were soaked with water, followed by a drying period, to obtain different levels of water penetration. The water contents were determined by weighing, and the photothermal response was measured. The results show a large influence on the measured temperature transients, which is larger than expected from the original simple model. They clearly provide two points: the photothermal method is suited to detect moisture in concrete, but the magnitude of the actual measurement effect is not yet understood. KW - Thermal effusivity KW - Thermal conductivity KW - Moisture KW - Reflectivity PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570439 DO - https://doi.org/10.3390/app13052768 VL - 13 IS - 5 SP - 1 EP - 18 PB - MDPI CY - Basel, Switzerland AN - OPUS4-57043 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dayani, Shahabeddin A1 - Markötter, Henning A1 - Schmidt, Anita A1 - Widjaja, Martinus Putra A1 - Bruno, Giovanni T1 - Multi-level X-ray computed tomography (XCT) investigations of commercial lithium-ion batteries from cell to particle level N2 - Adopting X-ray computed tomography (XCT) for ex-situ characterization of battery materials has gained interest in the past decade. The main goal of this paper is to demonstrate the effectiveness of several X-ray computer tomography techniques to study commercial batteries. General guidelines are provided to select the most suitable imaging equipment and parameters for investigations of lithium-ion batteries, spanning the length scales from cell to electrode, down to particle level. Relevantly, such parameters would also be suitable for operando experiments. Safety mechanisms and manufacturing inconsistencies at cell level as well as defects and inhomogeneity in cathode and anode is illustrated and quantified. Furthermore, relation of beam energy and sample-detector-distance on contrast retrieved from attenuation and phase shift is inspected using Synchrotron XCT. KW - Non-destructive testing KW - X-ray computed tomography KW - Synchrotron X-ray computed tomography KW - Lithium-ion battery PY - 2023 DO - https://doi.org/10.1016/j.est.2023.107453 SN - 2352-152X VL - 66 SP - 107453 PB - Elsevier Ltd. AN - OPUS4-57512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Valdestilhas, Andre A1 - Bayerlein, Bernd A1 - Moreno Torres, Benjamin A1 - Jan Zia, Ghezal Ahmad A1 - Muth, Thilo T1 - The Intersection Between Semantic Web and Materials Science N2 - The application and benefits of Semantic Web Technologies (SWT) for managing, sharing, and (re-)using of research data are demonstrated in implementations in the field of Materials Science and Engineering (MSE). However, a compilation and classification are needed to fully recognize the scattered published works with its unique added values. Here, the primary use of SWT at the interface with MSE is identified using specifically created categories. This overview highlights promising opportunities for the application of SWT to MSE, such as enhancing the quality of experimental processes, enriching data with contextual information in knowledge graphs, or using ontologies to perform specific queries on semantically structured data. While interdisciplinary work between the two fields is still in its early stages, a great need is identified to facilitate access for nonexperts and develop and provide user-friendly tools and workflows. The full potential of SWT can best be achieved in the long term by the broad acceptance and active participation of the MSE community. In perspective, these technological solutions will advance the field of MSE by making data FAIR. Data-driven approaches will benefit from these data structures and their connections to catalyze knowledge generation in MSE. KW - Linked open data KW - Materials science KW - Ontology KW - Semantic web PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575506 DO - https://doi.org/10.1002/aisy.202300051 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-57550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Christoph A1 - Moreno Torres, Benjami A1 - Rug, Tehseen A1 - Firdous, Rafia A1 - Zia, Ghezal Ahmad A1 - Lüders, Stefan A1 - Lisdero Scaffino, Horacio A1 - Höpler, Michael A1 - Böhmer, Felix A1 - Pfaff, Matthias A1 - Stephan, Dietmar A1 - Kruschwitz, Sabine T1 - Data driven design of alkali-activated concrete using sequential learning N2 - This paper presents a novel approach for developing sustainable building materials through Sequential Learning. Data sets with a total of 1367 formulations of different types of alkali-activated building materials, including fly ash and blast furnace slag-based concrete and their respective compressive strength and CO2-footprint, were compiled from the literature to develop and evaluate this approach. Utilizing this data, a comprehensive computational study was undertaken to evaluate the efficacy of the proposed material design methodologies, simulating laboratory conditions reflective of real-world scenarios. The results indicate a significant reduction in development time and lower research costs enabled through predictions with machine learning. This work challenges common practices in data-driven materials development for building materials. Our results show, training data required for data-driven design may be much less than commonly suggested. Further, it is more important to establish a practical design framework than to choose more accurate models. This approach can be immediately implemented into practical applications and can be translated into significant advances in sustainable building materials development. KW - Sustainable building materials KW - Sequential learning KW - Data-driven materials design KW - Alkali-activated building materials PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584376 UR - https://www.sciencedirect.com/science/article/pii/S095965262302379X DO - https://doi.org/10.1016/j.jclepro.2023.138221 SN - 0959-6526 SN - 1879-1786 VL - 418 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam AN - OPUS4-58437 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Torres, Benjamin Moreno A1 - Völker, Christoph A1 - Firdous, Rafia T1 - Concreting a sustainable future: A dataset of alkali-activated concrete and its properties N2 - This data article introduces a dataset comprising 1630 alkali-activated concrete (AAC) mixes, compiled from 106 literature sources. The dataset underwent extensive curation to address feature redundancy, transcription errors, and duplicate data, yielding refined data ready for further data-driven science in the field of AAC, where this effort constitutes a novelty. The carbon footprint associated with each material used in the AAC mixes, as well as the corresponding CO2 footprint of every mix, were approximated using two published articles. Serving as a foundation for future expansions and rigorous data applications, this dataset enables the characterization of AAC properties through machine learning algorithms or as a benchmark for performance comparison among different formulations. In summary, the dataset provides a resource for researchers focusing on AAC and related materials and offers insights into the environmental benefits of substituting traditional Portland concrete with AAC. KW - Multidisciplinary KW - Data Set KW - Alkali Activated Concrete KW - Data driven design PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589974 DO - https://doi.org/10.1016/j.dib.2023.109525 SN - 2352-3409 VL - 50 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-58997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -