TY - CONF A1 - Krankenhagen, Rainer A1 - Zirker, Stefan T1 - Photothermal determination of thermal properties of concrete – a method evaluation N2 - The evaluation of thermal properties is probably an underrated tool for the onsite health monitoring of concrete structures. The photothermal approach offers a possibility to realize a real onsite measurement. This contribution presents the application of the photothermal approach under lab conditions on three different concrete types. The obtained results were compared with those of a commercial device based on the Transient Plane Source (TPS) method. Both agreed well within the estimated uncertainty ranges and therefore demonstrate the applicability of the photothermal method for this kind of investigations. First results of a concrete sample with different water contents support the potential of this method for the characterization of concrete in general. T2 - NDTCE 2022 CY - Zurich, Switzerland DA - 16.8.2022 KW - Thermal effusivity KW - Thermal conductivity KW - Moisture PY - 2022 AN - OPUS4-56063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krankenhagen, Rainer T1 - Active IR thermography N2 - Längerer Vortrag zu Grundlagen der Kontrastentstehung und Messung von thermischen Kontrasten im Kontext der ZfP im Bauwesen. T2 - NDT & E Advanced Training Workshop 2018 CY - Berlin, Germany DA - 28.6.2018 KW - Thermografie PY - 2018 AN - OPUS4-45371 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krankenhagen, Rainer A1 - Maierhofer, Christiane A1 - Heckel, Thomas A1 - Brackrock, Daniel A1 - Gower, M. A1 - Lodeiro, M. A1 - Baker, G. T1 - Quantitative comparison of different non-destructive techniques for the detection of artificial defects in GFRP T2 - Proceedings of the 12th ECNDT N2 - In order to test their suitability different non-destructive methods were performed to inspect a GFRP plate with artificial defects. These defects were manufactured by means of thin PTFE sheets inserted between two plies in three different depth. The inspection methods were microwave reflection, flash thermography and phased array ultrasonics, all applied to the same specimen. Selected results are shown for all methods demonstrating opportunities and limits of the particular inspection methods. The achieved detection limits and further application aspects are compared directly to provide a useful information for the planning of inspection tasks. T2 - ECNDT CY - Gothenburg, Sweden DA - 11.06.2018 KW - Fiber resisted polymers KW - Non-destructive testing KW - Thermographic testing KW - Ultrasonic testing PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-453728 SP - ECNDT-0247-2018 AN - OPUS4-45372 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krankenhagen, Rainer T1 - Active IR Thermography N2 - This is an overview about physics and principles of active thermography.The generation and detection of thermal contrasts is described. Two applications are explained more in detail: a large mural at a building wall heated by sun and crack detection supported by additional heating. T2 - NDT&E Advanced Training Workshop 2019 CY - Berlin, Germany DA - 12.06.2019 KW - NDT KW - Thermography KW - Civil engineering PY - 2019 AN - OPUS4-49790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ziegler, Mathias A1 - Maierhofer, Christiane A1 - Krankenhagen, Rainer A1 - Röllig, Mathias T1 - Characterization of defects in fibre reinforced composites (FRC) using passive and active thermography N2 - Impact damages and delaminations in fibre-reinforced composites (FRC) might not be visible at the surface, but could have an influence on the resistance and on the long-term behaviour of the component. Therefore, and especially for safety relevant structures, non-destructive methods are required for the assessment of such damages. Active thermography methods are suitable to characterize damages after loading using different kind of excitation techniques and various configurations of infrared (IR) camera and heating sources. Here, flash lamps, impulse excitation with infrared radiator and lock-in technique with halogen lamps or widened laser beams are suited. In addition, non-optical sources like sonotrodes (requiring direct contact to the structure) or induction generators (only suited for carbon fibre reinforced polymer (CFRP) structures) could be applied as well. For the investigation of the evolution of the damage during the impact, passive thermography can be applied in-situ. Elastic and plastic deformations alter the temperature of the structure and thus the temperature on the surface. In this contribution, at first the general principles of quantitative defect characterisation in FRC using active thermography with flash, impulse and lock-in excitation are described. Optical and thermal properties of the FRC material and its anisotropy are considered. Results of phase differences obtained at flat bottom holes with flash and lock-in thermography are compared for qualifying both methods for quantitative defect characterization. Secondly, the damage evolution of CFRP and GFRP structures under impact load and static tensile loading is described. The spatial and temporal evolution of the surface temperature enables us to distinguish matrix cracks or fibre-matrix separation from delaminations between the layers. Afterwards, all results for loading defects, obtained by passive and active thermography, are compared with each other. Fig. 1 and 2 show the difference of passive and flash thermography obtained at impact and tensile loaded CFRP plates, respectively. As one purpose of these investigations is the development of standards within national (DIN) and European (CEN) standardisation bodies, new draft and final standards are presented and further needs are discussed at the end of the presentation. T2 - INTERNATIONAL SCHOOL OF QUANTUM ELECTRONICS, 62nd Course, Progress in Photoacoustic & Photothermal Phenomena CY - Erice, Italy DA - 06.09.2018 KW - Thermography KW - Flash thermography KW - Lock-in thermography KW - CFRP KW - GFRP PY - 2018 AN - OPUS4-46283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stamm, Michael A1 - Krankenhagen, Rainer A1 - Chaudhuri, Somsubhro T1 - EvalTherm - Weather-dependent passive thermography of unheated wind turbine blades N2 - Evaluation of passive Thermography for the inspection of wind turbine blades. Comparison of passive thermography from the ground with drone-supported images and active thermography. Better understand the influence of weather conditions through field measurements. Development of an inspection planning tool that incorporates weather forecasts. Use FEM simulations to predict thermal contrasts of different damages under different environmental conditions. T2 - Kolloquium CY - Saarbrücken, Germany DA - 28.09.2022 KW - Thermography KW - Wind turbine rotor blades KW - FEM PY - 2022 AN - OPUS4-56913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krankenhagen, Rainer A1 - Weigel, Sandra T1 - Photothermal investigation of original and degraded asphalt N2 - Asphalt is one of the most common materials used in road construction. It is subject to both chemical and structural aging processes during use. At least to our knowledge, it is not currently known whether these aging processes also lead to a measurable change in the thermal properties of asphalt. If so, these changes could be exploited for non-destructive testing of the aging condition in situ. Photothermal analysis of a component surface involves looking at the time course of the surface temperature during and after pulse-like heating with an expanded laser beam. In the case of concrete surfaces, this method works well under laboratory conditions. It allowed the determination of the thermal effusivity. Now it should be investigated whether the photothermal signal allows conclusions to be made regarding the aging state of the asphalt. Within the scope of this paper, 2 asphalt specimens were investigated: a closed asphalt with 3% void content (SMA 11S) and an open-pore asphalt with 25% void content (PA 8). Both samples were artificially degraded according to a standardized procedure, leaving a portion of the surface unaffected. Subsections from both areas were then separated for photothermal testing. It was found, that the photothermal method is apparently not sensitive enough to detect aging on asphalt in general. However, it is noteworthy that both asphalt types heat up significantly faster than would be expected from the theory of heat conduction, which might be explained by the specific microstructure. T2 - 22nd Conference ECTP "European Confence on thermophysical properties" CY - Venice, Italy DA - 10.09.2023 KW - Asphalt KW - Ageing KW - Photothermal PY - 2023 AN - OPUS4-58857 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -