TY - JOUR A1 - Lai, W. W.L. A1 - Chang, R.K.W. A1 - Völker, Christoph A1 - Cheung, B. W.Y. T1 - GPR wave dispersion for material characterization N2 - This paper studies the dispersion of GPR wave’s phase velocity at different wideband frequencies in plywood and concrete with varying moisture content. This study makes use of two GPR antennas with 2 GHz centre frequency operating in wide angle reflection and refraction (WARR) mode and with computation of spectral analysis of the surface wave (SASW). Computation of phase velocities is based on the Acquisition of the cross-power spectrum and phase unwrap of two distorted ground waves at positions Closer to and farther away from the transmitting antenna. The velocities of the ground waves are found to experience greater dispersion in low frequency regimes within the effective frequency bandwidths determined and thresholded by time–frequency analysis (TFA) and coherence plotting of the ground waves. This study validates not only the methodology, but also identifies the optimal distance between the first (Rx1) and second (Rx2) receivers as k/2, which is based on a fixed transmitter (Tx) minus the first Receiver (Rx1) distance. It serves as an indication of changeable separation distance when other lower frequency GPR is used because the distances of Tx-Rx1 and Rx1-Rx2 are wavelength dependent and thus also frequency dependent. Effects of moisture contents and chloride contamination in concrete were also characterized according to the dispersion plots . that wave traelling in lower frequencies in GPR wave is much decelerated than that in higher frequencies. This research also contributes to the building of the ‘‘GPRWARR machine” suggested in Annan and Jackson (2017) [1], within which the effects of wave Dispersion on phase velocity can be inversely modelled to characterize variations in the material properties of infrastructure as a means of detecting surface damage. KW - Ground penetrating radar KW - Wide angle reflection and refraction PY - 2021 DO - https://doi.org/10.1016/j.conbuildmat.2021.122597 SN - 0950-0618 VL - 282 SP - 122597 PB - Elsevier Ltd. AN - OPUS4-52197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Plarre, Rüdiger A1 - Zocca, Andrea A1 - Spitzer, Andrea A1 - Benemann, Sigrid A1 - Gorbushina, Anna A1 - Li, Y. A1 - Waske, Anja A1 - Funk, Alexander A1 - Wilgig, Janka A1 - Günster, Jens T1 - Searching for biological feedstock material: 3D printing of wood particles from house borer and drywood termite frass N2 - Frass (fine powdery refuse or fragile perforated wood produced by the activity of boring insects) of larvae of the European house borer (EHB) and of drywood termites was tested as a natural and novel feedstock for 3D-printing of wood-based materials. Small particles produced by the drywood termite Incisitermes marginipennis and the EHB Hylotrupes bajulus during feeding in construction timber, were used. Frass is a powdery material of particularly consistent quality that is essentially biologically processed wood mixed with debris of wood and faeces. The filigree-like particles flow easily permitting the build-up of woodbased structures in a layer wise fashion using the Binder Jetting printing process. The Quality of powders produced by different insect species was compared along with the processing steps and properties of the printed parts. Drywood termite frass with a Hausner Ratio HR = 1.1 with ρBulk = 0.67 g/cm3 and ρTap = 0.74 g/cm3 was perfectly suited to deposition of uniformly packed layers in 3D printing. We suggest that a variety of naturally available feedstocks could be used in environmentally responsible approaches to scientific material sciences/additive manufacturing. KW - 3D printing KW - X-ray tomographic KW - SEM micrography KW - Drywood termite PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521517 DO - https://doi.org/10.1371/journal.pone.0246511 VL - 16 IS - 2 SP - e0246511 AN - OPUS4-52151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Christoph A1 - Firdous, R. A1 - Kruschwitz, Sabine A1 - Stephan, D. T1 - Sequential learning to accelerate discovery of alkali-activated binders N2 - Alkali-activated binders (AAB) can provide a clean alternative to conventional cement in terms of CO2 emissions. However, as yet there are no sufficiently accurate material models to effectively predict the AAB properties, thus making optimal mix design highly costly and reducing the attractiveness of such binders. This work adopts sequential learning (SL) in high-dimensional material spaces (consisting of composition and processing data) to find AABs that exhibit desired properties. The SL approach combines machine learning models and feedback from real experiments. For this purpose, 131 data points were collected from different publications. The data sources are described in detail, and the differences between the binders are discussed. The sought-after target property is the compressive strength of the binders after 28 days. The success is benchmarked in terms of the number of experiments required to find materials with the desired strength. The influence of some constraints was systematically analyzed, e.g., the possibility to parallelize the experiments, the influence of the chosen algorithm and the size of the training data set. The results show the advantage of SL, i.e., the amount of data required can potentially be reduced by at least one order of magnitude compared to traditional machine learning models, while at the same time exploiting highly complex information. This brings applications in laboratory practice within reach. KW - Alkali-activated binders KW - Machine learning KW - Sequential learning KW - Materials by design KW - Materials informatics PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531376 DO - https://doi.org/10.1007/s10853-021-06324-z SN - 0022-2461 SN - 1573-4803 VL - 56 SP - 15859 EP - 15881 PB - Springer CY - Dordrecht AN - OPUS4-53137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klewe, Tim A1 - Strangfeld, Christoph A1 - Ritzer, Tobias A1 - Kruschwitz, Sabine T1 - Combining Signal Features of Ground-Penetrating Radar to Classify Moisture Damage in Layered Building Floors N2 - To date, the destructive extraction and analysis of drilling cores is the main possibility to obtain depth information about damaging water ingress in building floors. The time- and costintensive procedure constitutes an additional burden for building insurances that already list piped water damage as their largest item. With its high sensitivity for water, a ground-penetrating radar (GPR) could provide important support to approach this problem in a non-destructive way. In this research, we study the influence of moisture damage on GPR signals at different floor constructions. For this purpose, a modular specimen with interchangeable layers is developed to vary the screed and insulation material, as well as the respective layer thickness. The obtained data set is then used to investigate suitable signal features to classify three scenarios: dry, damaged insulation, and damaged screed. It was found that analyzing statistical distributions of A-scan features inside one B-scan allows for accurate classification on unknown floor constructions. Combining the features with multivariate data analysis and machine learning was the key to achieve satisfying results. The developed method provides a basis for upcoming validations on real damage cases. KW - Radar KW - Material Moisture KW - Non-destructive testing KW - Signal Features KW - Civil Engineering KW - Machine Learning PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533606 DO - https://doi.org/10.3390/app11198820 VL - 11 IS - 19 SP - 8820 PB - MDPI AN - OPUS4-53360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krankenhagen, Rainer T1 - Obituary of Christiane Maierhofer N2 - Obituary for Christiane Maierhofer, the head of the department "Thermographic Methods" at BAM (2015-2022). KW - Obituary KW - In Memoriam PY - 2022 DO - https://doi.org/10.1080/17686733.2022.2105019 SN - 1768-6733 SN - 2116-7176 VL - 19 IS - 4 SP - 221 EP - 222 PB - Taylor & Francis CY - London AN - OPUS4-55603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Singh, S. A1 - Palani, I. A. A1 - Paul, C. P. A1 - Funk, Alexander A1 - Gokuldoss, P. K. T1 - Wire Arc Additive Manufacturing of NiTi 4D Structures: Influence of Interlayer Delay N2 - Shape memory alloy structures for actuator and vibration damper applications may be manufactured using wire arc additive manufacturing (W AAM), which is one of the additive manufacturing technologies. Multilayer deposition causes heat accumulation during W AAM, which rises the preheat temperature of the previously created layer. This leads to process instabilities, which result in deviations from the desired dimensions and mechanical properties changes. During W AAM deposition of the wall structure, a systematic research is carried out by adjusting the interlayer delay from 10 to 30 s. When the delay period is increased from 10 to 30 s, the breadth decreases by 45% and the height increases by 33%. Grain refinement occurs when the interlayer delay duration is increased, resulting in better hardness, phase transformation temperature, compressive strength, and shape recovery behavior. This study shows how the interlayer delay affects the behavior of W AAM-built nickel-titanium alloy (NiTi) structures in a variety of applications. KW - Wire are additive manufacturing KW - Shape memory alloy KW - Nitinol KW - Interlayer delay PY - 2022 DO - https://doi.org/10.1089/3dp.2021.0296 SN - 2329-7662 SP - 1 EP - 11 PB - Liebert CY - New Rochelle, NY AN - OPUS4-55795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Studemund, T. T1 - Thermography using a 1D laser array – From planar to structured heating N2 - In the field of optically excited thermography, flash lamps (impulse shaped planar heating) and halogen lamps (modulated planar heating) have become established for the specific regimes of impulse and lock-in thermography. Flying-spot laser thermography is implemented by means of a rasterized focused laser, e. g. for crack detection (continuous wave operation) and photothermal material characterization (high-frequency modulated). The availability of novel technologies, i. e. fast and high-resolution IR cameras, brilliant innovative light sources and high-performance data acquisition and processing technology will enable a paradigm shift from stand-alone photothermal and thermographic techniques to uniform quantitative measurement and testing technology that is faster and more precise. Similar to an LED array, but with irradiance two orders of magnitude higher, a new type of brilliant laser source, i. e. the VCSEL array (vertical-cavity surface-emitting laser), is now available. This novel optical energy source eliminates the strong limitation to the temporal dynamics of established light sources and at the same time is spectrally clearly separated from the detection wavelength. It combines the fast temporal behavior of a diode laser with the high optical irradiance and the wide illumination area of flash lamps. In addition, heating can also be carried out in a structured manner, because individual areas of the VCSEL array can be controlled independently of each other. This new degree of freedom enables the development of completely new thermographic NDT methods. KW - Thermography KW - Laser thermography KW - Laser KW - Lock-in KW - VCSEL KW - Thermal wave KW - Photothermal PY - 2018 UR - https://www.hanser-elibrary.com/doi/abs/10.3139/120.111209 DO - https://doi.org/10.3139/120.111209 SN - 0025-5300 VL - 60 IS - 7-8 SP - 749 EP - 757 PB - Carl Hanser Verlag CY - München AN - OPUS4-45482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schumacher, David A1 - Sharma, R. A1 - Grager, J.-C. A1 - Schrapp, M. T1 - Scatter and beam hardening reduction in industrial computed tomography using photon counting detectors N2 - Photon counting detectors (PCD) offer new possibilities for x-ray micro computed tomography (CT) in the field of non-destructive testing. For large and/or dense objects with high atomic numbers the problem of scattered radiation and beam hardening severely influences the image quality. This work shows that using an energy discriminating PCD based on CdTe allows to address these problems by intrinsically reducing both the influence of scattering and beam hardening. Based on 2D-radiographic measurements it is shown that by energy thresholding the influence of scattered radiation can be reduced by up to in case of a PCD compared to a conventional energy-integrating detector (EID). To demonstrate the capabilities of a PCD in reducing beam hardening, cupping artefacts are analyzed quantitatively. The PCD results show that the higher the energy threshold is set, the lower the cupping effect emerges. But since numerous beam hardening correction algorithms exist, the results of the PCD are compared to EID results corrected by common techniques. Nevertheless, the highest energy thresholds yield lower cupping artefacts than any of the applied correction algorithms. As an example of a potential industrial CT application, a turbine blade is investigated by CT. The inner structure of the turbine blade allows for comparing the image quality between PCD and EID in terms of absolute contrast, as well as normalized signal-to-noise and contrast-to-noise ratio. Where the absolute contrast can be improved by raising the energy thresholds of the PCD, it is found that due to lower statistics the normalized contrast-to-noise-ratio could not be improved compared to the EID. These results might change to the contrary when discarding pre-filtering of the x-ray spectra and thus allowing more low-energy photons to reach the detectors. Despite still being in the early phase in technological progress, PCDs already allow to improve CT image quality compared to conventional detectors in terms of scatter and beam hardening reduction. KW - X-ray computed tomography KW - Photon counting detector KW - CdTe sensor KW - Non-destructive testing KW - Beam hardening KW - Scattered radiation PY - 2018 UR - http://iopscience.iop.org/article/10.1088/1361-6501/aabef7/meta DO - https://doi.org/10.1088/1361-6501/aabef7 SN - 1361-6501 VL - 29 IS - 7 SP - 075101, 1 EP - 12 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-44959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulla, Hannes A1 - Haferkamp, Sebastian A1 - Akhmetova, Irina A1 - Röllig, Mathias A1 - Maierhofer, Christiane A1 - Rademann, Klaus A1 - Emmerling, Franziska T1 - In situ investigations of mechanochemical one-pot syntheses N2 - We present an in situ triple coupling of synchrotron X-ray diffraction with Raman spectroscopy, and thermography to study milling reactions in real time. This combination of methods allows a correlation of the structural evolution with temperature information. The temperature information is crucial for understanding both the thermodynamics and reaction kinetics. The reaction mechanisms of three prototypical mechanochemical syntheses, a cocrystal formation, a C@C bond formation (Knoevenagel condensation), and the formation of a manganese-phosphonate, were elucidated. Trends in the temperature development during milling are identified. The heat of reaction and latent heat of crystallization of the product contribute to the overall temperature increase. A decrease in temperature occurs via release of, for example, water as a byproduct. Solid and liquid intermediates are detected. The influence of the mechanical impact could be separated from temperature effects caused by the reaction. KW - In situ studies KW - Mechanochemistry KW - Raman spectroscopy KW - Thermography KW - X-ray diffraction PY - 2018 DO - https://doi.org/10.1002/anie.201800147 SN - 1433-7851 SN - 1521-3773 VL - 57 IS - 20 SP - 5930 EP - 5933 PB - Wiley-VCH CY - Weinheim AN - OPUS4-44946 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Christoph A1 - Kruschwitz, Sabine A1 - Ebell, Gino T1 - Datengesteuerte Multisensor-Fusion zur Korrosionsprüfung von Stahlbetonbauteilen N2 - Potentialfeldmessung (PM) ist die beliebteste Methode der Zerstörungsfreien Prüfung (ZfP) zur Lokalisierung von aktiver Betonstahlkorrosion. PM wird durch Parameter wie z. B. Feuchtigkeits- und Chloridgradienten im Bauteil beeinflusst, so dass die Sensitivität gegenüber der räumlich sehr begrenzten, aber gefährlichen Lochkorrosion gering ist. Wir zeigen in dieser Studie, wie zusätzliche Messinformationen mit Multisensor-Datenfusion genutzt werden können, um die Detektionsleistung zu verbessern und die Auswertung zu automatisieren. Die Fusion basiert auf überwachtem maschinellen Lernen (ÜML). ÜML sind Methoden, die Zusammenhänge in (Sensor-) Daten anhand vorgegebener Kennzeichnungen (Label) erkennen. Wir verwenden ÜML um „defekt“ und „intakt“ gelabelte Bereiche in einem Multisensordatensatz zu unterscheiden. Unser Datensatz besteht aus 18 Messkampagnen und enthält jeweils PM-, Bodenradar-, Mikrowellen-Feuchte- und Wenner-Widerstandsdaten. Exakte Label für veränderliche Umweltbedingungen wurden in einer Versuchsanordnung bestimmt, bei der eine Stahlbetonplatte im Labor kontrolliert und beschleunigt verwittert. Der Verwitterungsfortschritt wurde kontinuierlich überwacht und die Korrosion gezielt erzeugt. Die Detektionsergebnisse werden quantifiziert und statistisch ausgewertet. Die Datenfusion zeigt gegenüber dem besten Einzelverfahren (PM) eine deutliche Verbesserung. Wir beschreiben die Herausforderungen datengesteuerter Ansätze in der zerstörungsfreien Prüfung und zeigen mögliche Lösungsansätze. T2 - DGZfP Jahrestagung 2018 CY - Leipzig, Germany DA - 07.05.2018 KW - Maschinelles Lernen KW - Datenfusion KW - ZfP KW - Beton KW - Korrosion PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444852 UR - http://www.ndt.net/?id=23106 SN - 1435-4934 VL - 23 IS - 9 SP - 1 EP - 9 PB - NDT.net CY - Kirchwald AN - OPUS4-44485 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maierhofer, Christiane A1 - Röllig, Mathias A1 - Gower, M. A1 - Lodeiro, M. A1 - Baker, G. A1 - Monte, C. A1 - Adibekyan, A. A1 - Gutschwager, B. A1 - Knazowicka, L. A1 - Blahut, A. T1 - Evaluation of different techniques of active thermography for quantification of artificial defects in fiber-reinforced composites using thermal and phase contrast data analysis N2 - For assuring the safety and reliability of components and constructions in energy applications made of fiber-reinforced polymers (e.g., blades of wind turbines and tidal power plants, engine chassis, flexible oil and gas pipelines) innovative non-destructive testing methods are required. Within the European Project VITCEA complementary methods (shearography, microwave, ultrasonics and thermography) have been further developed and validated. Together with partners from the industry, test specimens have been constructed and selected on-site containing different artificial and natural defect artefacts. As base materials, carbon and glass fibers in different orientations and layering embedded in different matrix materials (epoxy, polyamide) have been considered. In this contribution, the validation of flash and lock-in thermography to these testing problems is presented. Data analysis is based on thermal contrasts and phase evaluation techniques. Experimental data are compared to analytical and numerical models. Among others, the influence of two different types of artificial defects (flat bottom holes and delaminations) with varying diameters and depths and of two different materials (CFRP and GFRP) with unidirectional and quasi-isotropic fiber alignment is discussed. KW - Active thermography KW - CFRP KW - GFRP KW - Delaminations KW - Flash excitation KW - Lock-in excitation PY - 2018 DO - https://doi.org/10.1007/s10765-018-2378-z SN - 0195-928X SN - 1572-9567 VL - 39 IS - 5 SP - Article 61, 1 EP - 37 PB - Springer AN - OPUS4-44687 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schade, U. A1 - Dawei, C. A1 - Puskar, L. A1 - Ritter, E. A1 - Beckmann, Jörg T1 - Removal of Etalon Features in the Far-Infrared–Terahertz Transmittance Spectra of Thin Polymer Films N2 - Etalon features in infrared spectra of stratified samples, their influence on the interpretation and methods to circumvent their presence in infrared spectra have been in discussion for decades. This paper focuses on the application of a method originally developed to remove interference fringes in the mid-infrared spectra for far-infrared Fourier transform spectroscopy on thin polymer films. We show that the total transmittance-reflectance technique, commonly used for mid-infrared, also works successfully in the far infrared spectral range where other approaches fail. Experimental spectra obtained by such technique are supported by model calculations and reveal the possibility and limits to obtain almost undisturbed far-infrared spectra which are suitable to determine low energy vibrations of ionomer salts under certain sample conditions. KW - Far-infrared spectroscopy KW - Absorption KW - Etalon feature KW - Total transmittance reflectance PY - 2020 DO - https://doi.org/10.1177/0003702820922295 VL - 74 IS - 12 SP - 1530 EP - 1539 PB - Sage journals AN - OPUS4-51367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Jan Peter A1 - Dell'Avvocato, G. A1 - Krankenhagen, Rainer T1 - Assessing overload-induced delaminations in glass fiber reinforced polymers by its geometry and thermal resistance N2 - The one-dimensional thermal quadrupole method is used to evaluate a pulsed thermography measurement at delaminations in a glass-fiber reinforced plastic plate quantitatively. The large-scale delaminations have been induced by tension overload and are air-filled and are usually located at the same depth as the notch bottom of a notch on the rear side. While classical evaluation methods like pulsed phase thermography and thermal Signal reconstruction are focused on the delamination depth only, the thermal quadrupole method determines spatially resolved two parameters for delaminations, delamination depth and local thermal resistance. Interestingly, lateral heat flows do not disturb this kind of depth evaluation. KW - Pulsed thermography KW - Delamination KW - Debond KW - Composite materials PY - 2020 DO - https://doi.org/10.1016/j.ndteint.2020.102309 VL - 116 SP - 102309 PB - Elsevier Ltd. AN - OPUS4-50937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moskovchenko, A. I. A1 - Vavilov, V. P. A1 - Bernegger, Raphael A1 - Maierhofer, Christiane A1 - Chulkov, A. O. T1 - Detecting Delaminations in Semitransparent Glass Fiber Composite by Using Pulsed Infrared Thermography N2 - Thanks to its good strength/mass ratio, a glass fibre reinforced plastic (GFRP) composite is a common material widely used in aviation, power production, automotive and other industries. In its turn, active infrared (IR) nondestructive testing (NDT) is a common inspection technique for detecting and characterizing structural defects in GFRP. Materials to be tested are typically subjected to optical heating which is supposed to occur on the material surface. However, GFRP composite is semitransparent for optical radiation of both visual and IR spectral bands. Correspondingly, the inspection process represents a certain combination of both optical and thermal phenomena. Therefore, the known characterization algorithms based on pure heat diffusion cannot be applied to semi-transparent materials. In this study, the phenomenon of GFRP semi-transparency has been investigated numerically and experimentally in application to thermal NDT. Both Xenon flash tubes and a laser have been used for thermal stimulation of opaque and semi-transparent test objects. It has been shown that the Penetration of optical heating radiation into composite reduces detectability of shallower defects, and the signal-to-noise ratio can be enhanced by applying the technique of thermographic signal reconstruction (TSR). In the inspection of the semi-transparent GFRP composite, the most efficient has been the laser heating followed by the TSR data processing. The perspectives of defect characterization of semi-transparent materials by using laser heating are discussed. A neural network has been used as a candidate tool for evaluating defect depth in composite materials, but its training should be performed in identical with testing conditions. KW - Infrared thermography KW - Thermal testing KW - GFRP KW - Semi-transparent composite KW - Laser heating PY - 2020 DO - https://doi.org/10.1007/s10921-020-00717-x VL - 39 SP - 69 PB - Springer Science+Business Media, LLC, part of Springer Nature 2020 AN - OPUS4-51179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kruschwitz, Sabine A1 - Halisch, M. A1 - Dlugosch, R. A1 - Prinz, Carsten T1 - Toward a better understanding of low-frequency electrical relaxation - An enhanced pore space characterization N2 - Relaxation phenomena observed in the electrical low-frequency range (approximately 1 mHz-10 kHz) of natural porous media like sandstones is often assumed to be directly related to the dominant (modal) pore throat sizes measured, for instance, with mercury intrusion porosimetry. Attempts to establish a universally valid relationship between pore size and peak Spectral Induced Polarization (SIP) relaxation time have failed, considering sandstones from very different origins and featuring great variations in textural and chemical compositions as well as in geometrical pore space properties. In addition working with characteristic relaxation times determined in Cole-Cole or Debye decomposition fits to build the relationship have not been successful. In particular, samples with narrow pore throats are often characterized by long SIP relaxation times corresponding to long “characteristic length scales” in these media, assuming that the diffusion coefficients along the electrical double layer were constant. Based on these observations, three different types of SIP relaxation can be distinguished. We present a new way of assessing complex pore spaces of very different sandstones in a multi-methodical approach to combine the benefits of mercury intrusion porosimetry, micro-computed tomography, and nuclear magnetic resonance. In this way, we achieve much deeper insight into the pore space due to the different resolutions and sensitivities of the applied methods to both pore constrictions (throats) and wide pores (pore bodies). We experimentally quantify pore aspect ratios and volume distributions within the two pore regions. We clearly observe systematic differences between three SIP relaxation types identified previously and can attribute the SIP peak relaxation times to measured characteristic length scales within our materials. We highlight selected results for a total of nine sandstones. It seems that SIP relaxation behavior depends on the size difference of the narrow pore throats to the wide pore bodies, which increases from SIP Type 1 to Type 3. KW - µ-CT KW - Spectral induced polarization KW - Nuclear magnetic resonance KW - Pore space PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509763 DO - https://doi.org/10.1190/GEO2019-0074.1 SN - 0016-8033 VL - 85 IS - 4 SP - MR257 EP - MR270 PB - Society of Exploration Geophysicists AN - OPUS4-50976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahmadi, Samim A1 - Burgholzer, P. A1 - Mayr, G. A1 - Jung, P. A1 - Caire, G. A1 - Ziegler, Mathias T1 - Photothermal super resolution imaging: A comparison of different thermographic reconstruction techniques N2 - This paper presents different super resolution reconstruction techniques to overcome the spatial resolution limits in thermography. Pseudo-random blind structured illumination from a onedimensional laser array is used as heat source for super resolution thermography. Pulsed thermography measurements using an infrared camera with a high frame rate sampling lead to a huge amount of data. To handle this large data set, thermographic reconstruction techniques are an essential step of the overall reconstruction process. Four different thermographic reconstruction techniques are analyzed based on the Fourier transform amplitude, principal component analysis, virtual wave reconstruction and the maximum thermogram. The application of those methods results in a sparse basis representation of the measured data and serves as input for a compressed sensing based algorithm called iterative joint sparsity (IJOSP). Since the thermographic reconstruction techniques have a high influence on the result of the IJOSP algorithm, this paper Highlights their Advantages and disadvantages. KW - Super resolution KW - Compressed sensing KW - Laser thermography KW - Virtual wave KW - Defect reconstruction PY - 2020 DO - https://doi.org/10.1016/j.ndteint.2020.102228 VL - 111 SP - 2228 PB - Elsevier Ltd. CY - Netherlands AN - OPUS4-50419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eckel, S. A1 - Zscherpel, Uwe A1 - Huthwaite, P. A1 - Paul, N. A1 - Schumm, A. T1 - Radiographic film system classification and noise characterisation by a camera-based digitisation procedure N2 - Extracting statistical characteristics from radiographic films is vital for film system classification and contrast sensitivity evaluation and serves as a basis for film noise simulation. A new method for digitising radiographic films in order to extract these characteristics is presented. The method consists of a camera-based setup and image processing procedure to digitise films. Correct optical density values and granularity can be extracted from the digitised images, which are equal to results obtained by standardised measurement procedures. Specific statistical characteristics of film noise are theoretically derived and subsequently verified by the obtained data, including characteristics such as Gaussianity and spatial spectral characteristics of the optical density fluctuations. It is shown that the presented method correctly measures the granularity of film noise and can therefore replace time-consuming microdensitometer measurements traditionally required for film system classifications. Additionally, the inherent unsharpness of film systems was investigated and compared with literature data. This comparison serves as another validation approach of the presented method. KW - Radiography KW - Image processing KW - Film noise KW - Film system classification KW - Digitisation PY - 2020 DO - https://doi.org/10.1016/j.ndteint.2020.102241 SN - 0963-8695 VL - 111 IS - 4 SP - 102241 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-50517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eckel, S. A1 - Huthwaite, P. A1 - Zscherpel, Uwe A1 - Schumm, A. A1 - Paul, N. T1 - Realistic film noise generation based on experimental noise spectra N2 - Generating 2D noise with local, space-varying spectral characteristics is vital where random noise fields with spatially heterogeneous statistical properties are observed and need to be simulated. A realistic, non-stationary noise generator relying on experimental data is presented. That generator is desired in areas such as photography and radiography. For example, before performing actual X-ray imaging in practice, output images are simulated to assess and improve setups. For that purpose, realistic film noise modelling is crucial because noise downgrades the detectability of visual signals. The presented film noise synthesiser improves the realism and value of radiographic simulations significantly, allowing more realistic assessments of radiographic test setups. The method respects space-varying spectral characteristics and probability distributions, locally simulating noise with realistic granularity and contrast. The benefits of this approach are to respect the correlation between noise and image as well as internal correlation, the fast generation of any number of unique noise samples, the exploitation of real experimental data, and its statistical non-stationarity. The combination of these benefits is not available in existing work. Validation of the new technique was undertaken in the field of industrial radiography. While applied to that field here, the technique is general and can also be utilised in any other field where the generation of 2D noise with local, space-varying statistical properties is necessary. KW - Nondestructive testing KW - Image quality KW - Noise simulation KW - Radiography PY - 2020 DO - https://doi.org/10.1109/TIP.2019.2955284 SN - 1057-7149 VL - 29 SP - 2987 EP - 2998 PB - IEEE Xplore CY - Washington, D.C. AN - OPUS4-50518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Osterloh, Kurt A1 - Röhrs, S. A1 - Schwabe, A. A1 - Radujcovic, S. A1 - Bücherl, T. A1 - Dangendorf, V. A1 - Zscherpel, Uwe A1 - Reiche, I. A1 - Nüsser, A. ED - Zscherpel, Uwe ED - Kasperl, S. T1 - Elucidating the distribution of organic consolidants in wood by Neutron Tomography N2 - While the absorption of X-rays and gamma radiation is determined by the Z-number of the elements a specimen is composed of, it is the hydrogen making an effective contrast with neutron imaging. As a consequence, interrogating with neutrons presents a suitable tool to study the distribution of organic consolidants in materials such as wood as encountered in impregnated wooden artworks. Four different examples of objects are presented here to demonstrate the potential of neutron CT: 1) small wooden pieces of ship wrecks (< 2 cm thickness) interrogated with cold neutrons (0.5 meV at the ANTARES facility of the FRM II in Garching) to demonstrate the potential and the limitation of using low energy neutrons, 2) a wooden statue soaked with carbolineum (fission neutrons 1.8 MeV at the NECTAR facility of the FRM II), 3) a smaller wooden figure of a skull heavily soaked with carbolineum so it was too tight for the fission neutrons used before with accelerator neutrons (broad range about 5.5 MeV at the PTB in Braunschweig) and 4) pieces of charred wood to study the impregnation with a consolidant (NECTAR, FRM II). With the exception of the last example, all results have been combined with X-ray tomography (BAM 8.3 in Berlin). In the case of the charred wood specimens (example 4) the density histograms of the neutron tomography results were compared with those obtained from untreated references. The observed gain in specific density of the soaked specimens corresponded with an increase of specific weight. All results obtained so far showed distinct distribution patterns attributable to structural peculiarities or organic consolidants providing valuable support for subsequent restoration works. T2 - International symposium on digital industrial radiography and computed tomography DIR2019 CY - Fürth, Germany DA - 02.07.2019 KW - Neutron Imaging KW - Cold to fast neutron testing KW - Tomography of wood samples KW - Art restauration PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505326 UR - https://www.ndt.net/search/docs.php3?id=24740 SN - 1435-4934 VL - 24 IS - 11 SP - 1 EP - 8 PB - NDT.net CY - Kirchwald AN - OPUS4-50532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zscherpel, Uwe A1 - Ewert, Uwe T1 - Aktuelle Entwicklungen in der Standardisierung N2 - In den letzten zwei Jahren wurden 11 neue Standards/Standardrevisionen zur RT veröffentlicht (ohne Strahlenschutz) und 5 werden dafür gestrichen. Es wird über die neuen Anforderungen ausgewählter Normen bzw. Normrevisionen informiert und insbesondere auch über die veränderten Parameter, die bei Prüfpraxis und bei der Klassifizierung zu berücksichtigen sind. Das wichtigste Projekt ist die Revision der DIN EN ISO 17636-1, -2, RT von Schweißverbindungen, in ISO TC 44 SC 5 WG 1. Die Standards zur Schweißnahtprüfung in der Kerntechnik, DIN 25435, wurden ins Englische übertragen und bei ISO TC 85 SC 6 bearbeitet. Hauptaktivität bei ASTM ist gegenwärtig die Überarbeitung der CT-Standards und die Berücksichtigung der Anforderungen an das dimensionelle Messen. Der Guide ASTM E 1441 zur Bestimmung von MTF, Kontrast-Detail-Funktion (CDF) und Kontrast-Diskrimination-Diagramm (CDD) wird revidiert. E 2445 zur CR Long Term Stability wird ebenfalls revidiert. Die Revision soll auch in die ISO 16371-1 eingehen. Dazu ist ein Round Robin-Test geplant. Auch die Standards zur Durchstrahlungsprüfung auf Korrosion und Ablagerungen in Rohren mit Röntgen- und Gammastrahlen (EN 16407-1, -2, 2014) wurden revidiert. Diese Revision wurde als DIN EN ISO 20769-1, -2 2018 veröffentlicht und EN 16407 wird zurückgezogen. Die Revision der Standards EN 12543 und EN 12679 zur Messung der Brennfleckgröße und der Strahlergröße ist mit Verzögerung in Überarbeitung, um die digitalen Detektoren und Messmöglichkeiten mit Bildverarbeitungsprogrammen zu berücksichtigen. Ein Entwurf zur Messung der Brennfleckgröße von nano-Fokusröhren wird derzeit vom Europäischen Metrologie-Programm EMPIR gefördert. Zur radiographischen Gussteilprüfung wurde der Standard EN 12681 revidiert und 2018 veröffentlicht. Er wurde um Zulässigkeitsgrenzen erweitert und die digitale Radiographie wurde in Teil 2 berücksichtigt. T2 - 17. Seminar der DGZfP "Aktuelle Fragen der Durchstrahlungsprüfung und des Strahlenschutzes" CY - Kassel, Germany DA - 28.03.2019 KW - Digitale Radiographie KW - Standards KW - Bildqualität KW - Klassifizierung PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505371 UR - https://www.ndt.net/search/docs.php3?id=24807 VL - 24 IS - 12 SP - 1 EP - 5 PB - NDT.net CY - Kirchwald AN - OPUS4-50537 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Christoph A1 - Kruschwitz, Sabine A1 - Ebell, Gino T1 - A machine learning‑based data fusion approach for improved corrosion testing N2 - This work presents machine learning-inspired data fusion approaches to improve the non-destructive testing of reinforced concrete. The principal effects that are used for data fusion are shown theoretically. Their effectiveness is tested in case studies carried out on largescale concrete specimens with built-in chloride-induced rebar corrosion. The dataset consists of half-cell potential mapping, Wenner resistivity, microwave moisture and ground penetrating radar measurements. Data fusion is based on the logistic Regression algorithm. It learns an optimal linear decision boundary from multivariate labeled training data, to separate intact and defect areas. The training data are generated in an experiment that simulates the entire life cycle of chloride-exposed concrete building parts. The unique possibility to monitor the deterioration, and targeted corrosion initiation, allows data labeling. The results exhibit an improved sensitivity of the data fusion with logistic regression compared to the best individual method half-cell potential. KW - Corrosion KW - Potential mapping KW - Machine learning PY - 2019 DO - https://doi.org/10.1007/s10712-019-09558-4 SN - 1573-0956 SN - 0169-3298 VL - 41 IS - 3 SP - 531 EP - 548 PB - Springer Nature AN - OPUS4-48799 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maierhofer, Christiane A1 - Krankenhagen, Rainer A1 - Röllig, Mathias T1 - Application of thermographic testing for the characterization of impact damage during and after impact load N2 - Low-velocity impact damages were monitored in-situ using an infrared camera before, during and after Impact load. Thermal images were recorded as a function of time at the front side (impact) as well as at the rear side of the plates using a high frame rate. In CFRP and GFRP specimens with different thicknesses and made of various types of fibers and matrix materials, different kind of damages were observed. The sizes of the heated areas being related to the damages and the amount of energy dissipated into heat was determined quantitatively as a function of impact energy and are a measure of the resistance of the different materials against impact load. KW - Laminates KW - Impact behaviour KW - NDT KW - Thermal analysis PY - 2019 DO - https://doi.org/10.1016/j.compositesb.2019.106899 SN - 1359-8368 SN - 1879-1069 VL - 173 SP - 106899, 1 EP - 17 PB - Elsevier AN - OPUS4-48881 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Munsch, Sarah Mandy A1 - Strangfeld, Christoph A1 - Kruschwitz, Sabine ED - Kärger, J. ED - Heitjans, P. T1 - Determining the pore size distribution in synthetic and building materials using 1D NMR N2 - NMR is gaining increasing interest in civil engineering applications for the use of microstructure characterization as e.g. pore size determination and monitoring of moisture transport in porous materials. In this study, the use of NMR as a tool for pore size characterization was investigated. For our study we used screed and synthetic materials at partial and full saturation. A successful determination could be achieved when having a reference or calibration method, although partly diffusion effects have been registered. Due to these diffusion effects, for the determination of pore size distributions of synthetic materials another NMR device was needed. Finally, the determination of the surface relaxivity of screed (50 μm/s) led to a higher value than first expected from literature. T2 - 14th International Bologna Conference on Magnetic Resonance in Porous Media CY - Gainesville, FL, USA DA - 18.02.2018 KW - NMR relaxometry KW - Pore size distribution KW - Building materials KW - Porous materials KW - Surface relaxivity PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483680 UR - https://diffusion.uni-leipzig.de/pdf/volume31/diff_fund_31(2019)02.pdf SN - 1862-4138 N1 - Geburtsname von Munsch, Sarah Mandy: Nagel, S. M. - Birth name of Munsch, Sarah Mandy: Nagel, S. M. VL - 31 IS - 2 SP - 1 EP - 9 PB - University of Leipzig CY - Leipzig AN - OPUS4-48368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krautz, M. A1 - Beyer, M. A1 - Jäschke, C. A1 - Schinke, L. A1 - Waske, Anja A1 - Seifert, J. T1 - A Magnetocaloric Booster Unit for Energy-Efficient Air-Conditioning N2 - A concept for the application of a magnetocaloric device in energy-efficient air conditioners is introduced. In order to evaluate this concept, a test stand has been developed equipped with a magnetic field source providing about a 1.5-T flux density change into which different Regenerator geometries can be implemented and evaluated. A processing route for the production of profiled magnetocaloric LaFeSiMn-based composite plates by tape casting is presented. The processed plates show a maximum isothermal entropy change of about 3.8 J kg−1 K−1 at a magnetic field change of 1.5 T at 285 K. The hydraulic and thermal performance of regenerator geometries that can be realized by profiled plates is assessed by calculations. KW - Magnetocaloric effect KW - Regenerator KW - Air-conditioning KW - Solid state cooling KW - Tape casting PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-480926 DO - https://doi.org/10.3390/cryst9020076 VL - 9 IS - 2 SP - 76 EP - 91 PB - MDPI AN - OPUS4-48092 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, R. A1 - Qian, M. A1 - Waske, Anja A1 - Shen, H. A1 - Zhang, X. T1 - Investigating the microstructure and magnetic properties of La-Fe-Si microwires during fabrication and heat treatment process N2 - In this study, the optimized fabrication and evolution of the microstructure and magnetic Transition behavior of the melt-extraction LaFe11.2Si1.8 microwires have been studied. After the optimization of extraction technique (heating power 22 KW, feeding rate 30-50 mm/s, rotation velocity 1700 r/min), the content of La Fe,Si)13 phase in the as-extracted microwires was 54 wt% due to the high solidification velocity, which was increased to 85 wt% via annealing at 1373 K for 20 min. The amount of La(Fe,Si)13 phase was increased and the composition of La(Fe,Si)13 phase became more homogenized through peritectic reaction and short-distance diffusion in the microwires during annealing process. The coexistence of the nanocrystalline and amorphous structures contributed to the broad magnetic Transition temperature range of the as-extracted and annealed microwires. The annealed microwires exhibited a second-order magnetic transformation behavior and showed a maximum magnetic entropy Change jDSMjmax of 6.2 J/kgK and working temperature interval of 36.0 K under a magnetic field of 20 kOe. KW - Magnetocaloric effect KW - Melt-extraction technique KW - La(Fe,Si)13 phase KW - Peritectic reaction KW - Short-distance diffusion PY - 2019 DO - https://doi.org/10.1016/j.jallcom.2019.04.196 SN - 0925-8388 SN - 1873-4669 VL - 794 SP - 153 EP - 162 PB - Elsevier B.V. AN - OPUS4-48095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaenisch, Gerd-Rüdiger A1 - Ewert, Uwe A1 - Waske, Anja A1 - Funk, Alexander T1 - Radiographic Visibility Limit of Pores in Metal Powder for Additive Manufacturing N2 - The quality of additively manufactured (AM) parts is determined by the applied process parameters used and the properties of the feedstock powder. The influence of inner gas pores in feedstock particles on the final AM product is a phenomenon which is difficult to investigate since very few non-destructive measurement techniques are accurate enough to resolve the micropores. 3D X-ray computed tomography (XCT) is increasingly applied during the process chain of AM parts as a non-destructive monitoring and quality control tool and it is able to detect most of the pores. However, XCT is time-consuming and limited to small amounts of feedstock powder, typically a few milligrams. The aim of the presented approach is to investigate digital radiography of AM feedstock particles as a simple and fast quality check with high throughput. 2D digital radiographs were simulated in order to predict the visibility of pores inside metallic particles for different pore and particle diameters. An experimental validation was performed. It was demonstrated numerically and experimentally that typical gas pores above a certain size (here: 3 to 4.4 µm for the selected X-ray setup), which could be found in metallic microparticles, were reliably detected by digital radiography. KW - Additive manufacturing KW - Feedstock powder KW - Porosity KW - Digital radiography KW - Numerical simulation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517880 DO - https://doi.org/10.3390/met10121634 VL - 10 IS - 12 SP - 1634 PB - MDPI AN - OPUS4-51788 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krautz, M. A1 - Beyer, L. A1 - Funk, Alexander A1 - Waske, Anja A1 - Weise, B. A1 - Freudenberger, J. A1 - Gottschall, T. T1 - Predicting the dominating factors during heat transfer in magnetocaloric composite wires N2 - Magnetocaloric composite wires have been studied by pulsed-field measurements up to μ0ΔH = 10 T with a typical rise time of 13 ms in order to evaluate the evolution of the adiabatic temperature change of the core, ΔTad, and to determine the effective temperature change at the surrounding steel jacket, ΔTeff, during the field pulse. An inverse thermal hysteresis is observed for ΔTad due to the delayed thermal transfer. By numerical simulations of application-relevant sinusoidal magnetic field profiles, it can be stated that for field-frequencies of up to two field cycles per second heat can be efficiently transferred from the core to the outside of the jacket. In addition, intense numerical simulations of the temperature change of the core and jacket were performed by varying different parameters, such as frequency, heat capacity, thermal conductivity and interface resistance in order to shed light on their impact on ΔTeff at the outside of the jacket in comparison to ΔTad provided by the core. KW - Composite KW - Heat transfer KW - Numerical simulation KW - Pulsed magnetic field PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513791 DO - https://doi.org/10.1016/j.matdes.2020.108832 VL - 193 SP - 108832 PB - Elsevier Ltd. AN - OPUS4-51379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klewe, Tim A1 - Strangfeld, Christoph A1 - Kruschwitz, Sabine T1 - Review of moisture measurements in civil engineering with ground penetrating radar – Applied methods and signal features N2 - When applying Ground Penetrating Radar (GPR) to assess the moisture content of building materials, different medium properties, dimensions, interfaces and other unknown influences may require specific strategies to achieve useful results. Hence, we present an overview of the various approaches to carry out moisture measurements with GPR in civil engineering (CE). We especially focus on the applied Signal features such as time, amplitude and frequency features and discuss their limitations. Since the majority of publications rely on one single feature when applying moisture measurements, we also hope to encourage the consideration of approaches that combine different signal features for further developments. KW - Ground Penetrating Radar KW - Moisture KW - Civil engineering KW - Signal features PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520684 DO - https://doi.org/10.1016/j.conbuildmat.2021.122250 VL - 278 SP - 122250 PB - Elsevier Ltd. AN - OPUS4-52068 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pech May, Nelson Wilbur A1 - Lauster, T. A1 - Retsch, M. T1 - Design of Multimodal Absorption in the Mid-IR: A Metal Dielectric Metal Approach N2 - Specific control on the mid-infrared (mid-IR) Emission properties is attracting increasing attention for thermal camouflage and passive cooling applications. Metal−dielectric−metal (MDM) structures are well known to support strong magnetic polariton resonances in the optical and near-infrared range. We extend the current understanding of such an MDM structure by specifically designing Au disc arrays on top of ZnS−Au−Si substrates and pushing their resonances to the mid-IR regime. Therefore, we combine fabrication via lift-off photolithography with the finite element method and an inductance−capacitance model. With this combination of techniques, we demonstrate that the magnetic polariton resonance of the first order strongly depends on the individual disc diameter. Furthermore, the fabrication of multiple discs within one unit cell allows a linear combination of the fundamental resonances to conceive broadband absorptance. Quite importantly, even in mixed resonator cases, the absorptance spectra can be fully described by a superposition of the individual disc properties. Our contribution provides rational guidance to deterministically design mid-IR emitting materials with specific narrow- or broadband properties. KW - Mid-IR absorption KW - Thermal emission PY - 2021 DO - https://doi.org/10.1021/acsami.0c18160 VL - 13 IS - 1 SP - 1921 EP - 1929 PB - ACS Publications AN - OPUS4-52070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kling e Silva, L. A1 - Almeida, G. A1 - Kadoke, Daniel A1 - Daum, Werner A1 - Ribeiro Pereira, G. T1 - Automation of pipe defect detection and characterization by structured light N2 - High quality tubular products are essential to the oil and gas industry. Quality control during their production focuses on the non-destructive detection of surface defects. The structured light technique is a candidate for the challenge to detect, monitor and evaluate such defects in real-time. In the present study the automatic processing of structured light measurements is performed and validated. The algorithm for the automatic Analysis of inspection data has an advantage over current data evaluation methods based on individual assessments of operators. KW - Non-destructive testing KW - Data processing KW - Defect evaluation KW - Materials evaluation KW - Structured light scanning (SLS) PY - 2021 DO - https://doi.org/10.1515/mt-2020-0008 SN - 0033-8230 VL - 63 IS - 1 SP - 55 EP - 61 PB - Walter de Gruyter GmbH CY - Berlin/ Boston AN - OPUS4-52124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Metz, Christian A1 - Franz, Philipp A1 - Fischer, C. A1 - Wachtendorf, Volker A1 - Maierhofer, Christiane T1 - Active thermography for quality assurance of 3D-printed polymer structures N2 - Additively manufactured test specimens made of polyamide 12 (PA 12) by Laser Sintering as well as of acrylonitrile butadiene styrene (ABS) by Fused Layer Modelling, were characterised with active thermography directly after manufacturing and after artificial weathering. For this, two different excitation methods (flash and pulse heating) were used and compared, regarding their suitability for the detection of constructed and imprinted defects inside the test specimens. To increase the quality of the thermograms, data processing methods like thermal signal reconstruction (TSR) and Fourier Transformation after TSR were applied. To further investigate the long-term stability of the additively manufactured test specimens towards environmental stress, like UV radiation, heat, humidity, water contact and frost with active thermography, an artificial weathering test over 2000 hours (~3 months) was applied to the specimens. The monitoring of the changes in the optical properties of the weathered plastics was supplemented by spectral reflectance and UV/VIS spectroscopy. KW - Additive manufacturing KW - Polymers KW - Artificial weathering KW - Active thermography KW - UV/VIS spectroscopy PY - 2019 DO - https://doi.org/10.1080/17686733.2019.1686896 SN - 1768-6733 (Print) 2116-7176 (Online) VL - 18 IS - 1 SP - 50 EP - 72 PB - Taylor & Francis AN - OPUS4-49817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haller, T. A1 - Völker, Christoph A1 - Hartmann, T. T1 - Machine learning based multi-sensor fusion for the nondestructive testing of corrosion in concrete N2 - Half-cell potential mapping (HP) is the most popular non-destructive testing method (NDT) for locating corrosion damage in concrete. It is generally accepted that HP is susceptible to environmental factors caused by salt-related deterioration, such as different moisture and chloride gradients. Additional NDT methods are able to identify distinctive areas but are not yet used to estimate more accurate test results. We present a Supervised Machine Learning (SML) based approach to data fusion of seven different signal features to obtain higher quality information. SMLs are methods that explore (or learn) relationships between different (sensor) data from predefined data labels. To obtain a representative, labelled data set we conducted a comprehensive experiment simulating the deterioration cycle of a chloride exposed device in the laboratory. Our data set consists of 18 measurement campaigns, each containing HP, Ground Penetrating- Radar, Microwave Moisture and Wenner resistivity data. We compare the performance of different ML approaches. Many outperform the best single method, HP. We describe the intrinsic challenges posed by a data-driven approach in NDT and show how future work can help overcome them. T2 - SMAR2019 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures CY - Potsdam, Germany DA - 27.08.2019 KW - Machine Learning KW - NDT KW - Half-Cell Potential Mapping KW - Corrosion KW - Reinforced Concrete KW - Data Fusion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-498563 UR - http://www.ndt.net/?id=24890 VL - 25 IS - 1 SP - 24890-1 EP - 24890-8 PB - NDT.net CY - Kirchwald AN - OPUS4-49856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ulbricht, Alexander A1 - Gollwitzer, Christian A1 - Kupsch, Andreas A1 - Léonard, Fabien A1 - Müller, Bernd R. A1 - Oesch, Tyler A1 - Onel, Yener A1 - Thiede, Tobias A1 - Zscherpel, Uwe ED - Puente León, F. ED - Zagar, B. T1 - Moderne Methoden der CT-gestützten Strukturanalyse T1 - Modern techniques of CT based structure analysis N2 - Durch den großflächigen Einsatz der Computertomographie (CT) in unterschiedlichen Industriebereichen steigen auch die Anforderungen an die quantitative Bildanalyse. Subjektive Bildwahrnehmung muss durch objektive Algorithmen ersetzt werden. In diesem Artikel stellt die Bundesanstalt für Materialforschung und -prüfung (BAM), die seit den 1980er Jahren an der Entwicklung der industriellen CT beteiligt ist, anhand ausgewählter Beispiele den aktuellen Stand ihrer Analysemethoden an verschiedenen Anwendungsbeispielen der CT vor. N2 - The increasing use of computed tomography (CT) in various industrial sectors requires more sophisticated techniques of quantitative image analysis. Subjective image perception needs to be replaced by objective algorithms. The German Federal Institute for Materials Research and Testing (BAM) has been involved in the development of industrial CT since the 1980s. This paper summarizes the current status of quantitative 3D image analysis techniques based on selected examples. KW - Computed tomography KW - Computertomographie KW - Röntgen-Refraktion KW - X-Ray refraction KW - Schadensanalyse KW - Damage analysis KW - Normung KW - standardization PY - 2020 DO - https://doi.org/10.1515/teme-2019-0125 SN - 0171-8096 SN - 2196-7113 VL - 87 IS - 2 SP - 81 EP - 91 PB - de Gruyter CY - Berlin AN - OPUS4-50337 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Munsch, Sarah Mandy A1 - Strangfeld, Christoph A1 - Kruschwitz, Sabine T1 - Application of 1H proton NMR relaxometry to building materials - A review N2 - Since nuclear magnetic resonance with focus on 1H protons is highly sensitive to pore filling fluids, it is nowadays often applied for the investigation of porous media. Mainly in materials research and especially in the field of non-destructive testing in civil engineering it is increasingly used. Scientific questions about and based on NMR meanwhile cover a broad spectrum. To give an overview, we have reviewed various studies dealing with the determination of moisture contents and parameters such as the pore-size distribution, surface relaxivity, porosity, etc. In some papers, the monitoring of moisture transport in connection with degradation processes or admixtures was the main objective. In other papers, NMR was used for pore space analysis or even applied on site to assess the state of conservation of cultural heritage. Building materials that have been investigated in the presented studies are for example cement, concrete, woods, sandstones etc. In this paper, short descriptions and the significant results of the reviewed articles are summarized and their measurement problems and discrepancies are pointed out. A special feature of this review article is the concise tabular compilation of determined 𝑇1 and 𝑇2 relaxation times, as well as of surface relaxivity values for various materials and components. Finally, relevant aspects are summed up and conclusions about the increasing potential of NMR relaxometry for investigations of porous building materials are drawn, followed by an outlook about future applications and the need for technical development. KW - NMR relaxometry KW - Building materials KW - Natural stones KW - Relaxation times KW - Surface relaxivities KW - Moisture KW - Pore space characterization PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521888 DO - https://doi.org/10.1016/j.jmro.2021.100012 N1 - Geburtsname von Munsch, Sarah Mandy: Nagel, S. M. - Birth name of Munsch, Sarah Mandy: Nagel, S. M. VL - 6-7 SP - 100012 PB - Elsevier Inc. CY - Amsterdam AN - OPUS4-52188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silva, W. A1 - Lopes, R. A1 - Zscherpel, Uwe A1 - Meinel, Dietmar A1 - Ewert, Uwe T1 - X-ray imaging techniques for inspection of composite pipelines N2 - The literature has shown that the application of laminography provides advantages as 3D radiographic imaging with depth information for in house and mobile testing. This permits to distinguish between overlapping indications, measure the extension along radiation direction and classify indications as surface open or subsurface ones as required in critical engineering assessment. This work provides a comparative study and measurements of the three techniques Digital Radiography (DR) with Digital Detector Arrays (DDA), Coplanar Translational Laminography (CTL) and Computed Tomography (CT), applied for composite pipeline inspection. It is demonstrated that CTL and CT provide advantages for the evaluation of pipe-to-pipe connections and the evaluation of adhesive applications. They show indications of discontinuities with higher contrast sensitivity than radiography. Beyond it, two specimen, namely Phantom 1 and Phantom 2, were developed and manufactured by additive manufacturing to analyze the preferential detection sensitivity and the direction of features and depth information for laminographic measurements. Another goal was to show the laminographic capabilities to distinguish between overlapping discontinuities. CTL is especially suitable for mobile inspection. Special glass fiber reinforced polymer samples (GRP) were manufactured for further analysis and comparisons between the abovementioned techniques. Finally, Phantoms 1 and 2 show the capability of laminography to detect overlapping indications and also show that discontinuities oriented perpendicular to the scan direction have the highest contrast sensitivity for laminographic measurements. KW - Digital Radiography KW - Laminography KW - Computed Tomography KW - Composite Pipes KW - Image Quality PY - 2021 DO - https://doi.org/10.1016/j.micron.2021.103033 SN - 0968-4328 VL - 145 SP - 103033 PB - Elsevier Ltd. AN - OPUS4-52415 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Forero-Sandoval, I. A1 - Cervantes-Alvarez, F. A1 - Ramirez-Rincon, J. A1 - Macias, J. A1 - Pech May, Nelson Wilbur A1 - Ordonez-Miranda, J. A1 - Alvarado-Gil, J. T1 - Percolation Threshold of the Thermal, Electrical and Optical Properties of Carbonyl-Iron Microcomposites N2 - Composites made up of microparticles embedded in a polymeric matrix have attracted increasing attention due to the possibility of tailoring their physical properties by adding the adequate quantity of fillers. As the concentration of these fillers increases, their connectivity changes drastically at a given threshold and therefore the electrical, thermal and optical properties of these composites are expected to exhibit a percolation effect. In this work, the thermal and electrical conductivities along with the emissivity of Composites composed of carbonyl-iron microparticles randomly distributed in a polyester resin matrix are measured, for volume fractions ranging from 0 to 0.55. It is shown that both the thermal and electrical conductivities increase with the particles’ concentration, such that their percolation threshold appears at volume fractions of 0.46 and 0.38, respectively. The emissivity, on the other hand, decreases as the fillers’ concentration increases, such that it exhibits a substantial decay at a volume fraction of 0.41. The percolation threshold of the emissivity is thus higher than that of the thermal conductivity, but lower than the electrical conductivity one. This dispersion on the percolation concentration is justified by the different physical mechanisms required to activate the electrical, thermal, and optical responses of the considered composites. The obtained results thus show that the percolation phenomenon can efficiently be used to enhance or reduce the physical properties of particulate composites. KW - Thermal conductivity KW - Emissivity KW - Thermal percolation threshold PY - 2021 DO - https://doi.org/10.1007/s10443-021-09869-z VL - 28 IS - 2 SP - 447 EP - 463 PB - Springer AN - OPUS4-52355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Millar, Steven A1 - Gottlieb, Cassian A1 - Sankat, Nina A1 - Wilsch, Gerd A1 - Kruschwitz, Sabine T1 - Chlorine determination in cement-bound materials with Laser-induced Breakdown Spectroscopy (LIBS) – A review and validation N2 - The determination of chloride is still one of the main tasks for the evaluation of reinforced concrete structures. The corrosion of the reinforcement induced by the penetrating chlorides is the dominant damage process affecting the lifetime of concrete structures. In the recent years different research groups demonstrated that LIBS can be a fast and reliable method to quantify chlorine in cement-bound materials. Because chlorine in concrete can only occur as solved ions in the pore solution or bound in salts or hydrated cement phases, the detected emission of chlorine can be correlated with the chloride concentration determined e.g. with potentiometric titration. This work inter alia describes the production of reference samples and possible side effects during the production process. Due to transport processes in the porous matrix of the cement a misinterpretation of the concentrations is possible. It is shown how to overcome these effects and higher precisions of the single measurements can be realised. Using the calibration method, blank sample method and noise method, three different ways of calculating the limit of detection (LOD) and limit of quantification (LOQ) are compared. Due to the preparation of the reference samples a precision of the whole calibration model of sx0 = 0.023 wt% is determined. The validation of the model is based on different test sets, which are varying in their composition (different Cl-salts, water-to-cement ratios and additives). The determined mean error of the validation is 0.595 ± 0.063 wt%, which is comparable to standardised methods like potentiometric titration, direct potentiometry or photometry (0.40 ± 0.06 wt%) [1]. KW - LIBS KW - Chlorine KW - Cement KW - Calibration KW - Validation PY - 2018 DO - https://doi.org/10.1016/j.sab.2018.05.015 SN - 0584-8547 VL - 147 IS - September SP - 1 EP - 8 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-46558 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Millar, Steven A1 - Kruschwitz, Sabine A1 - Wilsch, Gerd T1 - Determination of total chloride content in cement pastes with laser-induced breakdown spectroscopy (LIBS) N2 - The presented work discusses the accuracy of Laser Induced Breakdown Spectroscopy (LIBS) in determining the total chloride content in cement pastes. LIBS as an emission spectroscopy method is used to detect simultaneously several elements present in cement-based materials. By scanning surfaces the variability in the spatial distribution of elements can be visualised. However, for a quantification of the results, studies are necessary to characterise possible influences due to the wide variation of the chemical compositions in which cement can occur. It is shown how the calibration can be done, how the calibration samples were produced, and which statistical parameters are necessary to describe the precision of the regression. The performance of LIBS is estimated by detecting chloride in validation samples. Therefore, 55 samples and 7 ets with changing mix ompositions were produced. The presented study deals with possible influences of different mix compositions, ncluding different cations of chloride, varying w/c-ratios and the artial replacement of Portland cement with last furnace slag (50% BFS) and limestone (30% LS). Comparing the LIBS results with otentiometric titration, n accuracy of±0.05 wt%/total has been determined. KW - Spectroscopy KW - LIBS KW - Chloride KW - Quantification KW - Cement PY - 2019 DO - https://doi.org/10.1016/j.cemconres.2018.12.001 SN - 0008-8846 VL - 117 IS - March SP - 16 EP - 22 PB - Elsevier CY - Amsterdam AN - OPUS4-47059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhua, L A1 - Ewert, Uwe A1 - Xianga, X. A1 - Pengc, Y. A1 - Wanga, X. T1 - Synchrotron phase-contrast CT to segment the structure boundaries of a TRISO-coated particle N2 - Tri-structural Isotropic (TRISO)-coated particle is the fission energy source and the first safety barrier in high temperature gas-cooled reactors (HTGRs). The integrity of TRISO particle should be carefully tested before operation because the shape may affect the failure possibility of the particles, leading to increased risk of fission product release. Due to the large difference in density between the kernel and the coating layers in TRISO particles, traditional X-ray radiography cannot achieve a good image quality in terms of identifying coating layers reliably, while phase-contrast CThas the advantageof being sensitive to boundaries. This paperpresents a non-destructive test and evaluation (NDT&E) method to facilitate 3-dimensional (3D) measurement of a TRISO particle's structure, using a synchrotron phase-contrast CT. After reconstructed, the TRISO particle was rendered in a 3D space and the thickness and asphericity of the TRISO particle's layers were measured. It was found that the thickness of coating layers of the tested particle obeys Gaussian distribution. The deviation of thicknesses of the kernel and the other four layers is −2.42%, −16.32%, 26.51%, 0.98% and 7.49% compared with the design parameters. The deviation of asphericity of the kernel, IPyC and OPyC layers is −11.51%, −0.41% and 3.39%, respectively. The effect of the deviations on the temperature distribution and failure probability calculation of the particle will be investigated in the future. KW - TRISO KW - 3D visualization KW - 3D particle analysis KW - Three-dimensional measurement PY - 2019 DO - https://doi.org/10.1016/j.ndteint.2019.01.003 VL - 103 SP - 12 EP - 18 PB - Elsevier Ltd. AN - OPUS4-47303 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waske, Anja A1 - Dutta, B. A1 - Teichert, N. A1 - Weise, B. A1 - Shayanfar, N. A1 - Becker, A. A1 - Hütten, A. A1 - Hickel, T. T1 - Coupling Phenomena in Magnetocaloric Materials N2 - Strong coupling effects in magnetocaloric materials are the key factor to achieve a large magnetic entropy change. Combining insights from experiments and ab initio calculations, we review relevant coupling phenomena, including atomic coupling, stress coupling, and magnetostatic coupling. For the investigations on atomic coupling, we have used Heusler compounds as a flexible model system. Stress coupling occurs in first‐order magnetocaloric materials, which exhibit a structural transformation or volume change together with the magnetic transition. Magnetostatic coupling has been experimentally demonstrated in magnetocaloric particles and fragment ensembles. Based on the achieved insights, we have demonstrated that the materials properties can be tailored to achieve optimized magnetocaloric performance for cooling applications. KW - Ab initio calculations KW - Magneto-structural transition KW - Magnetocaloric materials KW - Ferroic cooling KW - Heusler alloys PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-473045 DO - https://doi.org/10.1002/ente.201800163 VL - 6 IS - 8 SP - 1429 EP - 1447 PB - Wiley AN - OPUS4-47304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waske, Anja A1 - Dzekan, D. A1 - Sellschopp, K. A1 - Berger, D., A1 - Stork, A. A1 - Nielsch, K. A1 - Fähler, S. T1 - Energy harvesting near room temperature using a thermomagnetic generator with a pretzel-like magnetic flux topology N2 - To date, there are very few technologies available for the conversion of low-temperature waste heat into electricity. Thermomagnetic generators are one approach proposed more than a century ago. Such devices are based on a cyclic change of magnetization with temperature. This switches a magnetic flux and, according to Faraday’s law, induces a voltage. Here we demonstrate that guiding the magnetic flux with an appropriate topology of the magnetic circuit improves the performance of thermomagnetic generators by orders of magnitude. Through a combination of experiments and simulations, we show that a pretzel-like topology results in a sign reversal of the magnetic flux. This avoids the drawbacks of previous designs, namely, magnetic stray fields, hysteresis and complex geometries of the thermomagnetic material. Our demonstrator, which is based on magnetocaloric plates, illustrates that this solid-state energy conversion technology presents a key step towards becoming competitive with thermoelectrics for energy harvesting near room temperature. KW - Energy harvesting KW - Thermomagnetic generator PY - 2019 DO - https://doi.org/10.1038/s41560-018-0306-x SN - 2058-7546 VL - 4 SP - 68 EP - 74 PB - Nature AN - OPUS4-47305 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Glushko, O. A1 - Funk, A. A1 - Maier-Kiener, A. A1 - Kraker, P. A1 - Krautz, M. A1 - Eckert, J. A1 - Waske, Anja T1 - Mechanical properties of the magnetocaloric intermetallic LaFe11.2Si1.8 alloy at different length scales N2 - In this work the global and local mechanical properties of the magnetocaloric intermetallic LaFe11.2Si1.8 alloy are investigated by a combination of different testing and characterization techniques in order to shed light on the partly contradictory data in recent literature. Macroscale compression tests were performed to illuminate the global fracture behavior and evaluate it statistically. LaFe11.2Si1.8 demonstrates a brittle behavior with fracture strains below 0.6% and widely distributed fracture stresses of 180–620 MPa leading to a Weibull modulus of m = 2 to 6. The local mechanical properties, such as hardness and Young's modulus, of the main and secondary phases are examined by nanoindentation and Vickers microhardness tests. An intrinsic strength of the main magnetocaloric phase of at least 2 GPa is estimated. The significantly lower values obtained by compression tests are attributed to the detrimental effect of pores, microcracks, and secondary phases. Microscopic examination of indentation-induced cracks reveals that ductile α-Fe precipitates act as crack arrestors whereas pre-existing cracks at La-rich precipitates provide numerous ‘weak links’ for the initiation of catastrophic fracture. The presented systematic study extends the understanding of the mechanical reliability of La(Fe, Si)13 alloys by revealing the correlations between the mechanical behavior of macroscopic multi-phase samples and the local mechanical properties of the single phases KW - Nanoindentation KW - Compression test KW - Brittle fracture KW - Mechanical properties KW - Magnetocaloric effect PY - 2019 DO - https://doi.org/10.1016/j.actamat.2018.11.038 SN - 1359-6454 SN - 1873-2453 VL - 165 SP - 40 EP - 50 PB - Elsevier Ltd. AN - OPUS4-47306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ewert, Uwe A1 - Zscherpel, Uwe A1 - Vogel, Justus A1 - Zhang, F. A1 - Long, N.X. A1 - Nguyen, T.P. T1 - Visibility of Image Quality Indicators (IQI) by Human Observers in Digital Radiography in Dependence on Measured MTFs and Noise Power Spectra N2 - Digital radiographic images were analysed to predict the visibility of image quality indicators (IQI), based on normalized noise power spectra (NNPP) and modulation transfer function (MTF) measurements. The fixed pattern noise of some digital detectors result in different noise spectra, which influence the visibility of different IQIs, depending on the hole diameter. Studies, based on measurement of basic spatial resolution and contrast to noise ratio were performed together with presampled MTF measurements and the NNPS in dependence on the spatial frequency. Plate hole IQIs, step hole IQIs, and equivalent penetrameter sensitivity (EPS) IQIs based on ASTM E 746 were measured to verify the influence of the different parameters. Modelling of digital images was used to verify the applied numeric tools. A study has been performed for imaging plates and digital detector arrays to analyse differences. Formulas for the prediction of the visibility functions for hole type IQIs are derived. In consequence the standards for characterization and classification of computed radiography (ASTM E 2446) and radiography with DDAs (ASTM E 2597) need to be revised. T2 - 12th ECNDT 2018 CY - Gothenburg, Sweden DA - 11.06.2018 KW - Image evaluation KW - Computed radiography (CR) KW - Digital Detector Array (DDA) KW - Detail detection PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-473486 UR - www.ndt.net/?id=22967 SN - 1435-4934 VL - 23 IS - 8 SP - 1 EP - 7 PB - NDT.net CY - Kirchwald AN - OPUS4-47348 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiel, Erik A1 - Ziegler, Mathias A1 - Studemund, Taarna T1 - Localization of subsurface defects in uncoated aluminum with structured heating using high-power VCSEL laser arrays N2 - We report on photothermal detection of subsurface defects by coherent superposition of thermal wave fields. This is made possible by structured heating using high-power VCSEL laser arrays whose individual emitter groups can be arbitrarily controlled. In order to locate the defects, we have developed a scanning method based on the continuous wavelet transformation with complex Morlet wavelet using the destructive interference effect of thermal waves. This approach can also be used for thermally very fast and highly reflective materials such as uncoated aluminum. We show that subsurface defects at an aspect ratio of defect width to defect depth down to 1/3 are still detectable in this material. KW - Thermography KW - Heat diffusion KW - Laser thermography KW - Structured heating KW - NDT KW - Subsurface defects KW - Thermal wave KW - VCSEL KW - Wavelet transformation PY - 2019 DO - https://doi.org/10.1007/s10765-018-2478-9 SN - 1572-9567 SN - 0195-928X VL - 40 IS - 2 SP - 17, 1 EP - 13 PB - Springer Science+Business Media, LLC, part of Springer Nature 2019 AN - OPUS4-47208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Jan P. A1 - Krankenhagen, Rainer T1 - Optimizing thermographic testing of thick GFRP plates by assessing the real energy absorbed within the material N2 - Active thermography is a well suited non-destructive testing method for the challenging inspection of wind rotor blades. Since the GFRP structures are up to some centimetres thick, long pulse heating is required to provide an appropriate energy input into the structure. So far, no best practice exists to guarantee a reliable detection of deep-lying flaws. In this work, a step wedge specimen having a maximum thickness of 34mm is systematically investigated by experiment and well-matched simulations to assess the influence of the experimental parameters, like the absorbed energy, on thermal contrasts. Finally, a scheme to conduct full-scale test of a wind rotor blade in less than three hours is proposed. KW - Pulsed thermography KW - Wind rotor blade KW - GFRP PY - 2019 DO - https://doi.org/10.1016/j.compstruct.2019.02.027 SN - 0263-8223 VL - 215 SP - 60 EP - 68 PB - Elsevier CY - Amsterdam AN - OPUS4-47396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waske, Anja A1 - Dutta, B. A1 - Teichert, N. A1 - Weise, B. A1 - Shayanfar, N. A1 - Becker, A. A1 - Hütten, A. A1 - Hickel, T. T1 - Coupling Phenomena in Magnetocaloric Materials N2 - Strong coupling effects in magnetocaloric materials are the key factor to achieve a large magnetic entropy change. Combining insights from experiments and ab initio calculations, we review relevant coupling phenomena, including atomic coupling, stress coupling, and magnetostatic coupling. For the investigations on atomic coupling, we have used Heusler compounds as a flexible model system. Stress coupling occurs in first‐order magnetocaloric materials, which exhibit a structural transformation or volume change together with the magnetic transition. Magnetostatic coupling has been experimentally demonstrated in magnetocaloric particles and fragment ensembles. Based on the achieved insights, we have demonstrated that the materials properties can be tailored to achieve optimized magnetocaloric performance for cooling applications. KW - Epitaxial thin films KW - Coupling KW - Atomic Scale KW - Stoichiometric phases KW - Multilaysers KW - Stress Coupling KW - Surface defects PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-458856 DO - https://doi.org/10.1002/ente.201800163 VL - 6 IS - 8 SP - 1429 EP - 1447 PB - Wiley-VCH AN - OPUS4-45885 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Z. A1 - Kruschwitz, Sabine A1 - Weller, A. A1 - Halisch, M. T1 - Enhanced pore space analysis by use of µ-CT, MIP, NMR, and SIP N2 - We investigate the pore space of rock samples with respect to different petrophysical parameters using various methods, which provide data on pore size distributions, including micro computed tomography (µ-CT), mercury Intrusion porosimetry (MIP), nuclear magnetic resonance (NMR), and spectral-induced polarization (SIP). The resulting cumulative distributions of pore volume as a function of pore size are compared. Considering that the methods differ with regard to their limits of resolution, a multiple-length-scale characterization of the pore space is proposed, that is based on a combination of the results from all of these methods. The approach is demonstrated using samples of Bentheimer and Röttbacher sandstone. Additionally, we compare the potential of SIP to provide a pore size distribution with other commonly used methods (MIP, NMR). The limits of Resolution of SIP depend on the usable frequency range (between 0.002 and 100 Hz). The methods with similar Resolution show a similar behavior of the cumulative pore volume distribution in the verlapping pore size range. We assume that µ-CT and NMR provide the pore body size while MIP and SIP characterize the pore throat size. Our study Shows that a good agreement between the pore radius distributions can only be achieved if the curves are adjusted considering the resolution and pore volume in the relevant range of pore radii. The MIP curve with the widest range in Resolution should be used as reference. KW - Pore space KW - Induced polarization KW - Mercury intrusion porosimetry KW - µ-CT KW - NMR PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-465071 DO - https://doi.org/10.5194/se-9-1225-2018 SN - 1869-9510 SN - 1869-9529 VL - 9 IS - 6 SP - 1225 EP - 1238 PB - Copernicus Publications CY - Göttingen AN - OPUS4-46507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bertovic, Marija T1 - Assessing and Treating Risks in Mechanised NDT: A Human Factors Study N2 - Reliability of NDT is affected by human factors, which have thus far received the least amount of attention in the reliability assessments. With increased use of automation, in terms of mechanised testing (automation-assisted inspection and the corresponding evaluation of data), higher reliability standards are believed to have been achieved. However, human inspectors, and thus human factors, still play an important role throughout this process and the risks involved in this application are unknown. The aim of this study was to explore for the first time the risks associated with mechanised NDT and find ways of mitigating their effects on the inspection performance. Hence, the objectives were to identify and Analyse potential risks in mechanised NDT and devise measures against them. To address those objectives, a risk assessment in form of a Failure Modes and Effects Analysis (FMEA) was conducted. This analysis revealed potential for failure during both the acquisition and evaluation of NDT data that could be assigned to human, technology, and organisation. Since the existing preventive measures were judged to be insufficient to defend the system from identified failures, new preventive measures were suggested. KW - NDT KW - Human factors KW - Risk assessment KW - FMEA KW - Reliability KW - Human error PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-463325 SN - 1616-069X IS - 161 SP - 52 EP - 62 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) CY - Berlin AN - OPUS4-46332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kruschwitz, Sabine A1 - Zhang, Z. A1 - Weller, A. A1 - Nordsiek, S. T1 - Effect of evaporative drying on complex conductivity spectra of sandstones N2 - Dehydration is a common process occurring in natural environments, rocks, and building materials. Suitable methods for monitoring the changing moisture content should be identified. We have investigated the impact of dehydration of sandstones on complex conductivity spectra. Spectral induced polarization measurements were performed on five sandstone samples during evaporative drying. The complex conductivity spectra indicate considerable changes with decreasing saturation. The relationship between conductivity and saturation can be described by a power law known as the second empirical Archie equation. Separate saturation exponents have been determined for the real and imaginary parts of conductivity. The imaginary part of conductivity indicates higher saturation exponents for the investigated sandstones compared to the real part. Obviously, the saturation exponents depend on the method used for changing water saturation. Evaporative drying, which is used in our experiments, causes an increase of pore-water salinity and results in lower saturation exponents for the real part of conductivity but higher exponents for the imaginary part in comparison with the classical imbibition/Drainage technique. We evaluate a theoretical approach that considers the influence of pore water salinity on the saturation exponents of the real and imaginary parts of conductivity. The complex conductivity spectra are processed by a Debye decomposition procedure. The resulting integrating parameters such as direct current resistivity, total chargeability, normalized chargeability, and mean relaxation time indicate a power law dependence on saturation. Our experiments indicate that the imaginary part of conductivity and normalized chargeability have a high sensitivity related to the drying process of rocks and might be suitable indicators to Monitor the changes of moisture content in sandstones. KW - Saturation KW - Spectral induced polarization KW - Sandstones KW - Evaporative drying PY - 2019 DO - https://doi.org/10.1190/GEO2018-0054.1 SN - 0016-8033 VL - 84 IS - 1 SP - MR61 EP - MR72 PB - SEG - Society of Exploration Geophysicists CY - Tulsa, Okla. AN - OPUS4-47499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ou, D. A1 - Schumacher, David A1 - Zscherpel, Uwe A1 - Xiao, Y. T1 - Dual-energy materials characterization methods for laminography image enhancement based on photon counting detector N2 - Laminography is a widely used NDT technique for large flat object which cannot be investigated by traditional computed tomography. However, due to the limited scanning angle of laminography, the reconstructed image has more artifact interference, which seriously affects the reconstructed image quality. Reducing artifacts of the laminography image and enhancing the images have become important research effort. In this paper, we present dual-energy materials characterization methods based on photon counting detectors to reduce artifacts and enhance image for laminography. The photon counting detector used in this study allows the setting of two independent energy thresholds in order to acquire dual-energy images for laminography from a single scan. The dual energy imaging methods of basis material decomposition (BMD) and weighted logarithmic subtraction (WLS) were studied in the paper with respect to laminography image enhancement. A fast decomposition algorithm on laminographic projection domain with approximating the inverse dual-energy equations to calculate the thickness of basic materials was used in the BMD dual-energy imaging methods. The experimental results show that the BMD method can characterize materials and enhance features of the basic material within the laminographic dataset. In the WLS method, a linear operation was applied on dual-energy images reconstruction directly, which can eliminate the attenuation of one specific material in the resultant image by setting an appropriate weighting factor. In our experiments. WLS method was used successfully to eliminate the strong artifacts generated by the special material and enhance the images. Dual-energy materials characterization methods based on photon counting detectors show potential applications in laminography. KW - Photon Counting Detectors KW - Dual Energy Imaging KW - Data Processing KW - X-ray PY - 2019 DO - https://doi.org/10.1088/1748-0221/14/02/P02018 SN - 1748-0221 VL - 14 SP - P02018, 1 EP - 13 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-47573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -