TY - CONF A1 - Stamm, Michael A1 - Krankenhagen, Rainer T1 - Weather-dependent passive thermography of unheated wind turbine blades N2 - Up to now, the inspection of wind turbines with industrial climbers has been considered ”state of the art”. However, ever-larger wind turbines and advancing digitization make modern and automated inspection methods indispensable. Passive thermography can serve as such a digital and atomized method while it is well known for its applications in the inspection of buildings or electrical circuits. However, its application relies on thermal gradients in the inspected object such that a temperature contrast exists between damaged and sound areas. This also holds for unheated structures like rotor blades of wind turbines which show no intrinsic temperature gradient and can hardly be heated. Under certain weather conditions with sufficient solar loading and diurnal temperature variations, passive thermography is suitable for the in-service inspection of rotor blades. However, for a reliable use of passive thermography on ”thermal passive” components, the incorporation of these environmental conditions in the planning and evaluation of thermal inspections is crucial. Additionally, the complex inner structure of wind turbine blades in comparison to other objects and buildings require a specific method referencing the individual rotor blades to each other. This allows the distinction between the thermal response of design-specific structural features and damages or irregularities between the three blades. We show thermal signatures of damage in rotor blades and contrast them with structural characteristics by comparing the three blades. In addition to measurements in industrial environments, laboratory measurements are shown and compared to simulations. The long-term goal is to simulate the influence of different weather parameters and thus gain a better understanding of measurements in the field. The results shown here can be seen as one step towards industrial application. T2 - Defense + Commercial Sensing 2022 CY - Orlando, Florida, USA DA - 3.4.2022 KW - Passive thermography KW - Wind energy KW - FEM simulations PY - 2022 UR - https://spie.org/defense-commercial-sensing/presentation/Weather-dependent-passive-thermography-of-unheated-wind-turbine-blades/12109-19?SSO=1 AN - OPUS4-54944 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klewe, Tim A1 - Völker, Tobias A1 - Landmann, M. A1 - Wilsch, Gerd A1 - Kruschwitz, Sabine T1 - Laser-based sorting of construction and demolition waste for the circular economy N2 - Closed material cycles and unmixed material fractions are required to achieve high recovery and recycling rates in the building industry. The growing diversity of construction and demolition waste is leading to increasing difficulties in separating the individual materials. Manual sorting involves many risks and dangers for the executing staff and is merely based on obvious, visually detectable differences for separation. An automated, sensor-based sorting of these building materials could complement or replace this practice to improve processing speed, recycling rates, sorting quality, and prevailing health conditions. A joint project of partners from industry and research institutions approaches this task by investigating and testing the combination of laser-induced breakdown spectroscopy (LIBS) and visual (VIS)/ near-infrared (NIR) spectroscopy. Joint processing of information (data fusion) is expected to significantly improve the sorting quality of various materials like concrete, main masonry building materials, organic components, etc., and may enable the detection and separation of impurities such as SO3-containing building materials (gypsum, aerated concrete, etc.). Focusing on Berlin as an example, the entire value chain will be analyzed to minimize economic/technological barriers and obstacles at the cluster level and to sustainably increase recovery and recycling rates. First LIBS measurements show promising results in distinguishing various material types. A meaningful validation shall be achieved with further practical samples. Future works will investigate the combination of LIBS and VIS/NIR spectroscopy in a fully automated measurement setup with conveyor belt speeds of 3 m/s. T2 - 6th fib Congress 2022 CY - Oslo, Norway DA - 12.06.2022 KW - LIBS KW - Recycling KW - Construction and demolition waste KW - Sorting PY - 2022 AN - OPUS4-55120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Tobias A1 - Wilsch, Gerd A1 - Klewe, Tim A1 - Kruschwitz, Sabine T1 - Laser Induced Breakdown Spectroscopy A Tool for Imaging the Chemical Composition of Concrete N2 - One of the most common causes of damage is the ingress of harmful ions into the concrete, which can lead to deterioration processes and affect structural performance. Therefore, the increasingly aging infrastructure is regularly inspected to assess durability. Regular chemical analysis can be useful to determine the extent and evolution of ion ingress and to intervene in a timely manner. This could prove more economical than extensive repairs for major damage, particularly for critical infrastructure. In addition to already established elemental analysis techniques in civil engineering such as potentiometric titration or X-ray fluorescence analysis, laser-induced breakdown spectroscopy (LIBS) can provide further important complementary information and benefits. The possibilities of LIBS are demonstrated using the example of a drill core taken from a parking garage. T2 - 6th International Conference on Concrete Repair, Rehabilitation and Retrofitting CY - Cape Town, South Africa DA - 03.10.2022 KW - LIBS KW - Concrete KW - Cement KW - Chlorine PY - 2022 AN - OPUS4-56061 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd A1 - Völker, Tobias A1 - Klewe, Tim A1 - Kruschwitz, Sabine T1 - Laser Induced Breakdown Spectroscopy – A Tool for Imaging the Chemical Composition of Concrete T2 - ICCRRR 2022 Book of extended abstracts N2 - One of the most common causes of damage is the ingress of harmful ions into the concrete, which can lead to deterioration processes and affect structural performance. Therefore, the increasingly aging infrastructure is regularly inspected to assess durability. Regular chemical analysis can be useful to determine the extent and evolution of ion ingress and to intervene in a timely manner. This could prove more economical than extensive repairs for major damage, particularly for critical infrastructure. In addition to already established elemental analysis techniques in civil engineering such as potentiometric titration or X-ray fluorescence analysis, laser-induced breakdown spectroscopy (LIBS) can provide further important complementary information and benefits. The possibilities of LIBS are demonstrated using the example of a drill core taken from a parking garage. T2 - 6th International Conference on Concrete Repair, Rehabilitation and Retrofitting CY - Kapstadt, South Africa DA - 03.10.2022 KW - LIBS KW - Concrete KW - Chlorine PY - 2022 UR - https://iccrrr2022.org/downloads SP - 126 EP - 127 AN - OPUS4-56062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krankenhagen, Rainer A1 - Zirker, Stefan T1 - Photothermal determination of thermal properties of concrete – a method evaluation N2 - The evaluation of thermal properties is probably an underrated tool for the onsite health monitoring of concrete structures. The photothermal approach offers a possibility to realize a real onsite measurement. This contribution presents the application of the photothermal approach under lab conditions on three different concrete types. The obtained results were compared with those of a commercial device based on the Transient Plane Source (TPS) method. Both agreed well within the estimated uncertainty ranges and therefore demonstrate the applicability of the photothermal method for this kind of investigations. First results of a concrete sample with different water contents support the potential of this method for the characterization of concrete in general. T2 - NDTCE 2022 CY - Zurich, Switzerland DA - 16.8.2022 KW - Thermal effusivity KW - Thermal conductivity KW - Moisture PY - 2022 AN - OPUS4-56063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd A1 - Völker, Tobias A1 - Klewe, Tim A1 - Kruschwitz, Sabine T1 - Laser Induced Breakdown Spectroscopy – A Tool for the Chemical Investigation of Concrete N2 - LIBS is a complementary method to XRF and can detect all elements without the need for vacuum conditions. Automated systems are already commercially available capable of scanning surfaces with a resolution of up to 0.1 mm within a few minutes. In addition to possible applications in R&D, LIBS is also used for practical applications in building materials laboratories and even on-site. In view of ageing infrastructure facilities, a reliable assessment of the condition of concrete structures is of increasing interest. For concrete structures, the ingress of potential harmful ions is affecting the serviceability and eventually structural performance. Pitting corrosion induced by penetrating chlorides is the dominant deterioration mechanism. Condition assessment based on frequently performed chloride profiling can be useful to identify the extent and evolution of chloride ingress. This could prove to be more economical than extensive repairs, especially for important infrastructure facilities. Currently the most common procedure for determining the chloride content is wet chemical analysis with standard resolution of 10 mm. The heterogeneity is not considered. LIBS is an economical alternative for determining the chloride content at depth intervals of 1 mm or less. It provides 2D distributions of multiple elements and can locate spots with higher concentrations. The results are directly correlated to the mass of binder and can also be performed on-site with a mobile LIBS-System. The application of a LIBS-system is presented. Calibration is required for quantitative analysis. Concrete cores were drilled, sliced and analyzed to determine the 2D-distribution of harmful elements. By comparing the chloride ingress and the carbonation, the interaction of both processes can be visualized in a measurement that takes less than 10 minutes for a 50 mm x 100 mm drill core. A leaflet on the use of LIBS for the chloride ingress assessment has been completed. T2 - NDT-CE 2022 - The International Symposium on Nendestructive Testing in Civil Engineering CY - Zurich, Switzerland DA - 16.08.2022 KW - Chlorides KW - Corrosion KW - Imaging KW - Service life KW - Damage assessment KW - LIBS PY - 2022 AN - OPUS4-56540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pech May, Nelson Wilbur A1 - Ziegler, Mathias T1 - Detection of surface breaking cracks using flying line laser thermography: A Canny-based algorithm JF - Engineering proceedings N2 - In this work, we introduce a new algorithm for effectual crack detection using flying line laser thermography, based on the well-known Canny approach. The algorithm transforms the input thermographic sequence into an edge map. Experimental measurements are performed on a metallic component that contains surface breaking cracks due to industrial use. The specimen is tested using flying line thermography at different scanning speeds and laser input powers. Results obtained with the proposed algorithm are additionally compared with a previously established algorithm for flying spot thermography. The proposed Canny-based algorithm can be used in automated systems for thermographic non-destructive testing. T2 - Advanced Infrared Technology and Applications 2021 CY - Online meeting DA - 26.10.2021 KW - Canny approach KW - Flying line thermography KW - Crack detection PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539628 DO - https://doi.org/10.3390/engproc2021008022 SN - 2673-4591 VL - 8 IS - 1 SP - 1 EP - 4 PB - MDPI CY - Basel AN - OPUS4-53962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stamm, Michael A1 - Krankenhagen, Rainer T1 - EvalTherm - Evaluation of passive Thermography for the inspection of wind turbine blades N2 - The EvalTherm project is presented. The concept of passive thermography on rotor blades as well as first results of field measurements are discussed. As this is an industry-related conference, the focus in this paper is on practical aspects that are of interest for industrial applications. T2 - AMI Wind Turbine Blade Manufacture conference 2021 CY - Cologne, Germany DA - 15.11.2021 KW - Windenergy KW - Thermography KW - Inspection KW - NDT PY - 2021 AN - OPUS4-53928 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Christoph A1 - Kruschwitz, Sabine A1 - Benner, Philipp T1 - Uncertainty quantification for a sparse machine learning (ML) data set in non-destructive testing in civil engineering (NDT-CE) N2 - ML has been successfully applied to solve many NDT-CE tasks. This is usually demonstrated with performance metrics that evaluate the model as a whole based on a given set of data. However, since in most cases the creation of reference data is extremely expensive, the data used is generally much sparser than in other areas, such as e-commerce. As a result, performance indicators often do not reflect the practical applicability of the ML model. Estimates that quantify transferability from one case to another are necessary to meet this challenge and pave the way for real world applications. In this contribution we invetigate the uncertainty of ML in new NDT-CE scenarios. For this purpose, we have extended an existing training data set for the classification of corrosion damage by a new case study. Our data set includes half-cell potential mapping and ground-penetrating radar measurements. The measurements were performed on large-area concrete samples with built-in chloride-induced corrosion of reinforcement. The experiment simulated the entire life cycle of chloride induced exposed concrete components in the laboratory. The unique ability to monitor deterioration and initiate targeted corrosion initiation allowed the data to be labelled - which is crucial to ML. To investigate transferability, we extend our data by including new design features of the test specimen and environmental conditions. This allows to express the change of these features in new scenarios as uncertainties using statistical methods. We compare different sampling and statistical distribution-based approaches and show how these methods can be used to close knowledge gaps of ML models in NDT. T2 - EGU General Assembly 2021 CY - Online meeting DA - 19.04.2021 KW - Data fusion KW - Non-destructive testing PY - 2021 DO - https://doi.org/10.5194/egusphere-egu21-8798 AN - OPUS4-54125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Christoph A1 - Firdous, Rafia A1 - Kruschwitz, Sabine A1 - Völker, Anton T1 - Presenting “SLAMD” - The Sequential Learning App for Materials Discovery N2 - Environmentally friendly alternatives to cement are created through the synthesis of numerous base materials. The variation of their proportions alone leads to millions of materials candidates. Identifying suitable materials is very laborious; traditional systematic research in the laboratory consumes a lot of time and effort. Sequential learning (SL) potentially speeds up the materials research process despite limited but highly complex available information. SL does not make direct predictions of material properties but ranks possible experiments according to their utility. The most promising experiments are prioritized over dead-end experiments and experiments whose outcome is already known. Our work has shown that SL seems to be promising for cement research. So far, research has mainly focused on materials whose synthesis is faster and whose material properties require less time for development or characterization (allowing many successive experiments). Contrarily, in the case of binders, SL is only useful if few experiments lead to the desired goal, as for example, the determination of the compressive strength alone typically requires 28 days. In research practice, experimental designs and the availability of resources often determine which data can be used - for example, when some laboratory resources are not available or deemed irrelevant to a task. As a result, new research scenarios are constantly emerging, each of which requires to demonstrate SL’s performance. We are presenting the SLAMD app to facilitate the exploration of SL methods in numerous research scenarios. The app provides flexible and low-threshold access to AI methods via intuitive and interactive user interfaces. We deliberately pursue a software-based research approach (as opposed to code-, or script-based). On the one hand, the results are more comprehensible since we refer to a common (code) basis (’reproducible science’). On the other hand, the methods are easily accessible to all which accelerates the knowledge transfer into laboratory practice. T2 - DGM Materials Week 2021 CY - Online meeting DA - 07.09.2021 KW - Sequential learning KW - Scientific software KW - Alcali activated binders PY - 2021 AN - OPUS4-54128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Munsch, Sarah Mandy A1 - Strangfeld, Christoph A1 - Kruschwitz, Sabine T1 - Interpretation of NMR signals from partly saturated sandstones N2 - The development of prevention methods and the detection of moisture related damages in buildings and transport infrastructure at an early stage are current issues in the field of non-destructive testing in civil engineering. Especially the subject of partial saturation requires further research since it is more likely to occur than full saturation of the material. In fact, partial saturation in porous media is even more complicated because both fully and partly saturated pores (i.e. pores in which the surfaces are covered with thin water layers) are present. As the non-destructive method nuclear magnetic resonance (NMR) enables the measurement and quantification of relative low moisture contents, it is suitable for the investigation of partly saturated porous building materials. Nevertheless, the differentiation between partly and fully saturated pores is still a challenge. Therefore, in this study, we investigate two sandstones types (Bozanov and Schönbrunner sandstone) at various defined saturation states by using NMR. Furthermore, we measure the relative humidities within the samples and compute the water layer thicknesses (WLT) along the pore walls of all pore sizes to calculate the corresponding degree of pore saturation. To finally assign the NMR signals to pore sizes and to differentiate between partly and fully saturated pores, the water content distribution obtained from the WLT calculation is used for calibration of the relaxation-time distribution. T2 - ISEMA 2021 CY - Online meeting DA - 26.07.2021 KW - NMR KW - Relative humidity KW - Water layer thickness KW - Partial pore saturation KW - Pore-size distribution PY - 2021 N1 - Geburtsname von Munsch, Sarah Mandy: Nagel, S. M. - Birth name of Munsch, Sarah Mandy: Nagel, S. M. AN - OPUS4-53044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Munsch, Sarah Mandy A1 - Strangfeld, Christoph A1 - Kruschwitz, Sabine T1 - Interpretation of NMR signals from partly saturated sandstones T2 - 13th International Conference on Electromagnetic Wave Interaction with Water and Moist Substances (ISEMA) N2 - The development of prevention methods and the detection of moisture related damages in buildings and transport infrastructure at an early stage are current issues in the field of non-destructive testing in civil engineering. Especially the subject of partial saturation requires further research since it is more likely to occur than full saturation of the material. In fact, partial saturation in porous media is even more complicated because both fully and partly saturated pores (i.e. pores in which the surfaces are covered with thin water layers) are present. As the non-destructive method nuclear magnetic resonance (NMR) enables the measurement and quantification of relative low moisture contents, it is suitable for the investigation of partly saturated porous building materials. Nevertheless, the differentiation between partly and fully saturated pores is still a challenge. Therefore, in this study, we investigate two sandstones types (Bozanov and Schönbrunner sandstone) at various defined saturation states by using NMR. Furthermore, we measure the relative humidities within the samples and compute the water layer thicknesses (WLT) along the pore walls of all pore sizes to calculate the corresponding degree of pore saturation. To finally assign the NMR signals to pore sizes and to differentiate between partly and fully saturated pores, the water content distribution obtained from the WLT calculation is used for calibration of the relaxation-time distribution. In this extended abstract, selected results only for Schönbrunner sandstone are presented. T2 - ISEMA 2021 CY - Online meeting DA - 26.07.2021 KW - NMR KW - Relative humidity KW - Water layer thickness KW - Partial pore saturation KW - Pore-size distribution PY - 2021 SN - 978-1-7281-8736-5 VL - 2021 SP - 111 EP - 115 PB - IEEE AN - OPUS4-53045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertovic, Marija T1 - The Past and the Future of Human Factors: The “Uncontrollable” Aspect of NDT Reliability? N2 - That human factors (HF) affect the reliability of NDT is not novelty. Still, when it comes to reliability assessments, the role of people is often neglected. Reliability is typically expressed in terms of POD curves, and the effects of human and organisational factors on the inspection are typically tackled by the regulations, procedures and by the qualification and training of the inspection personnel. However, studies have shown that even the most experienced personnel can make mistakes and that the reliability in the field is never as high as the reliability measured in the POD experiments. Generally, HF are considered too unpredictable and too uncontrollable to model. If that is the fact, then what can we do? The engineering perspective to this problem has often been to find ways to automate inspections and, recently, to make use of artificial intelligence tools to decrease the direct effect of people on the inspection results and improve the overall efficiency and reliability. However, despite automation and AI, people remain the key players, though their tasks change. The contemporary approach to HF is not to engineer them out of the system but to design human-machine systems that make the best use of both. In this talk, ways of tackling HF in the design of systems and processes will be presented. T2 - Reliability of NDT webinar, The Scottish Branch of the British Institute of NDT CY - Online meeting DA - 29.01.2021 KW - Non-Destructive Testing KW - NDT KW - Human Factors KW - Reliability PY - 2021 UR - www.bindt.org/admin/Downloads/2021-01%20BINDT_Bertovic_Human%20factors_new.pdf AN - OPUS4-53544 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertovic, Marija A1 - Virkkunen, I. T1 - NDE 4.0: Redefining Traditional Inspector Roles N2 - The successful shift to NDE 4.0 will not only require developing and embracing new technologies associated with the fourth industrial revolution or becoming an integral part of the overall Industry 4.0, but also developing and adopting new ways of working. It is undoubtful that people will remain in charge of the inspections. However, it is arguable if the current “procedure-following” “level I-III” paradigm can withstand the changes that come along NDE 4.0. With the increased autonomy and interconnectedness expected with NDT 4.0, the majority of traditional NDE tasks will no longer be needed. Instead, different skills, such as that of programming and adapting systems, as well as problem solving, will become vital for the inspections. Therefore, we suggest that a new paradigm is needed—one in which inspector roles and, thus, also the requirements will have to be reinvented. We expect the inspectors to be relieved from the tedious and error prone aspects of the current system and to take responsibility for increasingly complex automated systems and work in closer collaboration with other experts. Thus, we propose that the traditional inspector roles will be transformed into that of the system developer, caretaker and problem solver, each requiring a specific set of skills and assuming different responsibilities. In this talk, we will present the new roles and discuss the challenges that may arise with them. T2 - NDE for industry – annual workshop CY - Online meeting DA - 29.06.2021 KW - Non-Destructive Evaluation KW - NDE 4.0 KW - Human-Machine Interaction KW - Industry 4.0 KW - Inspection Personnel KW - Human-Centered Approach KW - Human Factors KW - Acceptance PY - 2021 AN - OPUS4-53548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertovic, Marija A1 - Virkkunen, I. T1 - NDE 4.0: Redefining Traditional Inspector Roles N2 - The successful shift to NDE 4.0 will not only require developing and embracing new technologies associated with the fourth industrial revolution or becoming an integral part of the overall Industry 4.0, but also developing and adopting new ways of working. It is undoubtful that people will remain in charge of the inspections. However, it is arguable if the current “procedure-following” “level I-III” paradigm can withstand the changes that come along NDE 4.0. With the increased autonomy and interconnectedness expected with NDT 4.0, the majority of traditional NDE tasks will no longer be needed. Instead, different skills, such as that of programming and adapting systems, as well as problem solving, will become vital for the inspections. Therefore, we suggest that a new paradigm is needed—one in which inspector roles and, thus, also the requirements will have to be reinvented. We expect the inspectors to be relieved from the tedious and error prone aspects of the current system and to take responsibility for increasingly complex automated systems and work in closer collaboration with other experts. Thus, we propose that the traditional inspector roles will be transformed into that of the system developer, caretaker and problem solver, each requiring a specific set of skills and assuming different responsibilities. In this talk, we will present the new roles and discuss the challenges that may arise with them. T2 - HOIS Digitalisation Forum (HDF) virtual seminar CY - Online meeting DA - 10.08.2021 KW - Non-Destructive Evaluation KW - NDE 4.0 KW - Human-Machine Interaction KW - Industry 4.0 KW - Inspection Personnel KW - Human-Centered Approach KW - Human Factors KW - Acceptance PY - 2021 AN - OPUS4-53549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Bertovic, Marija A1 - Virkkunen, I. ED - Meyendorf, N. ED - Ida, N. ED - Singh, R. ED - Vrana, J. T1 - NDE 4.0: New Paradigm for the NDE Inspection Personnel T2 - Handbook of Nondestructive Evaluation 4.0 N2 - Nondestructive evaluation (NDE) is entering an era of the fourth industrial revolution and will undergo a major transformation. NDE is a vital part of industry and a successful move to NDE 4.0, it will require not just developing and embracing new technologies, but also developing and adopting new ways of working and becoming an integral part of the overall Industry 4.0. This will pose new challenges for the inspection personnel. To ensure the expected benefits from NDE 4.0, inspectors need stay in charge of the changing inspections. The promised autonomy and interconnectedness of NDE 4.0 will supersede the majority of traditional inspector tasks and will in turn require a different set of skills and raise different demands and challenges for the inspection personnel, thus conflicting the current “procedure-following”-“level I-III” paradigm. The new industry 4.0 technologies can be integrated into the current framework, but exploiting their full potential requires changes in the role of the inspectors. The inspectors will be relieved from the tedious and error-prone aspects of the current system. At the same time, they will need to take responsibility for increasingly complex automated systems and work in closer collaboration with other experts. We propose that the traditional inspector roles will be transformed into that of the system developer, caretaker, and problem solver, each requiring a specific set of skills and assuming different responsibilities. For full NDE 4.0, NDE must abandon its traditional role as a self-contained entity with well-defined boundaries and take its role in the wider system that is the industry 4.0. KW - Non-Destructive Evaluation KW - NDE 4.0 KW - Industry 4.0 KW - Inspection Personnel KW - Human-Centered Approach KW - Human-Machine Interaction KW - Human Factors KW - Acceptance PY - 2021 SN - 978-3-030-48200-8 DO - https://doi.org/10.1007/978-3-030-48200-8_9-1 SP - 1 EP - 31 PB - Springer, Cham AN - OPUS4-53551 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertovic, Marija T1 - NDE 4.0: Redefining Traditional Inspector Roles N2 - The successful shift to NDE 4.0 will not only require developing and embracing new technologies associated with the fourth industrial revolution or becoming an integral part of the overall Industry 4.0, but also developing and adopting new ways of working. It is undoubtful that people will remain in charge of the inspections. However, it is arguable if the current “procedure-following” “level I-III” paradigm can withstand the changes that come along NDE 4.0. With the increased autonomy and interconnectedness expected with NDT 4.0, the majority of traditional NDE tasks will no longer be needed. Instead, different skills, such as that of programming and adapting systems, as well as problem solving, will become vital for the inspections. Therefore, we suggest that a new paradigm is needed—one in which inspector roles and, thus, also the requirements will have to be reinvented. We expect the inspectors to be relieved from the tedious and error prone aspects of the current system and to take responsibility for increasingly complex automated systems and work in closer collaboration with other experts. Thus, we propose that the traditional inspector roles will be transformed into that of the system developer, caretaker and problem solver, each requiring a specific set of skills and assuming different responsibilities. In this talk, we will present the new roles and discuss the challenges that may arise with them. T2 - International Virtual Conference on NDE 4.0, DGZfP CY - Online meeting DA - 14.04.2021 KW - Non-Destructive Evaluation KW - NDE 4.0 KW - Human-Machine Interaction KW - Industry 4.0 KW - Inspection Personnel KW - Human-Centered Approach KW - Human Factors KW - Acceptance PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535524 UR - www.ndt.net/search/docs.php3?id=26328 AN - OPUS4-53552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pech May, Nelson Wilbur A1 - Paul, A. A1 - Ziegler, Mathias T1 - Pulse-compression laser thermography using a modified Barker code: Enhanced detection of subsurface defects N2 - Pulse-compression thermography is an emerging technique that has shown versatility by combination of pulsed and lock-in thermography. Accordingly, several aspects of this technique are still unexplored, and some others not fully developed yet. Barker codes were widely used in radar applications due to their simplicity and their optimum autocorrelation function. Nevertheless, applications were limited by the amplitude of the sidelobes present in the autocorrelation function and therefore, several filters have been developed which aim to reduce the sidelobes. However, the filters usually depend on empirical parameters which must be determined for each application. A better alternative would improve the applicability of the Barker codes. In this work, we further develop the pulse-compression thermography technique by introducing a 13-bit modified Barker code (mBC): This allows to drastically reduce the sidelobes characteristic of the 13-bit Barker code (BC). Consequently, the thermographic impulse response, obtained by cross-correlation, is almost free of such sidelobes. Deeper defects become easier to detect in comparison with using a 13-bit Barker code. Numerical simulations using the finite element method are used for comparison and experimental measurements are performed in a sample of steel grade St 37 with machined notches of three different depths: 2 mm, 4 mm and 6 mm. T2 - SPIE Defense + Commercial Sensing 2021 CY - Online meeting DA - 13.04.2021 KW - Pulse-compression laser thermography KW - Barker codes KW - Non-destructive testing PY - 2021 AN - OPUS4-53249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klewe, Tim A1 - Strangfeld, Christoph A1 - Ritzer, Tobias A1 - Kruschwitz, Sabine T1 - Classification of moisture damage in layered building floors with GPR and neutron probe N2 - In 2019, 3.1 billion Euro of damage was caused by piped water, accounting for the largest share (53%) of building insurance claims in Germany. In the event of damage, the accurate determination and localization of water ingress is essential to plan for and perform efficient renovations. Neutron probes are already applied successfully on building floors to localize the source of damage and other affected areas. However, additional information about the depth of moisture penetration can only be obtained by the destructive extraction of drilling cores, which is a time- and cost-intensive procedure. With its high sensitivity to water and fast measurement procedure, Ground Penetrating Radar (GPR) can serve as a suitable extension to the neutron probe, enabling more precise characterization of common forms of moisture damage. In this research project, we study the influence of common types of moisture damage in differing floor constructions using GPR and a neutron probe. A measurement setup with interchangeable layers is used to vary the screed material (cement or anhydrite) and insulation material (Styrofoam, Styrodur, glass wool, perlite), as well as the respective layer thickness. Every configuration is measured for the following main cases: 1) dry state; 2) with a damaged insulation layer and 3) a damaged screed layer. The evaluation is focused on the extraction of distinctive signal features for GPR, which can be used to classify the underlying case of damage. Furthermore, possible combinations of these features are investigated using multivariate data analysis and machine learning in order to evaluate the influence of different floor constructions. To validate the developed methods, practical measurements on real damage cases in Germany are carried out and compared to reference data obtained from drilling cores. T2 - EGU 21 General Assembly CY - Online meeting DA - 19.04.2021 KW - Radar KW - Moisture KW - Building floors PY - 2021 AN - OPUS4-52532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Ahmadi, Samim A1 - Hauffen, Jan Christian A1 - Kästner, L. A1 - Jung, P. A1 - Caire, G. A1 - Ziegler, Mathias T1 - Learned block iterative shrinkage thresholding algorithm for photothermal super resolution imaging T2 - arxiv.org N2 - Block-sparse regularization is already well-known in active thermal imaging and is used for multiple measurement based inverse problems. The main bottleneck of this method is the choice of regularization parameters which differs for each experiment. To avoid time-consuming manually selected regularization parameters, we propose a learned block-sparse optimization approach using an iterative algorithm unfolded into a deep neural network. More precisely, we show the benefits of using a learned block iterative shrinkage thresholding algorithm that is able to learn the choice of regularization parameters. In addition, this algorithm enables the determination of a suitable weight matrix to solve the underlying inverse problem. Therefore, in this paper we present the algorithm and compare it with state of the art block iterative shrinkage thresholding using synthetically generated test data and experimental test data from active thermography for defect reconstruction. Our results show that the use of the learned block-sparse optimization approach provides smaller normalized mean square errors for a small fixed number of iterations than without learning. Thus, this new approach allows to improve the convergence speed and only needs a few iterations to generate accurate defect reconstruction in photothermal super resolution imaging. KW - Iterative shrinkage thresholding algorithm KW - Neural network KW - Deep learning KW - Active thermography KW - Photothermal super resolution PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525364 UR - https://arxiv.org/abs/2012.03547 SN - 2331-8422 SP - 1 EP - 11 PB - Cornell University CY - Ithaca, NY AN - OPUS4-52536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -