TY - JOUR A1 - Zscherpel, Uwe A1 - Ewert, Uwe T1 - Aktuelle Entwicklungen in der Standardisierung N2 - In den letzten zwei Jahren wurden 11 neue Standards/Standardrevisionen zur RT veröffentlicht (ohne Strahlenschutz) und 5 werden dafür gestrichen. Es wird über die neuen Anforderungen ausgewählter Normen bzw. Normrevisionen informiert und insbesondere auch über die veränderten Parameter, die bei Prüfpraxis und bei der Klassifizierung zu berücksichtigen sind. Das wichtigste Projekt ist die Revision der DIN EN ISO 17636-1, -2, RT von Schweißverbindungen, in ISO TC 44 SC 5 WG 1. Die Standards zur Schweißnahtprüfung in der Kerntechnik, DIN 25435, wurden ins Englische übertragen und bei ISO TC 85 SC 6 bearbeitet. Hauptaktivität bei ASTM ist gegenwärtig die Überarbeitung der CT-Standards und die Berücksichtigung der Anforderungen an das dimensionelle Messen. Der Guide ASTM E 1441 zur Bestimmung von MTF, Kontrast-Detail-Funktion (CDF) und Kontrast-Diskrimination-Diagramm (CDD) wird revidiert. E 2445 zur CR Long Term Stability wird ebenfalls revidiert. Die Revision soll auch in die ISO 16371-1 eingehen. Dazu ist ein Round Robin-Test geplant. Auch die Standards zur Durchstrahlungsprüfung auf Korrosion und Ablagerungen in Rohren mit Röntgen- und Gammastrahlen (EN 16407-1, -2, 2014) wurden revidiert. Diese Revision wurde als DIN EN ISO 20769-1, -2 2018 veröffentlicht und EN 16407 wird zurückgezogen. Die Revision der Standards EN 12543 und EN 12679 zur Messung der Brennfleckgröße und der Strahlergröße ist mit Verzögerung in Überarbeitung, um die digitalen Detektoren und Messmöglichkeiten mit Bildverarbeitungsprogrammen zu berücksichtigen. Ein Entwurf zur Messung der Brennfleckgröße von nano-Fokusröhren wird derzeit vom Europäischen Metrologie-Programm EMPIR gefördert. Zur radiographischen Gussteilprüfung wurde der Standard EN 12681 revidiert und 2018 veröffentlicht. Er wurde um Zulässigkeitsgrenzen erweitert und die digitale Radiographie wurde in Teil 2 berücksichtigt. T2 - 17. Seminar der DGZfP "Aktuelle Fragen der Durchstrahlungsprüfung und des Strahlenschutzes" CY - Kassel, Germany DA - 28.03.2019 KW - Digitale Radiographie KW - Standards KW - Bildqualität KW - Klassifizierung PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505371 UR - https://www.ndt.net/search/docs.php3?id=24807 VL - 24 IS - 12 SP - 1 EP - 5 PB - NDT.net CY - Kirchwald AN - OPUS4-50537 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Studemund, T. T1 - Thermography using a 1D laser array – From planar to structured heating N2 - In the field of optically excited thermography, flash lamps (impulse shaped planar heating) and halogen lamps (modulated planar heating) have become established for the specific regimes of impulse and lock-in thermography. Flying-spot laser thermography is implemented by means of a rasterized focused laser, e. g. for crack detection (continuous wave operation) and photothermal material characterization (high-frequency modulated). The availability of novel technologies, i. e. fast and high-resolution IR cameras, brilliant innovative light sources and high-performance data acquisition and processing technology will enable a paradigm shift from stand-alone photothermal and thermographic techniques to uniform quantitative measurement and testing technology that is faster and more precise. Similar to an LED array, but with irradiance two orders of magnitude higher, a new type of brilliant laser source, i. e. the VCSEL array (vertical-cavity surface-emitting laser), is now available. This novel optical energy source eliminates the strong limitation to the temporal dynamics of established light sources and at the same time is spectrally clearly separated from the detection wavelength. It combines the fast temporal behavior of a diode laser with the high optical irradiance and the wide illumination area of flash lamps. In addition, heating can also be carried out in a structured manner, because individual areas of the VCSEL array can be controlled independently of each other. This new degree of freedom enables the development of completely new thermographic NDT methods. KW - Thermography KW - Laser thermography KW - Laser KW - Lock-in KW - VCSEL KW - Thermal wave KW - Photothermal PY - 2018 UR - https://www.hanser-elibrary.com/doi/abs/10.3139/120.111209 DO - https://doi.org/10.3139/120.111209 SN - 0025-5300 VL - 60 IS - 7-8 SP - 749 EP - 757 PB - Carl Hanser Verlag CY - München AN - OPUS4-45482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ziegler, Mathias A1 - Thiel, Erik T1 - Wenn die Wärme Wellen schlägt N2 - Mit Laserlicht kann man eine Materialoberfläche berührungslos und schnell moduliert aufheizen. Dabei entsteht eine stark gedämpfte Wärmewelle, die tief ins Material eindringen kann. Erzeugt und überlagert man solche thermischen Wellen auf kohärente Weise, dann kann man damit versteckte Materialfehler zerstörungsfrei und sehr präzise aufspüren. Sogar eine bildgebende Tomografie ist denkbar. KW - Thermography KW - Laser thermography KW - Lock-in thermography KW - NDT KW - Thermal waves PY - 2018 DO - https://doi.org/10.1002/piuz.201801512 SN - 0031-9252 VL - 49 IS - 6 SP - 296 EP - 303 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-46630 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zia, Ghezal Ahmad Jan A1 - Hanke, Thomas A1 - Skrotzki, Birgit A1 - Völker, Christoph A1 - Bayerlein, Bernd T1 - Enhancing Reproducibility in Precipitate Analysis: A FAIR Approach with Automated Dark-Field Transmission Electron Microscope Image Processing N2 - AbstractHigh-strength aluminum alloys used in aerospace and automotive applications obtain their strength through precipitation hardening. Achieving the desired mechanical properties requires precise control over the nanometer-sized precipitates. However, the microstructure of these alloys changes over time due to aging, leading to a deterioration in strength. Typically, the size, number, and distribution of precipitates for a quantitative assessment of microstructural changes are determined by manual analysis, which is subjective and time-consuming. In our work, we introduce a progressive and automatable approach that enables a more efficient, objective, and reproducible analysis of precipitates. The method involves several sequential steps using an image repository containing dark-field transmission electron microscopy (DF-TEM) images depicting various aging states of an aluminum alloy. During the process, precipitation contours are generated and quantitatively evaluated, and the results are comprehensibly transferred into semantic data structures. The use and deployment of Jupyter Notebooks, along with the beneficial implementation of Semantic Web technologies, significantly enhances the reproducibility and comparability of the findings. This work serves as an exemplar of FAIR image and research data management. KW - Industrial and Manufacturing Engineering KW - General Materials Science KW - Automated image analysis KW - FAIR research data management KW - Reproducibility KW - microstructural changes PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593905 DO - https://doi.org/10.1007/s40192-023-00331-5 SN - 2193-9772 SP - 1 EP - 15 PB - Springer Science and Business Media LLC CY - Heidelberg AN - OPUS4-59390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhua, L A1 - Ewert, Uwe A1 - Xianga, X. A1 - Pengc, Y. A1 - Wanga, X. T1 - Synchrotron phase-contrast CT to segment the structure boundaries of a TRISO-coated particle N2 - Tri-structural Isotropic (TRISO)-coated particle is the fission energy source and the first safety barrier in high temperature gas-cooled reactors (HTGRs). The integrity of TRISO particle should be carefully tested before operation because the shape may affect the failure possibility of the particles, leading to increased risk of fission product release. Due to the large difference in density between the kernel and the coating layers in TRISO particles, traditional X-ray radiography cannot achieve a good image quality in terms of identifying coating layers reliably, while phase-contrast CThas the advantageof being sensitive to boundaries. This paperpresents a non-destructive test and evaluation (NDT&E) method to facilitate 3-dimensional (3D) measurement of a TRISO particle's structure, using a synchrotron phase-contrast CT. After reconstructed, the TRISO particle was rendered in a 3D space and the thickness and asphericity of the TRISO particle's layers were measured. It was found that the thickness of coating layers of the tested particle obeys Gaussian distribution. The deviation of thicknesses of the kernel and the other four layers is −2.42%, −16.32%, 26.51%, 0.98% and 7.49% compared with the design parameters. The deviation of asphericity of the kernel, IPyC and OPyC layers is −11.51%, −0.41% and 3.39%, respectively. The effect of the deviations on the temperature distribution and failure probability calculation of the particle will be investigated in the future. KW - TRISO KW - 3D visualization KW - 3D particle analysis KW - Three-dimensional measurement PY - 2019 DO - https://doi.org/10.1016/j.ndteint.2019.01.003 VL - 103 SP - 12 EP - 18 PB - Elsevier Ltd. AN - OPUS4-47303 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Z. A1 - Kruschwitz, Sabine A1 - Weller, A. A1 - Halisch, M. T1 - Enhanced pore space analysis by use of µ-CT, MIP, NMR, and SIP N2 - We investigate the pore space of rock samples with respect to different petrophysical parameters using various methods, which provide data on pore size distributions, including micro computed tomography (µ-CT), mercury Intrusion porosimetry (MIP), nuclear magnetic resonance (NMR), and spectral-induced polarization (SIP). The resulting cumulative distributions of pore volume as a function of pore size are compared. Considering that the methods differ with regard to their limits of resolution, a multiple-length-scale characterization of the pore space is proposed, that is based on a combination of the results from all of these methods. The approach is demonstrated using samples of Bentheimer and Röttbacher sandstone. Additionally, we compare the potential of SIP to provide a pore size distribution with other commonly used methods (MIP, NMR). The limits of Resolution of SIP depend on the usable frequency range (between 0.002 and 100 Hz). The methods with similar Resolution show a similar behavior of the cumulative pore volume distribution in the verlapping pore size range. We assume that µ-CT and NMR provide the pore body size while MIP and SIP characterize the pore throat size. Our study Shows that a good agreement between the pore radius distributions can only be achieved if the curves are adjusted considering the resolution and pore volume in the relevant range of pore radii. The MIP curve with the widest range in Resolution should be used as reference. KW - Pore space KW - Induced polarization KW - Mercury intrusion porosimetry KW - µ-CT KW - NMR PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-465071 DO - https://doi.org/10.5194/se-9-1225-2018 SN - 1869-9510 SN - 1869-9529 VL - 9 IS - 6 SP - 1225 EP - 1238 PB - Copernicus Publications CY - Göttingen AN - OPUS4-46507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, R. A1 - Qian, M. A1 - Waske, Anja A1 - Shen, H. A1 - Zhang, X. T1 - Investigating the microstructure and magnetic properties of La-Fe-Si microwires during fabrication and heat treatment process N2 - In this study, the optimized fabrication and evolution of the microstructure and magnetic Transition behavior of the melt-extraction LaFe11.2Si1.8 microwires have been studied. After the optimization of extraction technique (heating power 22 KW, feeding rate 30-50 mm/s, rotation velocity 1700 r/min), the content of La Fe,Si)13 phase in the as-extracted microwires was 54 wt% due to the high solidification velocity, which was increased to 85 wt% via annealing at 1373 K for 20 min. The amount of La(Fe,Si)13 phase was increased and the composition of La(Fe,Si)13 phase became more homogenized through peritectic reaction and short-distance diffusion in the microwires during annealing process. The coexistence of the nanocrystalline and amorphous structures contributed to the broad magnetic Transition temperature range of the as-extracted and annealed microwires. The annealed microwires exhibited a second-order magnetic transformation behavior and showed a maximum magnetic entropy Change jDSMjmax of 6.2 J/kgK and working temperature interval of 36.0 K under a magnetic field of 20 kOe. KW - Magnetocaloric effect KW - Melt-extraction technique KW - La(Fe,Si)13 phase KW - Peritectic reaction KW - Short-distance diffusion PY - 2019 DO - https://doi.org/10.1016/j.jallcom.2019.04.196 SN - 0925-8388 SN - 1873-4669 VL - 794 SP - 153 EP - 162 PB - Elsevier B.V. AN - OPUS4-48095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zaytsev, D. A1 - Funk, Alexander T1 - On the crack evolutional in human dentin under uniaxial compression imaged by high resolution tomography N2 - An observation of the fracture process in front of the crack tip inside a dentin sample by means of ex-situ X-ray computed tomography after uniaxial compression at different deformation values was carried out in this work. This ex-situ approach allowed the microstructure and fracturing process of human dentin to be observed during loading. No cracks are observed up to the middle part of the irreversible deformation in the samples at least visible at 0.4μm resolution. First cracks appeared before the mechanical stress reached the compression strength. The growth of the cracks is realized by connecting the main cracks with satellite cracks that lie ahead of the main crack tip and parallel its trajectory. When under the stress load the deformation in the sample exceeds the deformation at the compression strength of dentin, an appearance of micro-cracks in front of the main cracks is observed. The micro-cracks are inclined (~60°) to the trajectory of the main cracks. The further growth of the main cracks is not realized due to the junction with the micro-cracks; we assume that the micro-cracks dissipate the energy of the main crack and suppressed its growth. These micro-cracks serve as additional stress accommodations, therefore the samples do not break apart after the compression test, as it is usually observed under bending and tension tests. KW - Dentin KW - Crack evolution KW - Compression strength KW - Mechanical properties KW - Microstructure KW - Ex-situ X-ray computed tomography PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594810 DO - https://doi.org/10.18149/MPM.5152023_5 SN - 1605-8119 VL - 51 IS - 5 SP - 38 EP - 51 PB - Advanced Study Center CY - St. Petersburg AN - OPUS4-59481 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waske, Anja A1 - Dzekan, D. A1 - Sellschopp, K. A1 - Berger, D., A1 - Stork, A. A1 - Nielsch, K. A1 - Fähler, S. T1 - Energy harvesting near room temperature using a thermomagnetic generator with a pretzel-like magnetic flux topology N2 - To date, there are very few technologies available for the conversion of low-temperature waste heat into electricity. Thermomagnetic generators are one approach proposed more than a century ago. Such devices are based on a cyclic change of magnetization with temperature. This switches a magnetic flux and, according to Faraday’s law, induces a voltage. Here we demonstrate that guiding the magnetic flux with an appropriate topology of the magnetic circuit improves the performance of thermomagnetic generators by orders of magnitude. Through a combination of experiments and simulations, we show that a pretzel-like topology results in a sign reversal of the magnetic flux. This avoids the drawbacks of previous designs, namely, magnetic stray fields, hysteresis and complex geometries of the thermomagnetic material. Our demonstrator, which is based on magnetocaloric plates, illustrates that this solid-state energy conversion technology presents a key step towards becoming competitive with thermoelectrics for energy harvesting near room temperature. KW - Energy harvesting KW - Thermomagnetic generator PY - 2019 DO - https://doi.org/10.1038/s41560-018-0306-x SN - 2058-7546 VL - 4 SP - 68 EP - 74 PB - Nature AN - OPUS4-47305 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waske, Anja A1 - Dutta, B. A1 - Teichert, N. A1 - Weise, B. A1 - Shayanfar, N. A1 - Becker, A. A1 - Hütten, A. A1 - Hickel, T. T1 - Coupling Phenomena in Magnetocaloric Materials N2 - Strong coupling effects in magnetocaloric materials are the key factor to achieve a large magnetic entropy change. Combining insights from experiments and ab initio calculations, we review relevant coupling phenomena, including atomic coupling, stress coupling, and magnetostatic coupling. For the investigations on atomic coupling, we have used Heusler compounds as a flexible model system. Stress coupling occurs in first‐order magnetocaloric materials, which exhibit a structural transformation or volume change together with the magnetic transition. Magnetostatic coupling has been experimentally demonstrated in magnetocaloric particles and fragment ensembles. Based on the achieved insights, we have demonstrated that the materials properties can be tailored to achieve optimized magnetocaloric performance for cooling applications. KW - Ab initio calculations KW - Magneto-structural transition KW - Magnetocaloric materials KW - Ferroic cooling KW - Heusler alloys PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-473045 DO - https://doi.org/10.1002/ente.201800163 VL - 6 IS - 8 SP - 1429 EP - 1447 PB - Wiley AN - OPUS4-47304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waske, Anja A1 - Dutta, B. A1 - Teichert, N. A1 - Weise, B. A1 - Shayanfar, N. A1 - Becker, A. A1 - Hütten, A. A1 - Hickel, T. T1 - Coupling Phenomena in Magnetocaloric Materials N2 - Strong coupling effects in magnetocaloric materials are the key factor to achieve a large magnetic entropy change. Combining insights from experiments and ab initio calculations, we review relevant coupling phenomena, including atomic coupling, stress coupling, and magnetostatic coupling. For the investigations on atomic coupling, we have used Heusler compounds as a flexible model system. Stress coupling occurs in first‐order magnetocaloric materials, which exhibit a structural transformation or volume change together with the magnetic transition. Magnetostatic coupling has been experimentally demonstrated in magnetocaloric particles and fragment ensembles. Based on the achieved insights, we have demonstrated that the materials properties can be tailored to achieve optimized magnetocaloric performance for cooling applications. KW - Epitaxial thin films KW - Coupling KW - Atomic Scale KW - Stoichiometric phases KW - Multilaysers KW - Stress Coupling KW - Surface defects PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-458856 DO - https://doi.org/10.1002/ente.201800163 VL - 6 IS - 8 SP - 1429 EP - 1447 PB - Wiley-VCH AN - OPUS4-45885 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Christoph A1 - Moreno Torres, Benjami A1 - Zia, Ghezal Ahmad A1 - Rug, Tehseen A1 - Firdous, Rafia A1 - Böhmer, Felix A1 - Stephan, Dietmar A1 - Kruschwitz, Sabine T1 - Presenting SLAMD – A Sequential Learning Based Software for the Inverse Design of Sustainable Cementitious Materials N2 - In recent decades, the number of components in concrete has grown, particularly in formulations aimed at reducing carbon footprints. Innovations include diverse binders, supplementary cementitious materials, activators, concrete admixtures, and recycled aggregates. These developments target not only the enhancement of material properties but also the mitigation of the ecological and economic impacts of concrete — the most extensively used material by humankind. However, these advancements also introduce a greater variability in the composition of raw materials. The material’s behavior is significantly influenced by its nanoscale properties, which can pose challenges in accurate characterization. Consequently, there’s an increasing need for experimental tuning of formulations. This is accompanied by a more inconsistent composition of raw materials, which makes an experimental tuning of formulations more and more necessary. However, the increased complexity in composition presents a challenge in finding the ideal formulation through trial and error. Inverse design (ID) techniques offer a solution to this challenge by allowing for a comprehensive search of the entire design space to create new and improved concrete formulations. In this publication, we introduce the concept of ID and demonstrate how our open-source app “SLAMD” provides all necessary steps of the workflow to adapt it in the laboratory, lowering the application barriers. The intelligent screening process, guided by a predictive model, leads to a more efficient and effective data-driven material design process resulting in reduced carbon footprint and improved material quality while considering socio-economic factors in the materials design. KW - Sustainable concrete KW - Machine learning optimization KW - Inverse design techniques KW - Scientific software KW - Data-driven material design PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589993 DO - https://doi.org/10.17756/nwj.2023-s2-032 VL - 9 SP - 180 EP - 187 AN - OPUS4-58999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Christoph A1 - Moreno Torres, Benjami A1 - Rug, Tehseen A1 - Firdous, Rafia A1 - Zia, Ghezal Ahmad A1 - Lüders, Stefan A1 - Lisdero Scaffino, Horacio A1 - Höpler, Michael A1 - Böhmer, Felix A1 - Pfaff, Matthias A1 - Stephan, Dietmar A1 - Kruschwitz, Sabine T1 - Data driven design of alkali-activated concrete using sequential learning N2 - This paper presents a novel approach for developing sustainable building materials through Sequential Learning. Data sets with a total of 1367 formulations of different types of alkali-activated building materials, including fly ash and blast furnace slag-based concrete and their respective compressive strength and CO2-footprint, were compiled from the literature to develop and evaluate this approach. Utilizing this data, a comprehensive computational study was undertaken to evaluate the efficacy of the proposed material design methodologies, simulating laboratory conditions reflective of real-world scenarios. The results indicate a significant reduction in development time and lower research costs enabled through predictions with machine learning. This work challenges common practices in data-driven materials development for building materials. Our results show, training data required for data-driven design may be much less than commonly suggested. Further, it is more important to establish a practical design framework than to choose more accurate models. This approach can be immediately implemented into practical applications and can be translated into significant advances in sustainable building materials development. KW - Sustainable building materials KW - Sequential learning KW - Data-driven materials design KW - Alkali-activated building materials PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584376 UR - https://www.sciencedirect.com/science/article/pii/S095965262302379X DO - https://doi.org/10.1016/j.jclepro.2023.138221 SN - 0959-6526 SN - 1879-1786 VL - 418 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam AN - OPUS4-58437 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Christoph A1 - Kruschwitz, Sabine A1 - Ebell, Gino T1 - Datengesteuerte Multisensor-Fusion zur Korrosionsprüfung von Stahlbetonbauteilen N2 - Potentialfeldmessung (PM) ist die beliebteste Methode der Zerstörungsfreien Prüfung (ZfP) zur Lokalisierung von aktiver Betonstahlkorrosion. PM wird durch Parameter wie z. B. Feuchtigkeits- und Chloridgradienten im Bauteil beeinflusst, so dass die Sensitivität gegenüber der räumlich sehr begrenzten, aber gefährlichen Lochkorrosion gering ist. Wir zeigen in dieser Studie, wie zusätzliche Messinformationen mit Multisensor-Datenfusion genutzt werden können, um die Detektionsleistung zu verbessern und die Auswertung zu automatisieren. Die Fusion basiert auf überwachtem maschinellen Lernen (ÜML). ÜML sind Methoden, die Zusammenhänge in (Sensor-) Daten anhand vorgegebener Kennzeichnungen (Label) erkennen. Wir verwenden ÜML um „defekt“ und „intakt“ gelabelte Bereiche in einem Multisensordatensatz zu unterscheiden. Unser Datensatz besteht aus 18 Messkampagnen und enthält jeweils PM-, Bodenradar-, Mikrowellen-Feuchte- und Wenner-Widerstandsdaten. Exakte Label für veränderliche Umweltbedingungen wurden in einer Versuchsanordnung bestimmt, bei der eine Stahlbetonplatte im Labor kontrolliert und beschleunigt verwittert. Der Verwitterungsfortschritt wurde kontinuierlich überwacht und die Korrosion gezielt erzeugt. Die Detektionsergebnisse werden quantifiziert und statistisch ausgewertet. Die Datenfusion zeigt gegenüber dem besten Einzelverfahren (PM) eine deutliche Verbesserung. Wir beschreiben die Herausforderungen datengesteuerter Ansätze in der zerstörungsfreien Prüfung und zeigen mögliche Lösungsansätze. T2 - DGZfP Jahrestagung 2018 CY - Leipzig, Germany DA - 07.05.2018 KW - Maschinelles Lernen KW - Datenfusion KW - ZfP KW - Beton KW - Korrosion PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444852 UR - http://www.ndt.net/?id=23106 SN - 1435-4934 VL - 23 IS - 9 SP - 1 EP - 9 PB - NDT.net CY - Kirchwald AN - OPUS4-44485 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Christoph A1 - Kruschwitz, Sabine A1 - Ebell, Gino T1 - A machine learning‑based data fusion approach for improved corrosion testing N2 - This work presents machine learning-inspired data fusion approaches to improve the non-destructive testing of reinforced concrete. The principal effects that are used for data fusion are shown theoretically. Their effectiveness is tested in case studies carried out on largescale concrete specimens with built-in chloride-induced rebar corrosion. The dataset consists of half-cell potential mapping, Wenner resistivity, microwave moisture and ground penetrating radar measurements. Data fusion is based on the logistic Regression algorithm. It learns an optimal linear decision boundary from multivariate labeled training data, to separate intact and defect areas. The training data are generated in an experiment that simulates the entire life cycle of chloride-exposed concrete building parts. The unique possibility to monitor the deterioration, and targeted corrosion initiation, allows data labeling. The results exhibit an improved sensitivity of the data fusion with logistic regression compared to the best individual method half-cell potential. KW - Corrosion KW - Potential mapping KW - Machine learning PY - 2019 DO - https://doi.org/10.1007/s10712-019-09558-4 SN - 1573-0956 SN - 0169-3298 VL - 41 IS - 3 SP - 531 EP - 548 PB - Springer Nature AN - OPUS4-48799 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Christoph A1 - Firdous, R. A1 - Kruschwitz, Sabine A1 - Stephan, D. T1 - Sequential learning to accelerate discovery of alkali-activated binders N2 - Alkali-activated binders (AAB) can provide a clean alternative to conventional cement in terms of CO2 emissions. However, as yet there are no sufficiently accurate material models to effectively predict the AAB properties, thus making optimal mix design highly costly and reducing the attractiveness of such binders. This work adopts sequential learning (SL) in high-dimensional material spaces (consisting of composition and processing data) to find AABs that exhibit desired properties. The SL approach combines machine learning models and feedback from real experiments. For this purpose, 131 data points were collected from different publications. The data sources are described in detail, and the differences between the binders are discussed. The sought-after target property is the compressive strength of the binders after 28 days. The success is benchmarked in terms of the number of experiments required to find materials with the desired strength. The influence of some constraints was systematically analyzed, e.g., the possibility to parallelize the experiments, the influence of the chosen algorithm and the size of the training data set. The results show the advantage of SL, i.e., the amount of data required can potentially be reduced by at least one order of magnitude compared to traditional machine learning models, while at the same time exploiting highly complex information. This brings applications in laboratory practice within reach. KW - Alkali-activated binders KW - Machine learning KW - Sequential learning KW - Materials by design KW - Materials informatics PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531376 DO - https://doi.org/10.1007/s10853-021-06324-z SN - 0022-2461 SN - 1573-4803 VL - 56 SP - 15859 EP - 15881 PB - Springer CY - Dordrecht AN - OPUS4-53137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Valdestilhas, Andre A1 - Bayerlein, Bernd A1 - Moreno Torres, Benjamin A1 - Jan Zia, Ghezal Ahmad A1 - Muth, Thilo T1 - The Intersection Between Semantic Web and Materials Science N2 - The application and benefits of Semantic Web Technologies (SWT) for managing, sharing, and (re-)using of research data are demonstrated in implementations in the field of Materials Science and Engineering (MSE). However, a compilation and classification are needed to fully recognize the scattered published works with its unique added values. Here, the primary use of SWT at the interface with MSE is identified using specifically created categories. This overview highlights promising opportunities for the application of SWT to MSE, such as enhancing the quality of experimental processes, enriching data with contextual information in knowledge graphs, or using ontologies to perform specific queries on semantically structured data. While interdisciplinary work between the two fields is still in its early stages, a great need is identified to facilitate access for nonexperts and develop and provide user-friendly tools and workflows. The full potential of SWT can best be achieved in the long term by the broad acceptance and active participation of the MSE community. In perspective, these technological solutions will advance the field of MSE by making data FAIR. Data-driven approaches will benefit from these data structures and their connections to catalyze knowledge generation in MSE. KW - Linked open data KW - Materials science KW - Ontology KW - Semantic web PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575506 DO - https://doi.org/10.1002/aisy.202300051 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-57550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Oster, Simon A1 - Maierhofer, Christiane A1 - Bruno, Giovanni ED - Czujko, T. ED - Benedetti, M. T1 - Can Potential Defects in LPBF Be Healed from the Laser Exposure of Subsequent Layers? A Quantitative Study N2 - Additive manufacturing (AM) of metals and in particular laser powder bed fusion (LPBF) enables a degree of freedom in design unparalleled by conventional subtractive methods. To ensure that the designed precision is matched by the produced LPBF parts, a full understanding of the interaction between the laser and the feedstock powder is needed. It has been shown that the laser also melts subjacent layers of material underneath. This effect plays a key role when designing small cavities or overhanging structures, because, in these cases, the material underneath is feed-stock powder. In this study, we quantify the extension of the melt pool during laser illumination of powder layers and the defect spatial distribution in a cylindrical specimen. During the LPBF process, several layers were intentionally not exposed to the laser beam at various locations, while the build process was monitored by thermography and optical tomography. The cylinder was finally scanned by X-ray computed tomography (XCT). To correlate the positions of the unmolten layers in the part, a staircase was manufactured around the cylinder for easier registration. The results show that healing among layers occurs if a scan strategy is applied, where the orientation of the hatches is changed for each subsequent layer. They also show that small pores and surface roughness of solidified material below a thick layer of unmolten material (>200 µm) serve as seeding points for larger voids. The orientation of the first two layers fully exposed after a thick layer of unmolten powder shapes the orientation of these voids, created by a lack of fusion. KW - Computed tomography KW - Laser Powder Bed Fusion KW - In situ monitoring KW - infrared Thermography KW - Optical Tomography KW - Additive manufacturing KW - AISI 316L PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528778 DO - https://doi.org/10.3390/met11071012 VL - 11 IS - 7 SP - 1012 PB - MDPI CY - Basel AN - OPUS4-52877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ulbricht, Alexander A1 - Gollwitzer, Christian A1 - Kupsch, Andreas A1 - Léonard, Fabien A1 - Müller, Bernd R. A1 - Oesch, Tyler A1 - Onel, Yener A1 - Thiede, Tobias A1 - Zscherpel, Uwe ED - Puente León, F. ED - Zagar, B. T1 - Moderne Methoden der CT-gestützten Strukturanalyse T1 - Modern techniques of CT based structure analysis N2 - Durch den großflächigen Einsatz der Computertomographie (CT) in unterschiedlichen Industriebereichen steigen auch die Anforderungen an die quantitative Bildanalyse. Subjektive Bildwahrnehmung muss durch objektive Algorithmen ersetzt werden. In diesem Artikel stellt die Bundesanstalt für Materialforschung und -prüfung (BAM), die seit den 1980er Jahren an der Entwicklung der industriellen CT beteiligt ist, anhand ausgewählter Beispiele den aktuellen Stand ihrer Analysemethoden an verschiedenen Anwendungsbeispielen der CT vor. N2 - The increasing use of computed tomography (CT) in various industrial sectors requires more sophisticated techniques of quantitative image analysis. Subjective image perception needs to be replaced by objective algorithms. The German Federal Institute for Materials Research and Testing (BAM) has been involved in the development of industrial CT since the 1980s. This paper summarizes the current status of quantitative 3D image analysis techniques based on selected examples. KW - Computed tomography KW - Computertomographie KW - Röntgen-Refraktion KW - X-Ray refraction KW - Schadensanalyse KW - Damage analysis KW - Normung KW - standardization PY - 2020 DO - https://doi.org/10.1515/teme-2019-0125 SN - 0171-8096 SN - 2196-7113 VL - 87 IS - 2 SP - 81 EP - 91 PB - de Gruyter CY - Berlin AN - OPUS4-50337 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ulbricht, Alexander A1 - Altenburg, Simon A1 - Sprengel, Maximilian A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Fritsch, Tobias A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Evans, Alexander A1 - Hofmann, M. A1 - Bruno, Giovanni T1 - Separation of the Formation Mechanisms of Residual Stresses in LPBF 316L N2 - Rapid cooling rates and steep temperature gradients are characteristic of additively manufactured parts and important factors for the residual stress formation. This study examined the influence of heat accumulation on the distribution of residual stress in two prisms produced by Laser Powder Bed Fusion (LPBF) of austenitic stainless steel 316L. The layers of the prisms were exposed using two different border fill scan strategies: one scanned from the centre to the perimeter and the other from the perimeter to the centre. The goal was to reveal the effect of different heat inputs on samples featuring the same solidification shrinkage. Residual stress was characterised in one plane perpendicular to the building direction at the mid height using Neutron and Lab X-ray diffraction. Thermography data obtained during the build process were analysed in order to correlate the cooling rates and apparent surface temperatures with the residual stress results. Optical microscopy and micro computed tomography were used to correlate defect populations with the residual stress distribution. The two scanning strategies led to residual stress distributions that were typical for additively manufactured components: compressive stresses in the bulk and tensile stresses at the surface. However, due to the different heat accumulation, the maximum residual stress levels differed. We concluded that solidification shrinkage plays a major role in determining the shape of the residual stress distribution, while the temperature gradient mechanism appears to determine the magnitude of peak residual stresses. KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - LPBF KW - AISI 316L KW - Online Process Monitoring KW - Thermography KW - Residual Stress KW - Neutron Diffraction KW - X-ray Diffraction KW - Computed Tomography PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512903 DO - https://doi.org/10.3390/met10091234 VL - 10 IS - 9 PB - MDPI CY - Basel AN - OPUS4-51290 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tran, T. A1 - Kodisch, C. A1 - Schöttle, M. A1 - Pech May, Nelson Wilbur A1 - Retsch, M. T1 - Characterizing the thermal diffusivity of single, micrometer-sized fibers via high-resolution lock-in thermography N2 - Many advanced materials consist of fibers. They are used as nonwovens, fabrics, or in composite materials. Characterization of individual fibers allows us to predict resulting material properties. We present a measurement setup and analysis software to characterize individual, micrometer-sized fibers fast and reliably. The setup is based on the lock-in thermography principle. Thermal diffusivity values of seven reference samples agree very well with previously reported values. We use our setup to investigate critical measurement parameters like excitation frequency, excitation power, pixel size, and fiber orientation. Our results show that fibers with subpixel diameters can be measured even if they are not aligned. However, special care has to be taken to choose an adequate excitation power. Measurements at high intensities can underestimate thermal diffusivity even though the raw data looks reasonable. By automatically measuring at different excitation powers, our setup solves this issue. KW - Surfaces, coatings and films KW - Physical and theoretical chemistry KW - General energy KW - Electronic, optical and magnetic materials PY - 2022 DO - https://doi.org/10.1021/acs.jpcc.2c04254 SN - 1932-7455 VL - 126 IS - 32 SP - 14003 EP - 14010 PB - American Chemical Society (ACS) CY - Washington, DC AN - OPUS4-58128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Torres, Benjamin Moreno A1 - Völker, Christoph A1 - Firdous, Rafia T1 - Concreting a sustainable future: A dataset of alkali-activated concrete and its properties N2 - This data article introduces a dataset comprising 1630 alkali-activated concrete (AAC) mixes, compiled from 106 literature sources. The dataset underwent extensive curation to address feature redundancy, transcription errors, and duplicate data, yielding refined data ready for further data-driven science in the field of AAC, where this effort constitutes a novelty. The carbon footprint associated with each material used in the AAC mixes, as well as the corresponding CO2 footprint of every mix, were approximated using two published articles. Serving as a foundation for future expansions and rigorous data applications, this dataset enables the characterization of AAC properties through machine learning algorithms or as a benchmark for performance comparison among different formulations. In summary, the dataset provides a resource for researchers focusing on AAC and related materials and offers insights into the environmental benefits of substituting traditional Portland concrete with AAC. KW - Multidisciplinary KW - Data Set KW - Alkali Activated Concrete KW - Data driven design PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589974 DO - https://doi.org/10.1016/j.dib.2023.109525 SN - 2352-3409 VL - 50 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-58997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thummerer, G. A1 - Mayr, G. A1 - Hirsch, Philipp Daniel A1 - Ziegler, Mathias A1 - Burgholzer, P. T1 - Photothermal Image Reconstruction in Opaque Media with Virtual Wave Backpropagation N2 - Thermographic reconstruction of defects that lie in the bulk of a sample is a difficult task because entropy production during heat diffusion leads to information loss. To reconstruct defects one has to solve an inverse heat conduction problem. The quality of the reconstruction is closely related to the information content of the observed data set that is reflected by the decreasing ability to spatially resolve a defect with growing defect depth. In this work we show a 2D reconstruction of rectangular slots with different width-to-depth ratios in a metallic sample. For this purpose, we apply the virtual wave concept and incorporate positivity and sparsity as prior information to overcome the diffusion-based information loss partially. The reconstruction is based on simulated and experimental pulse thermography data. In the first reconstruction step, we compute a virtual wave field from the surface temperature data. This allows us, in the second step, to use ultrasonic backpropagation methods for image reconstruction. KW - Virtual wave concept KW - Thermography KW - Photothermal Technique KW - Image reconstruction PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506166 DO - https://doi.org/10.1016/j.ndteint.2020.102239 VL - 112 SP - 102239 PB - Elsevier Ltd. CY - Netherlands AN - OPUS4-50616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiel, Erik A1 - Ziegler, Mathias A1 - Studemund, Taarna T1 - Localization of subsurface defects in uncoated aluminum with structured heating using high-power VCSEL laser arrays N2 - We report on photothermal detection of subsurface defects by coherent superposition of thermal wave fields. This is made possible by structured heating using high-power VCSEL laser arrays whose individual emitter groups can be arbitrarily controlled. In order to locate the defects, we have developed a scanning method based on the continuous wavelet transformation with complex Morlet wavelet using the destructive interference effect of thermal waves. This approach can also be used for thermally very fast and highly reflective materials such as uncoated aluminum. We show that subsurface defects at an aspect ratio of defect width to defect depth down to 1/3 are still detectable in this material. KW - Thermography KW - Heat diffusion KW - Laser thermography KW - Structured heating KW - NDT KW - Subsurface defects KW - Thermal wave KW - VCSEL KW - Wavelet transformation PY - 2019 DO - https://doi.org/10.1007/s10765-018-2478-9 SN - 1572-9567 SN - 0195-928X VL - 40 IS - 2 SP - 17, 1 EP - 13 PB - Springer Science+Business Media, LLC, part of Springer Nature 2019 AN - OPUS4-47208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tang, Chi-Long A1 - Seeger, Stefan A1 - Röllig, Mathias T1 - Improving the comparability of FFF-3D printing emission data by adjustment of the set extruder temperature N2 - Fused filament fabrication (FFF) is a material extrusion-based technique often used in desktop 3D printers. Polymeric filaments are melted and are extruded through a heated nozzle to form a 3D object in layers. The extruder temperature is therefore a key parameter for a successful print job but also one of the main emission driving factors as harmful pollutants (e.g., ultrafine particles) are formed by thermal polymer degradation. The awareness of potential health risks has increased the number of emission studies in the past years. However, studies usually refer their calculated emission data to the printer set extruder temperature for comparison purposes. In this study, we used a thermocouple and an infrared camera to measure the actual extruder temperature and found significant temperature deviations to the displayed set temperature among printer models. Our result shows that printing the same filament feedstocks with three different printer models and with identical printer set temperature resulted in a variation in particle emission of around two orders of magnitude. A temperature adjustment has reduced the variation to approx. one order of magnitude. Thus, it is necessary to refer the measured emission data to the actual extruder temperature as it poses a more accurate comparison parameter for evaluation of the indoor air quality in user scenarios or for health risk assessments. KW - Ultrafine particles KW - Infrared thermography KW - Thermocouple KW - Indoor air quality KW - FFF-3D printer PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572842 DO - https://doi.org/10.1016/j.aeaoa.2023.100217 VL - 18 SP - 100217 PB - Elsevier Ltd. CY - Amsterdam, Niederlande AN - OPUS4-57284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sprengel, Maximilian A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Evans, Alexander A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Pirling, T. A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Triaxial Residual Stress in Laser Powder Bed Fused 316L: Effects of Interlayer Time and Scanning Velocity N2 - The triaxial distribution of the residual stress in laser powder bed fused austenitic steel 316L was determined by X-ray and neutron diffraction. The residual stress analysis results were linked to the thermal history of the specimens, which were manufactured with varying inter-layer-times and scanning velocities. A clear link between the in-process temperature of the specimens and the residual stress was found, based on in-situ monitoring data. KW - Stainless Steel KW - AGIL KW - Residual Stress KW - X-ray and Neutron Diffraction KW - Additive Manufacturing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542620 DO - https://doi.org/10.1002/adem.202101330 SP - 1 EP - 13 PB - Wiley-VCH GmbH AN - OPUS4-54262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Singh, S. A1 - Palani, I. A. A1 - Paul, C. P. A1 - Funk, Alexander A1 - Gokuldoss, P. K. T1 - Wire Arc Additive Manufacturing of NiTi 4D Structures: Influence of Interlayer Delay N2 - Shape memory alloy structures for actuator and vibration damper applications may be manufactured using wire arc additive manufacturing (W AAM), which is one of the additive manufacturing technologies. Multilayer deposition causes heat accumulation during W AAM, which rises the preheat temperature of the previously created layer. This leads to process instabilities, which result in deviations from the desired dimensions and mechanical properties changes. During W AAM deposition of the wall structure, a systematic research is carried out by adjusting the interlayer delay from 10 to 30 s. When the delay period is increased from 10 to 30 s, the breadth decreases by 45% and the height increases by 33%. Grain refinement occurs when the interlayer delay duration is increased, resulting in better hardness, phase transformation temperature, compressive strength, and shape recovery behavior. This study shows how the interlayer delay affects the behavior of W AAM-built nickel-titanium alloy (NiTi) structures in a variety of applications. KW - Wire are additive manufacturing KW - Shape memory alloy KW - Nitinol KW - Interlayer delay PY - 2022 DO - https://doi.org/10.1089/3dp.2021.0296 SN - 2329-7662 SP - 1 EP - 11 PB - Liebert CY - New Rochelle, NY AN - OPUS4-55795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silva, W. A1 - Zscherpel, Uwe A1 - Ewert, U. A1 - Lopes, R. T1 - Analysis of angular dependent spatial frequency response of Digital Coplanar Translational Laminography N2 - Digital Coplanar Translational Laminography (CTL) is a radiographic imaging technique that permits the visualization of structural details and discontinuities in the object of interest after 3D reconstruction from multiple projections. This technique becomes quite competitive regarding to computed tomography in situations of arrangements in which no complete rotation of the X-ray source - detector system around the object of interest is accessible or in cases where the part to be inspected has a high geometric asymmetry. The literature does not show many studies about image quality for different laminographic reconstructions and scan geometries. Different methodologies for measuring the Modulation Transfer Function (MTF) as a key image quality parameter for the aforementioned technique are applied. The MTF was measured using different approaches, presampled MTF or sampled MTF, both based on the Fourier Transform-Magnitude Spectrum or the square wave MTF using line pattern gauges. A sample known as Siemens Star with a converging line pattern was used to measure the circular square wave MTF. This circular MTF provides information on the direction dependent contrast transfer related to the measurement conditions, the reconstruction algorithms and the translational scan direction. For this purpose, several MTF measurements were performed in multiple angular directions. Beyond it, reconstructions were performed using different algorithms (Filtered Shifted Average) and an iterative one (MART – Multiplicative Algebraic Reconstruction Technique). Image quality analysis were done for both reconstruction methods. MART showed an image quality improvement for challenging conditions for laminographic arrangements, such as for a low number of projections (down to 25 for this study, considered as limited view, limited angle reconstruction). Additionally, a Gadolinium gauge with parallel line patterns within a range from 10 μm to 1000 μm was used to compare the square wave MTF with the sine MTFs, measured by the different techniques mentioned above. The results show that the MTF techniques presented are equivalent in this study. The results obtained for this Gadolinium plate showed a good agreement between MTF10% and SRb image measurements. The methodology presented here is used for the characterization of the frequency dependent spatial resolution of measurements obtained from different laminographic reconstruction techniques and scan geometries. Finally, from the acquisitions and reconstructions obtained with the Siemens Star, cross laminographic images were calculated in order to improve the direction dependent sensitivity. The results showed a better detectability for cross laminographic images in comparison to unidirectional coplanar translational laminographic images covering dead zones. KW - Laminography KW - Image quality KW - Modulation transfer function KW - Cross laminography KW - Reconstruction algorithms PY - 2021 DO - https://doi.org/10.1016/j.ndteint.2021.102546 SN - 0963-8695 VL - 124 SP - 1 EP - 13 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-53845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silva, W. A1 - Lopes, R. A1 - Zscherpel, Uwe A1 - Meinel, Dietmar A1 - Ewert, Uwe T1 - X-ray imaging techniques for inspection of composite pipelines N2 - The literature has shown that the application of laminography provides advantages as 3D radiographic imaging with depth information for in house and mobile testing. This permits to distinguish between overlapping indications, measure the extension along radiation direction and classify indications as surface open or subsurface ones as required in critical engineering assessment. This work provides a comparative study and measurements of the three techniques Digital Radiography (DR) with Digital Detector Arrays (DDA), Coplanar Translational Laminography (CTL) and Computed Tomography (CT), applied for composite pipeline inspection. It is demonstrated that CTL and CT provide advantages for the evaluation of pipe-to-pipe connections and the evaluation of adhesive applications. They show indications of discontinuities with higher contrast sensitivity than radiography. Beyond it, two specimen, namely Phantom 1 and Phantom 2, were developed and manufactured by additive manufacturing to analyze the preferential detection sensitivity and the direction of features and depth information for laminographic measurements. Another goal was to show the laminographic capabilities to distinguish between overlapping discontinuities. CTL is especially suitable for mobile inspection. Special glass fiber reinforced polymer samples (GRP) were manufactured for further analysis and comparisons between the abovementioned techniques. Finally, Phantoms 1 and 2 show the capability of laminography to detect overlapping indications and also show that discontinuities oriented perpendicular to the scan direction have the highest contrast sensitivity for laminographic measurements. KW - Digital Radiography KW - Laminography KW - Computed Tomography KW - Composite Pipes KW - Image Quality PY - 2021 DO - https://doi.org/10.1016/j.micron.2021.103033 SN - 0968-4328 VL - 145 SP - 103033 PB - Elsevier Ltd. AN - OPUS4-52415 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schumacher, David A1 - Sharma, R. A1 - Grager, J.-C. A1 - Schrapp, M. T1 - Scatter and beam hardening reduction in industrial computed tomography using photon counting detectors N2 - Photon counting detectors (PCD) offer new possibilities for x-ray micro computed tomography (CT) in the field of non-destructive testing. For large and/or dense objects with high atomic numbers the problem of scattered radiation and beam hardening severely influences the image quality. This work shows that using an energy discriminating PCD based on CdTe allows to address these problems by intrinsically reducing both the influence of scattering and beam hardening. Based on 2D-radiographic measurements it is shown that by energy thresholding the influence of scattered radiation can be reduced by up to in case of a PCD compared to a conventional energy-integrating detector (EID). To demonstrate the capabilities of a PCD in reducing beam hardening, cupping artefacts are analyzed quantitatively. The PCD results show that the higher the energy threshold is set, the lower the cupping effect emerges. But since numerous beam hardening correction algorithms exist, the results of the PCD are compared to EID results corrected by common techniques. Nevertheless, the highest energy thresholds yield lower cupping artefacts than any of the applied correction algorithms. As an example of a potential industrial CT application, a turbine blade is investigated by CT. The inner structure of the turbine blade allows for comparing the image quality between PCD and EID in terms of absolute contrast, as well as normalized signal-to-noise and contrast-to-noise ratio. Where the absolute contrast can be improved by raising the energy thresholds of the PCD, it is found that due to lower statistics the normalized contrast-to-noise-ratio could not be improved compared to the EID. These results might change to the contrary when discarding pre-filtering of the x-ray spectra and thus allowing more low-energy photons to reach the detectors. Despite still being in the early phase in technological progress, PCDs already allow to improve CT image quality compared to conventional detectors in terms of scatter and beam hardening reduction. KW - X-ray computed tomography KW - Photon counting detector KW - CdTe sensor KW - Non-destructive testing KW - Beam hardening KW - Scattered radiation PY - 2018 UR - http://iopscience.iop.org/article/10.1088/1361-6501/aabef7/meta DO - https://doi.org/10.1088/1361-6501/aabef7 SN - 1361-6501 VL - 29 IS - 7 SP - 075101, 1 EP - 12 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-44959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Pignatelli, Giuseppe A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gornushkin, Igor B. A1 - Gumenyuk, Andrey T1 - Vergleich der Messungen der Schmelzbadtemperatur bei der Additiven Fertigung von Metallen mittels IR-Spektroskopie und Thermografie T1 - Comparison of measurements of the melt pool temperature during the additive production of metals by means of IR spectroscopy and thermography N2 - Im Rahmen des Themenfeldprojektes „Process Monitoring of AM“ (ProMoAM) evaluiert die Bundesanstalt für Materialforschung und -Prüfung (BAM) gegenwärtig die Anwendbarkeit verschiedenster ZfP-Verfahren zur in-situ Prozessüberwachung in der additiven Fertigung (AM) von Metallen in Hinblick auf die Qualitätssicherung. Einige der wichtigsten Messgrößen sind hierbei die Temperatur des Schmelzbades und die Abkühlrate, welche starken Einfluss auf das Gefüge und die Eigenspannung haben. Aufgrund der Zugänglichkeit zum Werkstück während des Bauprozesses bieten sich optische Verfahren zu Temperaturbestimmung an. Hierbei stellen jedoch u. a. die hohe Bandbreite der zu messenden Temperaturen, die Bestimmung der Emissivität und ihre Änderung bei Phasenübergängen der verwendeten Legierung große experimentelle Herausforderungen dar. Eine weitere Herausforderung stellt für die IR-Spektroskopie die Absorption durch das Schutzgas und weitere optische Elemente dar. Um diese auch in einem industriellen Umfeld kompensieren zu können, wurde eine Methode entwickelt, die das gemessene Spektrum bei der Verfestigung des Werkstoffes als Referenz nutzt. In diesem Beitrag wird die Anwendung dieser Methode für die IR-Spektrometrie als auch Thermografische Messungen beim Laser-Pulver-Auftragschweißen von 316L gezeigt, wobei beide Methoden weiterhin in Hinblick auf ihre individuellen Vor- und Nachteile miteinander verglichen werden. N2 - Within the topic area project “Process Monitoring of AM” (ProMoAM) the Federal Institute for Materials Research and Testing is currently evaluating the applicability of various NDT methods for in-situ process Monitoring in the additive manufacturing (AM) of metals with regard to quality assurance. Two of the most important variables to measure are the temperature of the molten pool and the cooling rate, which have a strong influence on the microstructure and the residual stress. Due to the accessibility of the workpiece during the construction process, optical methods for temperature determination are suitable. However, the wide range of temperatures to be measured, the determination of emissivity and its change during phase transitions of the alloy pose great experimental challenges. Another challenge for IR spectroscopy is the absorption by the inert gas and other optical elements. In order to be able to compensate for this in an industrial environment, a method was developed which uses the measured spectrum as a reference when the material is solidified. This paper shows the application of this method for IR spectrometry as well as thermographic measurements during laser powder cladding of 316L. Furthermore both methods are compared with respect to their individual Advantages and disadvantages. KW - Laser-Pulver-Auftragschweißen KW - Thermografie KW - Direct Energy Deposition KW - IR-Spektroskopie KW - Additive Fertigung KW - Laser metal deposition KW - Thermography KW - IR-spectroscopy KW - Additive manufacturing PY - 2021 DO - https://doi.org/10.1515/teme-2021-0056 VL - 88 IS - 10 SP - 626 EP - 632 PB - De Gruyter CY - Oldenburg AN - OPUS4-52987 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schade, U. A1 - Dawei, C. A1 - Puskar, L. A1 - Ritter, E. A1 - Beckmann, Jörg T1 - Removal of Etalon Features in the Far-Infrared–Terahertz Transmittance Spectra of Thin Polymer Films N2 - Etalon features in infrared spectra of stratified samples, their influence on the interpretation and methods to circumvent their presence in infrared spectra have been in discussion for decades. This paper focuses on the application of a method originally developed to remove interference fringes in the mid-infrared spectra for far-infrared Fourier transform spectroscopy on thin polymer films. We show that the total transmittance-reflectance technique, commonly used for mid-infrared, also works successfully in the far infrared spectral range where other approaches fail. Experimental spectra obtained by such technique are supported by model calculations and reveal the possibility and limits to obtain almost undisturbed far-infrared spectra which are suitable to determine low energy vibrations of ionomer salts under certain sample conditions. KW - Far-infrared spectroscopy KW - Absorption KW - Etalon feature KW - Total transmittance reflectance PY - 2020 DO - https://doi.org/10.1177/0003702820922295 VL - 74 IS - 12 SP - 1530 EP - 1539 PB - Sage journals AN - OPUS4-51367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Puthiyaveettil, N. A1 - Thomas, K. R. A1 - Myrach, Philipp A1 - Ziegler, Mathias A1 - Rajagopal, P. A1 - Balasubramaniamam, K. T1 - Defect detection in steel bars up to 600 °C using laser line thermography N2 - Crack detection in steel bars at high surface temperatures is a critical problem in any manufacturing industry. Surface breaking cracks are the major problems during the billet casting. Many NDT techniques are proven its capability in crack detection at room temperature. Here, we are demonstrating the possibility of exposure of cracks using laser line thermography at higher surface temperatures (up to 600 °C). A continuous-wave (CW) laser is used to excite the sample kept at higher surface temperatures. The temperature distribution over the sample due to the laser line scanning is captured using a temperature calibrated infrared (IR) thermal camera. The response of the sample temperature in crack detection is investigated using a validated FE model. The impact of the oxide layer in crack detection is investigated by using two types of samples; one without any oxide layer and the second is with the oxide layer. The influence of laser power in the detection of defects at high temperatures is studied. 3D numerical models were developed for the cases; when the sample is with oxide layer and without any oxide layer for a better understanding of physics. The surface temperature rise due to laser heating is higher for the scaled sample compared to the no-scale sample. The presence of the oxide layer above the parent metal will reduce the reflectivity of the surface. Lower reflectivity will lead to increased absorption of incident energy so that the surface temperature rise will be higher than the surface with no scale. Thermal contrast linearly depends on laser power, which means higher laser power will increase the defect detectability even at a higher surface temperature. KW - Laser thermography KW - High temperature KW - Modeling KW - Surface cracks KW - Non-destructive testing PY - 2020 DO - https://doi.org/10.1016/j.infrared.2020.103565 SN - 1350-4495 VL - 111 SP - 103565 PB - Elsevier B.V. AN - OPUS4-51573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Puthiyaveettil, N. A1 - Thomas K, R. A1 - Unnikrishnakurup, S. A1 - Myrach, Philipp A1 - Ziegler, Mathias A1 - Balasubramaniam, K. T1 - Laser line scanning thermography for surface breaking crack detection modeling and experimental study N2 - Crack detection in metallic samples at high surface temperature, hostile and hazardous environments, etc. is challenging situation in any manufacturing industries. Most of the present NDE methods are suitable only for lower surface temperatures, especially room temperature. In this situation, we need a fast and non-contact NDT method which can be applied even in high sample surface temperature. Laser thermography is one of the techniques having a high potential in non-contact inspection. As a preliminary investigation, in this article, we have studied the potentiality of laser line thermography in crack detection at room temperature. In laser line thermography, a continuous wave (CW) laser is used to generate a laser line, which in turn is used to scan the metal surface. The heat distribution over the sample surface is recorded by an infrared thermal (IR) camera. Two different approaches are reported in this work. Firstly, a stationary laser line source and its interaction with cracks; secondly, moving laser line source scanning over a surface with crack. When the distance between crack centre to laser line centre increases, crack detectability will decrease; and when laser power increases, crack detectability will increase. A dedicated image processing algorithm was developed to improve the detectability of the cracks. To understand the heat transfer phenomenon, a simplified 3D model for laser thermography was developed for the heat distribution during laser heating and was validated with experimental results. Defects were incorporated as a thermally thin resistive layer (TTRL) in numerical modeling, and the effect of TTRL in heat conduction is compared with experimental results. KW - Thermography KW - Laser Thermography KW - Cracks KW - FEM KW - NDT PY - 2019 DO - https://doi.org/10.1016/j.infrared.2019.103141 VL - 104 SP - 103141 PB - Elsevier B.V. AN - OPUS4-49941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Plarre, Rüdiger A1 - Zocca, Andrea A1 - Spitzer, Andrea A1 - Benemann, Sigrid A1 - Gorbushina, Anna A1 - Li, Y. A1 - Waske, Anja A1 - Funk, Alexander A1 - Wilgig, Janka A1 - Günster, Jens T1 - Searching for biological feedstock material: 3D printing of wood particles from house borer and drywood termite frass N2 - Frass (fine powdery refuse or fragile perforated wood produced by the activity of boring insects) of larvae of the European house borer (EHB) and of drywood termites was tested as a natural and novel feedstock for 3D-printing of wood-based materials. Small particles produced by the drywood termite Incisitermes marginipennis and the EHB Hylotrupes bajulus during feeding in construction timber, were used. Frass is a powdery material of particularly consistent quality that is essentially biologically processed wood mixed with debris of wood and faeces. The filigree-like particles flow easily permitting the build-up of woodbased structures in a layer wise fashion using the Binder Jetting printing process. The Quality of powders produced by different insect species was compared along with the processing steps and properties of the printed parts. Drywood termite frass with a Hausner Ratio HR = 1.1 with ρBulk = 0.67 g/cm3 and ρTap = 0.74 g/cm3 was perfectly suited to deposition of uniformly packed layers in 3D printing. We suggest that a variety of naturally available feedstocks could be used in environmentally responsible approaches to scientific material sciences/additive manufacturing. KW - 3D printing KW - X-ray tomographic KW - SEM micrography KW - Drywood termite PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521517 DO - https://doi.org/10.1371/journal.pone.0246511 VL - 16 IS - 2 SP - e0246511 AN - OPUS4-52151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pech May, Nelson Wilbur A1 - Ziegler, Mathias T1 - Detection of surface breaking cracks using flying line laser thermography: A Canny-based algorithm N2 - In this work, we introduce a new algorithm for effectual crack detection using flying line laser thermography, based on the well-known Canny approach. The algorithm transforms the input thermographic sequence into an edge map. Experimental measurements are performed on a metallic component that contains surface breaking cracks due to industrial use. The specimen is tested using flying line thermography at different scanning speeds and laser input powers. Results obtained with the proposed algorithm are additionally compared with a previously established algorithm for flying spot thermography. The proposed Canny-based algorithm can be used in automated systems for thermographic non-destructive testing. T2 - Advanced Infrared Technology and Applications 2021 CY - Online meeting DA - 26.10.2021 KW - Canny approach KW - Flying line thermography KW - Crack detection PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539628 DO - https://doi.org/10.3390/engproc2021008022 SN - 2673-4591 VL - 8 IS - 1 SP - 1 EP - 4 PB - MDPI CY - Basel AN - OPUS4-53962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pech May, Nelson Wilbur A1 - Tabasco-Novelo, Carolina A1 - Quintana, Patricia A1 - Rodriguez-Gattorno, Geonel A1 - Alvarado-Gil, Juan J. T1 - Evidence of a Thermal Diffusivity Gap in Sintered Li–Co–Sb–O Solid Solutions N2 - In this work, the thermal properties of ternary Li₃ₓCo₇₋₄ₓSb₂₊ₓO₁₂ solid solutions are studied for different concentrations in the range 0 ≤ x ≤ 0.7. Samples are elaborated at four different sintering temperatures: 1100, 1150, 1200 and 1250 °C. The effect of increasing the content of Li⁺ and Sb⁵⁺, accompanied by the reduction of Co²⁺, on the thermal properties is studied. It is shown that a thermal diffusivity gap, which is more pronounced for low values of x, can be triggered at a certain threshold sintering temperature (around 1150 °C in this study). This effect is explained by the increase of contact area between adjacent grains. Nevertheless, this effect is found to be less pronounced in the thermal conductivity. Moreover, a new framework for heat diffusion in solids is presented that establishes that both the heat flux and the thermal energy (or heat) satisfy a diffusion equation and therefore highlights the importance of thermal diffusivity in transient heat conduction phenomena. KW - General Chemical Engineering KW - General Chemistry PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593248 DO - https://doi.org/10.1021/acsomega.2c07557 SN - 2470-1343 VL - 8 IS - 8 SP - 7808 EP - 7815 PB - American Chemical Society (ACS) CY - Washington, DC AN - OPUS4-59324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pech May, Nelson Wilbur A1 - Lauster, T. A1 - Retsch, M. T1 - Design of Multimodal Absorption in the Mid-IR: A Metal Dielectric Metal Approach N2 - Specific control on the mid-infrared (mid-IR) Emission properties is attracting increasing attention for thermal camouflage and passive cooling applications. Metal−dielectric−metal (MDM) structures are well known to support strong magnetic polariton resonances in the optical and near-infrared range. We extend the current understanding of such an MDM structure by specifically designing Au disc arrays on top of ZnS−Au−Si substrates and pushing their resonances to the mid-IR regime. Therefore, we combine fabrication via lift-off photolithography with the finite element method and an inductance−capacitance model. With this combination of techniques, we demonstrate that the magnetic polariton resonance of the first order strongly depends on the individual disc diameter. Furthermore, the fabrication of multiple discs within one unit cell allows a linear combination of the fundamental resonances to conceive broadband absorptance. Quite importantly, even in mixed resonator cases, the absorptance spectra can be fully described by a superposition of the individual disc properties. Our contribution provides rational guidance to deterministically design mid-IR emitting materials with specific narrow- or broadband properties. KW - Mid-IR absorption KW - Thermal emission PY - 2021 DO - https://doi.org/10.1021/acsami.0c18160 VL - 13 IS - 1 SP - 1921 EP - 1929 PB - ACS Publications AN - OPUS4-52070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ou, D. A1 - Schumacher, David A1 - Zscherpel, Uwe A1 - Xiao, Y. T1 - Dual-energy materials characterization methods for laminography image enhancement based on photon counting detector N2 - Laminography is a widely used NDT technique for large flat object which cannot be investigated by traditional computed tomography. However, due to the limited scanning angle of laminography, the reconstructed image has more artifact interference, which seriously affects the reconstructed image quality. Reducing artifacts of the laminography image and enhancing the images have become important research effort. In this paper, we present dual-energy materials characterization methods based on photon counting detectors to reduce artifacts and enhance image for laminography. The photon counting detector used in this study allows the setting of two independent energy thresholds in order to acquire dual-energy images for laminography from a single scan. The dual energy imaging methods of basis material decomposition (BMD) and weighted logarithmic subtraction (WLS) were studied in the paper with respect to laminography image enhancement. A fast decomposition algorithm on laminographic projection domain with approximating the inverse dual-energy equations to calculate the thickness of basic materials was used in the BMD dual-energy imaging methods. The experimental results show that the BMD method can characterize materials and enhance features of the basic material within the laminographic dataset. In the WLS method, a linear operation was applied on dual-energy images reconstruction directly, which can eliminate the attenuation of one specific material in the resultant image by setting an appropriate weighting factor. In our experiments. WLS method was used successfully to eliminate the strong artifacts generated by the special material and enhance the images. Dual-energy materials characterization methods based on photon counting detectors show potential applications in laminography. KW - Photon Counting Detectors KW - Dual Energy Imaging KW - Data Processing KW - X-ray PY - 2019 DO - https://doi.org/10.1088/1748-0221/14/02/P02018 SN - 1748-0221 VL - 14 SP - P02018, 1 EP - 13 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-47573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Osterloh, Kurt A1 - Röhrs, S. A1 - Schwabe, A. A1 - Radujcovic, S. A1 - Bücherl, T. A1 - Dangendorf, V. A1 - Zscherpel, Uwe A1 - Reiche, I. A1 - Nüsser, A. ED - Zscherpel, Uwe ED - Kasperl, S. T1 - Elucidating the distribution of organic consolidants in wood by Neutron Tomography N2 - While the absorption of X-rays and gamma radiation is determined by the Z-number of the elements a specimen is composed of, it is the hydrogen making an effective contrast with neutron imaging. As a consequence, interrogating with neutrons presents a suitable tool to study the distribution of organic consolidants in materials such as wood as encountered in impregnated wooden artworks. Four different examples of objects are presented here to demonstrate the potential of neutron CT: 1) small wooden pieces of ship wrecks (< 2 cm thickness) interrogated with cold neutrons (0.5 meV at the ANTARES facility of the FRM II in Garching) to demonstrate the potential and the limitation of using low energy neutrons, 2) a wooden statue soaked with carbolineum (fission neutrons 1.8 MeV at the NECTAR facility of the FRM II), 3) a smaller wooden figure of a skull heavily soaked with carbolineum so it was too tight for the fission neutrons used before with accelerator neutrons (broad range about 5.5 MeV at the PTB in Braunschweig) and 4) pieces of charred wood to study the impregnation with a consolidant (NECTAR, FRM II). With the exception of the last example, all results have been combined with X-ray tomography (BAM 8.3 in Berlin). In the case of the charred wood specimens (example 4) the density histograms of the neutron tomography results were compared with those obtained from untreated references. The observed gain in specific density of the soaked specimens corresponded with an increase of specific weight. All results obtained so far showed distinct distribution patterns attributable to structural peculiarities or organic consolidants providing valuable support for subsequent restoration works. T2 - International symposium on digital industrial radiography and computed tomography DIR2019 CY - Fürth, Germany DA - 02.07.2019 KW - Neutron Imaging KW - Cold to fast neutron testing KW - Tomography of wood samples KW - Art restauration PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505326 UR - https://www.ndt.net/search/docs.php3?id=24740 SN - 1435-4934 VL - 24 IS - 11 SP - 1 EP - 8 PB - NDT.net CY - Kirchwald AN - OPUS4-50532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oster, Simon A1 - Scheuschner, Nils A1 - Chand, Keerthana A1 - Altenburg, Simon A1 - Gerlach, G. T1 - Potentials and challenges of deep-learning-assisted porosity prediction based on thermographic in-situ monitoring in laser powder bed fusion N2 - Laser powder bed fusion is one of the most promising additive manufacturing techniques for printing complex-shaped metal components. However, the formation of subsurface porosity poses a significant risk to the service lifetime of the printed parts. In-situ monitoring offers the possibility to detect porosity already during manufacturing. Thereby, process feedback control or a manual process interruption to cut financial losses is enabled. Short-wave infrared thermography can monitor the thermal history of manufactured parts which is closely connected to the probability of porosity formation. Artificial intelligence methods are increasingly used for porosity prediction from the obtained large amounts of complex monitoring data. In this study, we aim to identify the potential and the challenges of deep-learning-assisted porosity prediction based on thermographic in-situ monitoring. Therefore, the porosity prediction task is studied in detail using an exemplary dataset from the manufacturing of two Haynes282 cuboid components. Our trained 1D convolutional neural network model shows high performance (R² score of 0.90) for the prediction of local porosity in discrete sub-volumes with dimensions of (700 x 700 x 40) μm³. It could be demonstrated that the regressor correctly predicts layer-wise porosity changes but presumably has limited capability to predict differences in local porosity. Furthermore, there is a need to study the significance of the used thermogram feature inputs to streamline the model and to adjust the monitoring hardware. Moreover, we identified multiple sources of data uncertainty resulting from the in-situ monitoring setup, the registration with the ground truth X-ray-computed tomography data and the used pre-processing workflow that might influence the model’s performance detrimentally. T2 - XXXVII. Messtechnisches Symposium 2023 CY - Freiburg, Germany DA - 27.09.2023 KW - Porosity prediction KW - Defect detection KW - Laser powder bed fusion (PBF-LB/M, L-PBF) KW - Selective laser melting KW - Thermography KW - Machine learning PY - 2023 DO - https://doi.org/10.1515/teme-2023-0062 SN - 0171-8096 SN - 2196-7113 VL - 90 SP - 85 EP - 96 PB - De Gruyter CY - Berlin AN - OPUS4-58366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oster, Simon A1 - Fritsch, Tobias A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Bruno, Giovanni A1 - Maierhofer, Christiane A1 - Altenburg, Simon T1 - On the Registration of Thermographic In Situ Monitoring Data and Computed Tomography Reference Data in the Scope of Defect Prediction in Laser Powder Bed Fusion N2 - The detection of internal irregularities is crucial for quality assessment in metal-based additive manufacturing (AM) technologies such as laser powder bed fusion (L-PBF). The utilization of in-process thermography as an in situ monitoring tool in combination with post-process X-ray micro computed tomography (XCT) as a reference technique has shown great potential for this aim. Due to the small irregularity dimensions, a precise registration of the datasets is necessary as a requirement for correlation. In this study, the registration of thermography and XCT reference datasets of a cylindric specimen containing keyhole pores is carried out for the development of a porosity prediction model. The considered datasets show variations in shape, data type and dimensionality, especially due to shrinkage and material elevation effects present in the manufactured part. Since the resulting deformations are challenging for registration, a novel preprocessing methodology is introduced that involves an adaptive volume adjustment algorithm which is based on the porosity distribution in the specimen. Thus, the implementation of a simple three-dimensional image-to-image registration is enabled. The results demonstrate the influence of the part deformation on the resulting porosity location and the importance of registration in terms of irregularity prediction. KW - Selective laser melting (SLM) KW - Laser powder bed fusion (L-PBF) KW - Additive manufacturing (AM) KW - Process monitoring KW - Infrared thermography KW - X-ray computed tomography (XCT) KW - Defect detection KW - Image registration PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549412 DO - https://doi.org/10.3390/met12060947 VL - 12 IS - 6 SP - 1 EP - 21 PB - MDPI AN - OPUS4-54941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oster, Simon A1 - Breese, Philipp Peter A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Altenburg, Simon T1 - A deep learning framework for defect prediction based on thermographic in-situmonitoring in laser powder bed fusion N2 - The prediction of porosity is a crucial task for metal based additive manufacturing techniques such as laser powder bed fusion. Short wave infrared thermography as an in-situ monitoring tool enables the measurement of the surface radiosity during the laser exposure. Based on the thermogram data, the thermal history of the component can be reconstructed which is closely related to the resulting mechanical properties and to the formation of porosity in the part. In this study, we present a novel framework for the local prediction of porosity based on extracted features from thermogram data. The framework consists of a data pre-processing workflow and a supervised deep learning classifier architecture. The data pre-processing workflow generates samples from thermogram feature data by including feature information from multiple subsequent layers. Thereby, the prediction of the occurrence of complex process phenomena such as keyhole pores is enabled. A custom convolutional neural network model is used for classification. Themodel is trained and tested on a dataset from thermographic in-situ monitoring of the manufacturing of an AISI 316L stainless steel test component. The impact of the pre-processing parameters and the local void distribution on the classification performance is studied in detail. The presented model achieves an accuracy of 0.96 and an f1-Score of 0.86 for predicting keyhole porosity in small sub-volumes with a dimension of (700 × 700 × 50) μm3. Furthermore, we show that pre-processing parameters such as the porosity threshold for sample labeling and the number of included subsequent layers are influential for the model performance. Moreover, the model prediction is shown to be sensitive to local porosity changes although it is trained on binary labeled data that disregards the actual sample porosity. KW - Laser Powder Bed Fusion (PBF-LB/M, L-PBF) KW - Selective Laser Melting (SLM) KW - SWIR thermography KW - Online monitoring KW - Flaw detection KW - Machine learning KW - Convolutional neural networks (CNN) PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575148 DO - https://doi.org/10.1007/s10845-023-02117-0 SN - 0956-5515 SP - 1 EP - 20 PB - Springer AN - OPUS4-57514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nerger, Deborah A1 - Moosavi, Robabeh A1 - Bracklow, F. A1 - Hering, M. A1 - Kühn, T. A1 - Curbach, M. A1 - Hille, Falk A1 - Rogge, Andreas T1 - Planar tomography and numerical analysis for damage characterization of impact loaded RC plates N2 - The damage analysis of reinforced concrete (RC) is of high interest for reasons of effective maintenance and structural safe-ty of buildings. The damage structures of RC plates loaded by an impact were investigated, applying X-ray planar tomogra-phy and finite element method (FEM). Planar tomography allows getting three-dimensional information of the RC elements and the damage including crack, spalling and scabbing. The FEM model validated on the tomography data justifies the appli-cation for further predictions of the damage description. In this study, we investigated concrete plates of three different thick-ness subjected to impacts at different low- and medium-velocity, whereby the used impactor had a flat tip, which resulted in small penetrations on the front side and scabbing on the rear side. In order to quantify the damage, the damage volume and its distribution through the plate were computed and the correlations between degree of damage and impact velocity were found out. KW - Impact KW - Damage characterization KW - Planar tomography KW - Numeric simulation KW - Reinforced concrete structure PY - 2020 DO - https://doi.org/10.1002/cend.202000017 VL - 8 SP - 1 EP - 19 PB - Wiley AN - OPUS4-51117 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Jan Peter A1 - Dell'Avvocato, G. A1 - Krankenhagen, Rainer T1 - Assessing overload-induced delaminations in glass fiber reinforced polymers by its geometry and thermal resistance N2 - The one-dimensional thermal quadrupole method is used to evaluate a pulsed thermography measurement at delaminations in a glass-fiber reinforced plastic plate quantitatively. The large-scale delaminations have been induced by tension overload and are air-filled and are usually located at the same depth as the notch bottom of a notch on the rear side. While classical evaluation methods like pulsed phase thermography and thermal Signal reconstruction are focused on the delamination depth only, the thermal quadrupole method determines spatially resolved two parameters for delaminations, delamination depth and local thermal resistance. Interestingly, lateral heat flows do not disturb this kind of depth evaluation. KW - Pulsed thermography KW - Delamination KW - Debond KW - Composite materials PY - 2020 DO - https://doi.org/10.1016/j.ndteint.2020.102309 VL - 116 SP - 102309 PB - Elsevier Ltd. AN - OPUS4-50937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Jan P. A1 - Krankenhagen, Rainer T1 - Optimizing thermographic testing of thick GFRP plates by assessing the real energy absorbed within the material N2 - Active thermography is a well suited non-destructive testing method for the challenging inspection of wind rotor blades. Since the GFRP structures are up to some centimetres thick, long pulse heating is required to provide an appropriate energy input into the structure. So far, no best practice exists to guarantee a reliable detection of deep-lying flaws. In this work, a step wedge specimen having a maximum thickness of 34mm is systematically investigated by experiment and well-matched simulations to assess the influence of the experimental parameters, like the absorbed energy, on thermal contrasts. Finally, a scheme to conduct full-scale test of a wind rotor blade in less than three hours is proposed. KW - Pulsed thermography KW - Wind rotor blade KW - GFRP PY - 2019 DO - https://doi.org/10.1016/j.compstruct.2019.02.027 SN - 0263-8223 VL - 215 SP - 60 EP - 68 PB - Elsevier CY - Amsterdam AN - OPUS4-47396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Munsch, Sarah Mandy A1 - Strangfeld, Christoph A1 - Kruschwitz, Sabine ED - Kärger, J. ED - Heitjans, P. T1 - Determining the pore size distribution in synthetic and building materials using 1D NMR N2 - NMR is gaining increasing interest in civil engineering applications for the use of microstructure characterization as e.g. pore size determination and monitoring of moisture transport in porous materials. In this study, the use of NMR as a tool for pore size characterization was investigated. For our study we used screed and synthetic materials at partial and full saturation. A successful determination could be achieved when having a reference or calibration method, although partly diffusion effects have been registered. Due to these diffusion effects, for the determination of pore size distributions of synthetic materials another NMR device was needed. Finally, the determination of the surface relaxivity of screed (50 μm/s) led to a higher value than first expected from literature. T2 - 14th International Bologna Conference on Magnetic Resonance in Porous Media CY - Gainesville, FL, USA DA - 18.02.2018 KW - NMR relaxometry KW - Pore size distribution KW - Building materials KW - Porous materials KW - Surface relaxivity PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483680 UR - https://diffusion.uni-leipzig.de/pdf/volume31/diff_fund_31(2019)02.pdf SN - 1862-4138 N1 - Geburtsname von Munsch, Sarah Mandy: Nagel, S. M. - Birth name of Munsch, Sarah Mandy: Nagel, S. M. VL - 31 IS - 2 SP - 1 EP - 9 PB - University of Leipzig CY - Leipzig AN - OPUS4-48368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Munsch, Sarah Mandy A1 - Strangfeld, Christoph A1 - Kruschwitz, Sabine T1 - Application of 1H proton NMR relaxometry to building materials - A review N2 - Since nuclear magnetic resonance with focus on 1H protons is highly sensitive to pore filling fluids, it is nowadays often applied for the investigation of porous media. Mainly in materials research and especially in the field of non-destructive testing in civil engineering it is increasingly used. Scientific questions about and based on NMR meanwhile cover a broad spectrum. To give an overview, we have reviewed various studies dealing with the determination of moisture contents and parameters such as the pore-size distribution, surface relaxivity, porosity, etc. In some papers, the monitoring of moisture transport in connection with degradation processes or admixtures was the main objective. In other papers, NMR was used for pore space analysis or even applied on site to assess the state of conservation of cultural heritage. Building materials that have been investigated in the presented studies are for example cement, concrete, woods, sandstones etc. In this paper, short descriptions and the significant results of the reviewed articles are summarized and their measurement problems and discrepancies are pointed out. A special feature of this review article is the concise tabular compilation of determined 𝑇1 and 𝑇2 relaxation times, as well as of surface relaxivity values for various materials and components. Finally, relevant aspects are summed up and conclusions about the increasing potential of NMR relaxometry for investigations of porous building materials are drawn, followed by an outlook about future applications and the need for technical development. KW - NMR relaxometry KW - Building materials KW - Natural stones KW - Relaxation times KW - Surface relaxivities KW - Moisture KW - Pore space characterization PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521888 DO - https://doi.org/10.1016/j.jmro.2021.100012 N1 - Geburtsname von Munsch, Sarah Mandy: Nagel, S. M. - Birth name of Munsch, Sarah Mandy: Nagel, S. M. VL - 6-7 SP - 100012 PB - Elsevier Inc. CY - Amsterdam AN - OPUS4-52188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moskovchenko, A. I. A1 - Vavilov, V. P. A1 - Bernegger, Raphael A1 - Maierhofer, Christiane A1 - Chulkov, A. O. T1 - Detecting Delaminations in Semitransparent Glass Fiber Composite by Using Pulsed Infrared Thermography N2 - Thanks to its good strength/mass ratio, a glass fibre reinforced plastic (GFRP) composite is a common material widely used in aviation, power production, automotive and other industries. In its turn, active infrared (IR) nondestructive testing (NDT) is a common inspection technique for detecting and characterizing structural defects in GFRP. Materials to be tested are typically subjected to optical heating which is supposed to occur on the material surface. However, GFRP composite is semitransparent for optical radiation of both visual and IR spectral bands. Correspondingly, the inspection process represents a certain combination of both optical and thermal phenomena. Therefore, the known characterization algorithms based on pure heat diffusion cannot be applied to semi-transparent materials. In this study, the phenomenon of GFRP semi-transparency has been investigated numerically and experimentally in application to thermal NDT. Both Xenon flash tubes and a laser have been used for thermal stimulation of opaque and semi-transparent test objects. It has been shown that the Penetration of optical heating radiation into composite reduces detectability of shallower defects, and the signal-to-noise ratio can be enhanced by applying the technique of thermographic signal reconstruction (TSR). In the inspection of the semi-transparent GFRP composite, the most efficient has been the laser heating followed by the TSR data processing. The perspectives of defect characterization of semi-transparent materials by using laser heating are discussed. A neural network has been used as a candidate tool for evaluating defect depth in composite materials, but its training should be performed in identical with testing conditions. KW - Infrared thermography KW - Thermal testing KW - GFRP KW - Semi-transparent composite KW - Laser heating PY - 2020 DO - https://doi.org/10.1007/s10921-020-00717-x VL - 39 SP - 69 PB - Springer Science+Business Media, LLC, part of Springer Nature 2020 AN - OPUS4-51179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moreno Torres, Benjamí A1 - Völker, Christoph A1 - Munsch, Sarah Mandy A1 - Hanke, T. A1 - Kruschwitz, Sabine ED - Tosti, F. T1 - An Ontology-Based Approach to Enable Data-Driven Research in the Field of NDT in Civil Engineering N2 - Although measurement data from the civil engineering sector are an important basis for scientific analyses in the field of non-destructive testing (NDT), there is still no uniform representation of these data. An analysis of data sets across different test objects or test types is therefore associated with a high manual effort. Ontologies and the semantic web are technologies already used in numerous intelligent systems such as material cyberinfrastructures or research databases. This contribution demonstrates the application of these technologies to the case of the 1H nuclear magnetic resonance relaxometry, which is commonly used to characterize water content and porosity distri-bution in solids. The methodology implemented for this purpose was developed specifically to be applied to materials science (MS) tests. The aim of this paper is to analyze such a methodology from the perspective of data interoperability using ontologies. Three benefits are expected from this ap-proach to the study of the implementation of interoperability in the NDT domain: First, expanding knowledge of how the intrinsic characteristics of the NDT domain determine the application of semantic technologies. Second, to determine which aspects of such an implementation can be improved and in what ways. Finally, the baselines of future research in the field of data integration for NDT are drawn. KW - Ontology Engineering KW - Interoperability KW - Data-integration KW - NMR relaxometry KW - materials informatics PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529716 DO - https://doi.org/10.3390/rs13122426 SN - 2072-4292 N1 - Geburtsname von Munsch, Sarah Mandy: Nagel, S. M. - Birth name of Munsch, Sarah Mandy: Nagel, S. M. VL - 13 IS - 12 SP - 2426 PB - Multidisciplinary Digital Publishing Institute (MDPI) CY - Basel, Switzerland AN - OPUS4-52971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -