TY - JOUR A1 - Tran, T. A1 - Kodisch, C. A1 - Schöttle, M. A1 - Pech May, Nelson Wilbur A1 - Retsch, M. T1 - Characterizing the thermal diffusivity of single, micrometer-sized fibers via high-resolution lock-in thermography N2 - Many advanced materials consist of fibers. They are used as nonwovens, fabrics, or in composite materials. Characterization of individual fibers allows us to predict resulting material properties. We present a measurement setup and analysis software to characterize individual, micrometer-sized fibers fast and reliably. The setup is based on the lock-in thermography principle. Thermal diffusivity values of seven reference samples agree very well with previously reported values. We use our setup to investigate critical measurement parameters like excitation frequency, excitation power, pixel size, and fiber orientation. Our results show that fibers with subpixel diameters can be measured even if they are not aligned. However, special care has to be taken to choose an adequate excitation power. Measurements at high intensities can underestimate thermal diffusivity even though the raw data looks reasonable. By automatically measuring at different excitation powers, our setup solves this issue. KW - Surfaces, coatings and films KW - Physical and theoretical chemistry KW - General energy KW - Electronic, optical and magnetic materials PY - 2022 DO - https://doi.org/10.1021/acs.jpcc.2c04254 SN - 1932-7455 VL - 126 IS - 32 SP - 14003 EP - 14010 PB - American Chemical Society (ACS) CY - Washington, DC AN - OPUS4-58128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Torres, Benjamin Moreno A1 - Völker, Christoph A1 - Firdous, Rafia T1 - Concreting a sustainable future: A dataset of alkali-activated concrete and its properties N2 - This data article introduces a dataset comprising 1630 alkali-activated concrete (AAC) mixes, compiled from 106 literature sources. The dataset underwent extensive curation to address feature redundancy, transcription errors, and duplicate data, yielding refined data ready for further data-driven science in the field of AAC, where this effort constitutes a novelty. The carbon footprint associated with each material used in the AAC mixes, as well as the corresponding CO2 footprint of every mix, were approximated using two published articles. Serving as a foundation for future expansions and rigorous data applications, this dataset enables the characterization of AAC properties through machine learning algorithms or as a benchmark for performance comparison among different formulations. In summary, the dataset provides a resource for researchers focusing on AAC and related materials and offers insights into the environmental benefits of substituting traditional Portland concrete with AAC. KW - Multidisciplinary KW - Data Set KW - Alkali Activated Concrete KW - Data driven design PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589974 DO - https://doi.org/10.1016/j.dib.2023.109525 SN - 2352-3409 VL - 50 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-58997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thummerer, G. A1 - Mayr, G. A1 - Hirsch, Philipp Daniel A1 - Ziegler, Mathias A1 - Burgholzer, P. T1 - Photothermal Image Reconstruction in Opaque Media with Virtual Wave Backpropagation N2 - Thermographic reconstruction of defects that lie in the bulk of a sample is a difficult task because entropy production during heat diffusion leads to information loss. To reconstruct defects one has to solve an inverse heat conduction problem. The quality of the reconstruction is closely related to the information content of the observed data set that is reflected by the decreasing ability to spatially resolve a defect with growing defect depth. In this work we show a 2D reconstruction of rectangular slots with different width-to-depth ratios in a metallic sample. For this purpose, we apply the virtual wave concept and incorporate positivity and sparsity as prior information to overcome the diffusion-based information loss partially. The reconstruction is based on simulated and experimental pulse thermography data. In the first reconstruction step, we compute a virtual wave field from the surface temperature data. This allows us, in the second step, to use ultrasonic backpropagation methods for image reconstruction. KW - Virtual wave concept KW - Thermography KW - Photothermal Technique KW - Image reconstruction PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506166 DO - https://doi.org/10.1016/j.ndteint.2020.102239 VL - 112 SP - 102239 PB - Elsevier Ltd. CY - Netherlands AN - OPUS4-50616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiel, Erik A1 - Ziegler, Mathias A1 - Studemund, Taarna T1 - Localization of subsurface defects in uncoated aluminum with structured heating using high-power VCSEL laser arrays N2 - We report on photothermal detection of subsurface defects by coherent superposition of thermal wave fields. This is made possible by structured heating using high-power VCSEL laser arrays whose individual emitter groups can be arbitrarily controlled. In order to locate the defects, we have developed a scanning method based on the continuous wavelet transformation with complex Morlet wavelet using the destructive interference effect of thermal waves. This approach can also be used for thermally very fast and highly reflective materials such as uncoated aluminum. We show that subsurface defects at an aspect ratio of defect width to defect depth down to 1/3 are still detectable in this material. KW - Thermography KW - Heat diffusion KW - Laser thermography KW - Structured heating KW - NDT KW - Subsurface defects KW - Thermal wave KW - VCSEL KW - Wavelet transformation PY - 2019 DO - https://doi.org/10.1007/s10765-018-2478-9 SN - 1572-9567 SN - 0195-928X VL - 40 IS - 2 SP - 17, 1 EP - 13 PB - Springer Science+Business Media, LLC, part of Springer Nature 2019 AN - OPUS4-47208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tang, Chi-Long A1 - Seeger, Stefan A1 - Röllig, Mathias T1 - Improving the comparability of FFF-3D printing emission data by adjustment of the set extruder temperature N2 - Fused filament fabrication (FFF) is a material extrusion-based technique often used in desktop 3D printers. Polymeric filaments are melted and are extruded through a heated nozzle to form a 3D object in layers. The extruder temperature is therefore a key parameter for a successful print job but also one of the main emission driving factors as harmful pollutants (e.g., ultrafine particles) are formed by thermal polymer degradation. The awareness of potential health risks has increased the number of emission studies in the past years. However, studies usually refer their calculated emission data to the printer set extruder temperature for comparison purposes. In this study, we used a thermocouple and an infrared camera to measure the actual extruder temperature and found significant temperature deviations to the displayed set temperature among printer models. Our result shows that printing the same filament feedstocks with three different printer models and with identical printer set temperature resulted in a variation in particle emission of around two orders of magnitude. A temperature adjustment has reduced the variation to approx. one order of magnitude. Thus, it is necessary to refer the measured emission data to the actual extruder temperature as it poses a more accurate comparison parameter for evaluation of the indoor air quality in user scenarios or for health risk assessments. KW - Ultrafine particles KW - Infrared thermography KW - Thermocouple KW - Indoor air quality KW - FFF-3D printer PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572842 DO - https://doi.org/10.1016/j.aeaoa.2023.100217 VL - 18 SP - 100217 PB - Elsevier Ltd. CY - Amsterdam, Niederlande AN - OPUS4-57284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sprengel, Maximilian A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Evans, Alexander A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Pirling, T. A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Triaxial Residual Stress in Laser Powder Bed Fused 316L: Effects of Interlayer Time and Scanning Velocity N2 - The triaxial distribution of the residual stress in laser powder bed fused austenitic steel 316L was determined by X-ray and neutron diffraction. The residual stress analysis results were linked to the thermal history of the specimens, which were manufactured with varying inter-layer-times and scanning velocities. A clear link between the in-process temperature of the specimens and the residual stress was found, based on in-situ monitoring data. KW - Stainless Steel KW - AGIL KW - Residual Stress KW - X-ray and Neutron Diffraction KW - Additive Manufacturing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542620 DO - https://doi.org/10.1002/adem.202101330 SP - 1 EP - 13 PB - Wiley-VCH GmbH AN - OPUS4-54262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Singh, S. A1 - Palani, I. A. A1 - Paul, C. P. A1 - Funk, Alexander A1 - Gokuldoss, P. K. T1 - Wire Arc Additive Manufacturing of NiTi 4D Structures: Influence of Interlayer Delay N2 - Shape memory alloy structures for actuator and vibration damper applications may be manufactured using wire arc additive manufacturing (W AAM), which is one of the additive manufacturing technologies. Multilayer deposition causes heat accumulation during W AAM, which rises the preheat temperature of the previously created layer. This leads to process instabilities, which result in deviations from the desired dimensions and mechanical properties changes. During W AAM deposition of the wall structure, a systematic research is carried out by adjusting the interlayer delay from 10 to 30 s. When the delay period is increased from 10 to 30 s, the breadth decreases by 45% and the height increases by 33%. Grain refinement occurs when the interlayer delay duration is increased, resulting in better hardness, phase transformation temperature, compressive strength, and shape recovery behavior. This study shows how the interlayer delay affects the behavior of W AAM-built nickel-titanium alloy (NiTi) structures in a variety of applications. KW - Wire are additive manufacturing KW - Shape memory alloy KW - Nitinol KW - Interlayer delay PY - 2022 DO - https://doi.org/10.1089/3dp.2021.0296 SN - 2329-7662 SP - 1 EP - 11 PB - Liebert CY - New Rochelle, NY AN - OPUS4-55795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silva, W. A1 - Zscherpel, Uwe A1 - Ewert, U. A1 - Lopes, R. T1 - Analysis of angular dependent spatial frequency response of Digital Coplanar Translational Laminography N2 - Digital Coplanar Translational Laminography (CTL) is a radiographic imaging technique that permits the visualization of structural details and discontinuities in the object of interest after 3D reconstruction from multiple projections. This technique becomes quite competitive regarding to computed tomography in situations of arrangements in which no complete rotation of the X-ray source - detector system around the object of interest is accessible or in cases where the part to be inspected has a high geometric asymmetry. The literature does not show many studies about image quality for different laminographic reconstructions and scan geometries. Different methodologies for measuring the Modulation Transfer Function (MTF) as a key image quality parameter for the aforementioned technique are applied. The MTF was measured using different approaches, presampled MTF or sampled MTF, both based on the Fourier Transform-Magnitude Spectrum or the square wave MTF using line pattern gauges. A sample known as Siemens Star with a converging line pattern was used to measure the circular square wave MTF. This circular MTF provides information on the direction dependent contrast transfer related to the measurement conditions, the reconstruction algorithms and the translational scan direction. For this purpose, several MTF measurements were performed in multiple angular directions. Beyond it, reconstructions were performed using different algorithms (Filtered Shifted Average) and an iterative one (MART – Multiplicative Algebraic Reconstruction Technique). Image quality analysis were done for both reconstruction methods. MART showed an image quality improvement for challenging conditions for laminographic arrangements, such as for a low number of projections (down to 25 for this study, considered as limited view, limited angle reconstruction). Additionally, a Gadolinium gauge with parallel line patterns within a range from 10 μm to 1000 μm was used to compare the square wave MTF with the sine MTFs, measured by the different techniques mentioned above. The results show that the MTF techniques presented are equivalent in this study. The results obtained for this Gadolinium plate showed a good agreement between MTF10% and SRb image measurements. The methodology presented here is used for the characterization of the frequency dependent spatial resolution of measurements obtained from different laminographic reconstruction techniques and scan geometries. Finally, from the acquisitions and reconstructions obtained with the Siemens Star, cross laminographic images were calculated in order to improve the direction dependent sensitivity. The results showed a better detectability for cross laminographic images in comparison to unidirectional coplanar translational laminographic images covering dead zones. KW - Laminography KW - Image quality KW - Modulation transfer function KW - Cross laminography KW - Reconstruction algorithms PY - 2021 DO - https://doi.org/10.1016/j.ndteint.2021.102546 SN - 0963-8695 VL - 124 SP - 1 EP - 13 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-53845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silva, W. A1 - Lopes, R. A1 - Zscherpel, Uwe A1 - Meinel, Dietmar A1 - Ewert, Uwe T1 - X-ray imaging techniques for inspection of composite pipelines N2 - The literature has shown that the application of laminography provides advantages as 3D radiographic imaging with depth information for in house and mobile testing. This permits to distinguish between overlapping indications, measure the extension along radiation direction and classify indications as surface open or subsurface ones as required in critical engineering assessment. This work provides a comparative study and measurements of the three techniques Digital Radiography (DR) with Digital Detector Arrays (DDA), Coplanar Translational Laminography (CTL) and Computed Tomography (CT), applied for composite pipeline inspection. It is demonstrated that CTL and CT provide advantages for the evaluation of pipe-to-pipe connections and the evaluation of adhesive applications. They show indications of discontinuities with higher contrast sensitivity than radiography. Beyond it, two specimen, namely Phantom 1 and Phantom 2, were developed and manufactured by additive manufacturing to analyze the preferential detection sensitivity and the direction of features and depth information for laminographic measurements. Another goal was to show the laminographic capabilities to distinguish between overlapping discontinuities. CTL is especially suitable for mobile inspection. Special glass fiber reinforced polymer samples (GRP) were manufactured for further analysis and comparisons between the abovementioned techniques. Finally, Phantoms 1 and 2 show the capability of laminography to detect overlapping indications and also show that discontinuities oriented perpendicular to the scan direction have the highest contrast sensitivity for laminographic measurements. KW - Digital Radiography KW - Laminography KW - Computed Tomography KW - Composite Pipes KW - Image Quality PY - 2021 DO - https://doi.org/10.1016/j.micron.2021.103033 SN - 0968-4328 VL - 145 SP - 103033 PB - Elsevier Ltd. AN - OPUS4-52415 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schumacher, David A1 - Sharma, R. A1 - Grager, J.-C. A1 - Schrapp, M. T1 - Scatter and beam hardening reduction in industrial computed tomography using photon counting detectors N2 - Photon counting detectors (PCD) offer new possibilities for x-ray micro computed tomography (CT) in the field of non-destructive testing. For large and/or dense objects with high atomic numbers the problem of scattered radiation and beam hardening severely influences the image quality. This work shows that using an energy discriminating PCD based on CdTe allows to address these problems by intrinsically reducing both the influence of scattering and beam hardening. Based on 2D-radiographic measurements it is shown that by energy thresholding the influence of scattered radiation can be reduced by up to in case of a PCD compared to a conventional energy-integrating detector (EID). To demonstrate the capabilities of a PCD in reducing beam hardening, cupping artefacts are analyzed quantitatively. The PCD results show that the higher the energy threshold is set, the lower the cupping effect emerges. But since numerous beam hardening correction algorithms exist, the results of the PCD are compared to EID results corrected by common techniques. Nevertheless, the highest energy thresholds yield lower cupping artefacts than any of the applied correction algorithms. As an example of a potential industrial CT application, a turbine blade is investigated by CT. The inner structure of the turbine blade allows for comparing the image quality between PCD and EID in terms of absolute contrast, as well as normalized signal-to-noise and contrast-to-noise ratio. Where the absolute contrast can be improved by raising the energy thresholds of the PCD, it is found that due to lower statistics the normalized contrast-to-noise-ratio could not be improved compared to the EID. These results might change to the contrary when discarding pre-filtering of the x-ray spectra and thus allowing more low-energy photons to reach the detectors. Despite still being in the early phase in technological progress, PCDs already allow to improve CT image quality compared to conventional detectors in terms of scatter and beam hardening reduction. KW - X-ray computed tomography KW - Photon counting detector KW - CdTe sensor KW - Non-destructive testing KW - Beam hardening KW - Scattered radiation PY - 2018 UR - http://iopscience.iop.org/article/10.1088/1361-6501/aabef7/meta DO - https://doi.org/10.1088/1361-6501/aabef7 SN - 1361-6501 VL - 29 IS - 7 SP - 075101, 1 EP - 12 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-44959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -