TY - JOUR A1 - Altenburg, Simon A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Maierhofer, Christiane T1 - In-situ monitoring of a laser metal deposition (LMD) process: comparison of MWIR, SWIR and high-speed NIR thermography JF - Quantitative InfraRed Thermography Journal N2 - Additive manufacturing offers a range of novel applications. However, the manufacturing process is complex and the production of almost defect-free parts with high reliability and durability is still a challenge. Thermography is a valuable tool for process surveillance, especially in metal additive manufacturing processes. The high process temperatures allow one to use cameras usually operating in the visible spectral range. Here, we compare the results of measurements during the manufacturing process of a commercial laser metal deposition setup using a mid wavelength infrared camera with those from a short wavelength infrared camera and those from a visual spectrum high-speed camera with band pass filter in the near infrared range. KW - Additive Manufacturing KW - Process monitoring KW - Thermography KW - LMD KW - Metal KW - MWIR KW - SWIR KW - NIR PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516318 DO - https://doi.org/10.1080/17686733.2020.1829889 VL - 19 IS - 2 SP - 97 EP - 114 PB - Taylor & Francis Group CY - London, UK AN - OPUS4-51631 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altenburg, Simon A1 - Bernegger, Raphael A1 - Krankenhagen, Rainer T1 - Absorption coefficient dispersion in flash thermography of semitransparent solids JF - International Journal of Thermophysics N2 - Pulse and flash thermography are experimental techniques which are widely used in the field of non-destructive testing for materials characterization and defect detection. We recently showed that it is possible to determine quantitatively the thickness of semitransparent polymeric solids by fitting of results of an analytical model to experimental flash thermography data, for both transmission and reflection configuration. However, depending on the chosen experimental configuration, different effective optical absorption coefficients had to be used in the model to properly fit the respective experimental data, although the material was always the same. Here, we show that this effect can be explained by the wavelength dependency of the absorption coefficient of the sample material if a polychromatic light source, such as a flash lamp, is used. We present an extension of the analytical model to describe the decay of the heating irradiance by two instead of only one effective absorption coefficient, greatly extending its applicability. We show that using this extended model, the experimental results from both measurement configurations and for different sample thicknesses can be fitted by a single set of parameters. Additionally, the deviations between experimental and modeled surface temperatures are reduced compared to a single optimized effective absorption coefficient. T2 - 19th International Conference on Photoacoustic and Photothermal Phenomena CY - Bilbao, Spain KW - Absorptance KW - Dispersion KW - Flash thermography KW - Infrared thermography KW - NDT KW - Semitransparency PY - 2018 DO - https://doi.org/10.1007/s10765-018-2474-0 SN - 0195-928X SN - 1572-9567 VL - 40 IS - 1 SP - 13, 1 EP - 13 PB - Springer Nature AN - OPUS4-47105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krankenhagen, Rainer A1 - Altenburg, Simon T1 - Transient behaviour of the energy release after the discharge of flash lamps – A consideration of the afterglow JF - Infrared Physics and Technology N2 - The knowledge about energy release and transient behaviour of flash lamps, used as short-term energy source in flash thermography investigations, is essential for a quantitative analysis of the results as well as for simulations regarding such experiments. Usually, only a rectangular pulse shape of a typical duration of a few milliseconds is regarded when flash lamps pulses are described. This note considers the afterglow period of a flash lamp explicitly and shows that negligence of this afterglow effect leads to a systematic underestimation of the pulse length and the related total energy release. In the reported case, the intensity transient recorded by a Silicon photo diode was transformed into a temperature transient, allowing the study of the real energy release. It turns out that approximately only 50% of the entire pulse energy were released during the usually regarded period of 2.8 ms, while the other half was released within a period of 20 ms with an exponential decay. KW - Flash thermography KW - Flash lamp KW - Afterglow KW - Discharge arc KW - Pulse energy PY - 2021 DO - https://doi.org/10.1016/j.infrared.2021.103951 SN - 1350-4495 VL - 119 IS - 103951 SP - 1 EP - 4 PB - Elsevier B.V. AN - OPUS4-53642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernegger, Raphael A1 - Altenburg, Simon A1 - Roellig, Mathias A1 - Maierhofer, Christiane T1 - Applicability of a 1D analytical model for pulse thermography of laterally heterogeneous semitransparent materials JF - International Journal of Thermophysics N2 - Pulse thermography (PT) has proven to be a valuable non-destructive testing method to identify and quantify defects in fiber-reinforced polymers. To perform a quantitative defect characterization, the heat diffusion within the material as well as the material parameters must be known. The heterogeneous material structure of glass fiber-reinforced polymers (GFRP) as well as the semitransparency of the material for optical excitation sources of PT is still challenging. For homogeneous semitransparent materials, 1D analytical models describing the temperature distribution are available. Here, we present an analytical approach to model PT for laterally inhomogeneous semitransparent materials.We show the validity of the model by considering different configurations of the optical heating source, the IR camera, and the differently coated GFRP sample. The model considers the lateral inhomogeneity of the semitransparency by an additional absorption coefficient. It includes additional effects such as thermal losses at the samples surfaces, multilayer systems with thermal contact resistance, and a finite duration of the heating pulse. By using a sufficient complexity of the analytical model, similar values of the material parameters were found for all six investigated configurations by numerical fitting. KW - Absorption coefficient KW - Analytical model KW - GFRP KW - Heterogeneous KW - Pulse thermography KW - Semitransparent PY - 2018 DO - https://doi.org/10.1007/s10765-018-2362-7 SN - 0195-928X SN - 1572-9567 VL - 39 IS - 3 SP - Article 39, ICPPP 19, 1 EP - 17 PB - Springer International Publishing AG AN - OPUS4-44003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernegger, Raphael A1 - Maierhofer, Christiane A1 - Altenburg, Simon T1 - Quantification of delaminations in semitransparent solids using pulsed thermography and mathematical 1D models JF - International Journal of Thermophysics volume N2 - Material defects in fiber reinforced polymers such as delaminations can rapidly degrade the material properties or can lead to the failure of a component. Pulse thermography (PT) has proven to be a valuable tool to identify and quantify such defects in opaque materials. However, quantification of delaminations within semitransparent materials is extremely challenging. We present an approach to quantify delaminations within materials being semitransparent within the wavelength ranges of the optical excitation sources as well as of the infrared (IR) camera. PT experimental data of a glass fiber reinforced polymer with a real delamination within the material were reconstructed by one dimensional (1D) mathematical models. These models describe the heat diffusion within the material and consider semitransparency to the excitation source as well to the IR camera, thermal losses at the samples surfaces and a thermal contact resistance between the two layers describing the delamination. By fitting the models to the PT data, we were able to determine the depth of the delamination very accurately. Additionally, we analyzed synthetic PT data from a 2D simulation with our 1D-models to show how the thermal contact resistance is influenced by lateral heat flow within the material. KW - Pulsed thermography KW - Quantification KW - Numerical simulation KW - Analytical model KW - Semitransparent KW - GFRP KW - Delamination PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505766 DO - https://doi.org/10.1007/s10765-020-02642-7 VL - 41 IS - 5 SP - Article number: 67 PB - Springer AN - OPUS4-50576 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Tina A1 - Breese, Philipp P A1 - Metz, Christian A1 - Altenburg, Simon T1 - In-situ monitoring for PBF-LB/M processes: Does multispectral optical tomography add value in recognizing process deviations? JF - IOP Conference Series: Materials Science and Engineering N2 - Laser powder bed fusion of metallic components (PBF-LB/M) is gaining acceptance in industry. However, the high costs and lengthy qualification processes required for printed components create the need for more effective in-situ monitoring and testing methods. This article proposes multispectral Optical Tomography (OT) as a new approach for monitoring the PBF-LB/M process. Compared to other methods, OT is a low-cost process monitoring method that uses long-time exposure imaging to observe the build process. However, it lacks time resolution compared to expensive thermographic sensor systems. Monochromatic OT (1C-OT) is already commercially available and observes the building process layer-wise using a single wavelength window in the NIR range. Multispectral OT (nC-OT) utilizes a similar setup but can measure multiple wavelength ranges per location simultaneously. By comparing the classical 1C-OT and nC-OT approaches, this article examines the advantages of nC-OT (two channel OT and RGB-OT) in reducing the false positive rate for process deviations and approximating maximum temperatures for a better comparison between different build processes and materials. This could ultimately reduce costs and time for part qualification. The main goal of this contribution is to assess the advantages of nC-OT compared to 1C-OT for in-situ process monitoring of PBF-LB/M. T2 - Nolamp 2023 CY - Turku, Finland DA - 22.08.2023 KW - Thermography KW - Process Monitoring KW - Additive manufacturing KW - BPF-LB/M KW - In-situ PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-592498 DO - https://doi.org/10.1088/1757-899X/1296/1/012008 VL - 1296 SP - 1 EP - 11 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-59249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krankenhagen, Rainer A1 - Altenburg, Simon A1 - Eisenkrein, Helena T1 - Photothermische Schichtdickenmessung an Betonbeschichtungen - unter Laborbedingungen und auf der Baustelle JF - The e-journal of nondestructive testing & ultrasonics N2 - Bei der Realisierung von Oberflächen-Schutz-System (OSS) auf Betonflächen ist die tatsächlich erreichte Dicke der Beschichtung ein wesentlicher Parameter, der über die Funktionalität und Langzeitstabilität der aufgetragenen Schicht entscheidet. Die Firma IBOS und die BAM haben in den letzten Jahren gemeinsam einen funktionstüchtigen Prototyp eines Messgeräts zur zerstörungsfreien Schichtdickenmessung für Bodenbeschichtungen entwickelt. Hierin wird die Abkühlkurve eines vorher erwärmten Bereichs berührungslos mit einer IR-Kamera erfasst und mit einem Modell verglichen, was die Bestimmung der Schichtdicke ermöglicht. Im Rahmen dieses Beitrags wird die Umsetzung der Methode unter Laborbedingungen und in der Praxis auf der Baustelle erläutert und diskutiert. T2 - DGZfP-Jahrestagung CY - Leipzig, Germany DA - 07.05.2018 KW - Betonbeschichtung KW - Oberflächenschutzsystem KW - Schichtdickenmessung KW - Zerstörungsfreie Prüfung KW - Photothermisch PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-449433 UR - https://www.ndt.net/?id=23060 SN - 1435-4934 VL - 23 IS - 9 SP - 1 EP - 8 PB - NDT.net CY - Kirchwald AN - OPUS4-44943 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altenburg, Simon A1 - Chien, M. A1 - Bavendiek, F. A1 - Krankenhagen, Rainer T1 - Schichtdickenbestimmung von Oberflächenschutzsystemen für Beton mit Impulsthermografie T1 - Thickness determination of surface Protection systems for concrete by means of impulse thermography JF - Materials Testing N2 - Im Bauwesen werden Polymerbeschichtungen auf Beton häufig eingesetzt um zum einen, ein bestimmtes Aussehen zu schaffen und zum anderen, das Bauteil vor Alterung, Verschleiß und Schädigung zu schützen. Für praktisch alle Ziele ist die Wirkung von der eigens dafür definierten Schichtdicke der Polymerbeschichtung abhängig. Daher wird die Dicke der Beschichtung nach erfolgtem Schichtauftrag überprüft. Für den in diesem Zusammenhang anspruchsvollen mineralischen Untergrund Beton stehen bislang allerdings nur zerstörende Prüfverfahren zur Verfügung. Aus diesem Grund wurden im Rahmen des Projektes IRKUTSK ein auf aktiver Thermografie basierendes Verfahren sowie ein Gerät für den vor-Ort-Einsatz entwickelt, mit dessen Hilfe eine zerstörungsfreie Schichtdickenbestimmung möglich ist. Hier wird ein kurzer Einblick in das zur Schichtdickenbestimmung entwickelte Thermografieverfahren gegeben. Die Besonderheiten bei der quantitativen Auswertung, die durch die Teiltransparenz der Polymerbeschichtungen auftreten, werden erläutert. Die Funktion des Verfahrens für einlagige Systeme wird anhand von Labormessungen mit verschiedenen optischen Quellen zur thermischen Anregung illustriert. KW - Beton KW - Oberflächenschutzsystem KW - Schichtdickenbestimmung KW - Thermografie PY - 2018 DO - https://doi.org/10.3139/120.111210 SN - 0025-5300 VL - 60 IS - 7-8 SP - 759 EP - 764 PB - Hanser Verlag CY - München, Deutschland AN - OPUS4-45566 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernegger, Raphael A1 - Altenburg, Simon A1 - Maierhofer, Christiane T1 - Iterative numerical 2D-modelling for quantification of material defects by pulsed thermography JF - AIP Conference Proceedings N2 - This paper presents a method to quantify the geometry of defects such as flat bottom holes (FBH) and notches in opaque materials by a pulse thermography (PT) experiment and a numerical model. The aim was to precisely describe PT experiments in reflection configuration with a simple and fast numerical model in order to use this model and a fit algorithm to quantify defects within the material. The algorithm minimizes the difference between the time sequence of a line shaped region of interest (ROI) on the surface (above the defect) from the PT experiment and the numerical data. Therefore, the experimental data can be reconstructed with the numerical model. In this way, the defect depth of a notch or FBH and its width or diameter was determined simultaneously. A laser was used for heating which was widened to a top hat spatial profile to ensure homogeneous illumination (rectangular impulse profile in time). The numerical simulation considers heating conditions and takes thermal losses due to convection and radiation into account. We quantified the geometry of FBH and notches in steel and polyvinyl chloride plasticized (PVC-U) materials with an accuracy of < 5 %. KW - Pulsed thermography KW - Numerical modelling KW - Data reconstruction KW - Opaque materials KW - 2D model KW - Flat bottom holes KW - Notches PY - 2019 DO - https://doi.org/10.1063/1.5099719 SN - 0094-243X SP - 020015-1 EP - 11 PB - AIP AN - OPUS4-47974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Pignatelli, Giuseppe A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gornushkin, Igor B. A1 - Gumenyuk, Andrey T1 - Vergleich der Messungen der Schmelzbadtemperatur bei der Additiven Fertigung von Metallen mittels IR-Spektroskopie und Thermografie T1 - Comparison of measurements of the melt pool temperature during the additive production of metals by means of IR spectroscopy and thermography JF - tm – Technisches Messen N2 - Im Rahmen des Themenfeldprojektes „Process Monitoring of AM“ (ProMoAM) evaluiert die Bundesanstalt für Materialforschung und -Prüfung (BAM) gegenwärtig die Anwendbarkeit verschiedenster ZfP-Verfahren zur in-situ Prozessüberwachung in der additiven Fertigung (AM) von Metallen in Hinblick auf die Qualitätssicherung. Einige der wichtigsten Messgrößen sind hierbei die Temperatur des Schmelzbades und die Abkühlrate, welche starken Einfluss auf das Gefüge und die Eigenspannung haben. Aufgrund der Zugänglichkeit zum Werkstück während des Bauprozesses bieten sich optische Verfahren zu Temperaturbestimmung an. Hierbei stellen jedoch u. a. die hohe Bandbreite der zu messenden Temperaturen, die Bestimmung der Emissivität und ihre Änderung bei Phasenübergängen der verwendeten Legierung große experimentelle Herausforderungen dar. Eine weitere Herausforderung stellt für die IR-Spektroskopie die Absorption durch das Schutzgas und weitere optische Elemente dar. Um diese auch in einem industriellen Umfeld kompensieren zu können, wurde eine Methode entwickelt, die das gemessene Spektrum bei der Verfestigung des Werkstoffes als Referenz nutzt. In diesem Beitrag wird die Anwendung dieser Methode für die IR-Spektrometrie als auch Thermografische Messungen beim Laser-Pulver-Auftragschweißen von 316L gezeigt, wobei beide Methoden weiterhin in Hinblick auf ihre individuellen Vor- und Nachteile miteinander verglichen werden. N2 - Within the topic area project “Process Monitoring of AM” (ProMoAM) the Federal Institute for Materials Research and Testing is currently evaluating the applicability of various NDT methods for in-situ process Monitoring in the additive manufacturing (AM) of metals with regard to quality assurance. Two of the most important variables to measure are the temperature of the molten pool and the cooling rate, which have a strong influence on the microstructure and the residual stress. Due to the accessibility of the workpiece during the construction process, optical methods for temperature determination are suitable. However, the wide range of temperatures to be measured, the determination of emissivity and its change during phase transitions of the alloy pose great experimental challenges. Another challenge for IR spectroscopy is the absorption by the inert gas and other optical elements. In order to be able to compensate for this in an industrial environment, a method was developed which uses the measured spectrum as a reference when the material is solidified. This paper shows the application of this method for IR spectrometry as well as thermographic measurements during laser powder cladding of 316L. Furthermore both methods are compared with respect to their individual Advantages and disadvantages. KW - Laser-Pulver-Auftragschweißen KW - Thermografie KW - Direct Energy Deposition KW - IR-Spektroskopie KW - Additive Fertigung KW - Laser metal deposition KW - Thermography KW - IR-spectroscopy KW - Additive manufacturing PY - 2021 DO - https://doi.org/10.1515/teme-2021-0056 VL - 88 IS - 10 SP - 626 EP - 632 PB - De Gruyter CY - Oldenburg AN - OPUS4-52987 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -