TY - JOUR A1 - Nadammal, Naresh A1 - Kailas, Satish A1 - Szpunar, Jerzy A1 - Suwas, Satyam T1 - Development of microstructure and texture during single and multiple pass friction stir processing of a strain hardenable aluminium alloy JF - Materials Characterization N2 - In the present study, microstructure and texture development during single and multiple pass friction stir processing (FSP) of a strain hardenable wrought AlMg alloy (AA5086) was investigated. Subtle differences were observed while comparing with heat treatable alloys in the nucleation mechanism of the recrystallized microstructure observed in the nugget zone. Strain induced boundary migration was the dominant mechanism of microstructure evolution in the alloy, which influenced the crystallographic texture development by weakening it. Micro-texture measurements reveal variations in the crystallographic texture along the thickness of the sample. Recrystallization texture components were observed in the nugget zone indicative of a pronounced static recrystallization in the alloy as compared to the heat treatable alloys. Bulk texture measurements within the nugget zone of the optimally processed sample reveal a relatively dominant C component of shear texture. Average grain size in the nugget zone remained the same and the bulk crystallographic texture components were retained during multiple-pass FSP. The lower strain energies involved and the enhanced recovery processes due to the high temperature materials processing of the alloy during FSP resulted in a stable microstructure and texture. In summary, FSP could be promoted as a competent and suitable secondary processing technique for the bulk production of ultra-fine-grained materials in strain hardenable aluminium alloys. KW - Friction stir processing KW - Aluminium alloys KW - Electron back-scattered diffraction KW - Crystallographic texture KW - Dynamic recrystallization PY - 2018 UR - https://www.sciencedirect.com/science/article/pii/S1044580317336136 DO - https://doi.org/10.1016/j.matchar.2018.03.044 SN - 1044-5803 SN - 1873-4189 VL - 140 SP - 134 EP - 146 PB - Elsevier B.V CY - Amsterdam, The Netherlands AN - OPUS4-45125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Cabeza, Sandra A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Kromm, Arne A1 - Klaus, Manuela A1 - Genzel, Christoph A1 - Haberland, Christoph A1 - Bruno, Giovanni T1 - The influence of the support structure on residual stress and distortion in SLM Inconel 718 parts JF - Metallurgical and materials transactions A N2 - The effect of support structure and of removal from the base plate on the residual stress state in selective laser melted IN718 parts was studied by means of synchrotron X-ray diffraction. The residual stresses in subsurface region of two elongated prisms in as-built condition and after removal from the base plate were determined. One sample was directly built on a base plate and another one on a support structure. Also, the distortion on the top surface due to stress release was measured by contact profilometry. High tensile residual stress values were found, with pronounced stress gradient along the hatching direction. In the sample on support, stress redistribution took place after removal from the base plate, as opposed to simple stress relaxation for the sample without support. The sample on support structure showed larger distortion compared to sample without support. We conclude that the use of a support decreases stress values but stress-relieving heat treatments are still needed. KW - Additive manufacturing KW - SLM KW - Residual stress KW - Synchrotron X-ray diffraction KW - IN718 PY - 2018 DO - https://doi.org/10.1007/s11661-018-4653-9 SN - 1073-5623 VL - 49A IS - 7 SP - 3038 EP - 3046 PB - Springer Sciences & Business Media CY - New York, NY AN - OPUS4-45100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Cabeza, S. A1 - Mishurova, Tatiana A1 - Nadammal, Naresh A1 - Thiede, Tobias A1 - Bruno, Giovanni T1 - Residual Stresses in Selective Laser Melted Samples of a Nickel Based Superalloy T2 - Residual Stresses 2018 ECRS-10 N2 - Additive Manufacturing (AM) through the Selective Laser Melting (SLM) route offers ample scope for producing geometrically complex parts compared to the conventional subtractive manufacturing strategies. Nevertheless, the residual stresses which develop during the fabrication can limit application of the SLM components by reducing the load bearing capacity and by inducing unwanted distortion, depending on the boundary conditions specified during manufacturing. The present study aims at characterizing the residual stress states in the SLM parts using different diffraction methods. The material used is the nickel based superalloy Inconel 718. Microstructure as well as the surface and bulk residual stresses were characterized. For the residual stress analysis, X-ray, synchrotron and neutron diffraction methods were used. The measurements were performed at BAM, at the EDDI beamline of -BESSY II synchrotronand the E3 line -BER II neutron reactor- of the Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. The results reveal significant differences in the residual stress states for the different characterization techniques employed, which indicates the dependence of the residual state on the penetration depth in the sample. For the surface residual stresses, longitudinal and transverse stress components from X-ray and synchrotron agree well and the obtained values were around the yield strength of the material. Furthermore, synchrotron mapping disclosed gradients along the width and length of the sample for the longitudinal and transverse stress components. On the other hand, lower residual stresses were found in the bulk of the material measured using neutron diffraction. The longitudinal component was tensile and decreased towards the boundary of the sample. In contrast, the normal component was nearly constant and compressive in nature. The transversal component was almost negligible. The results indicate that a stress re-distribution takes place during the deposition of the consecutive layers. Further investigations are planned to study the phenomenon in detail. T2 - European Conference on Residual Stresses - ECRS10 CY - Leuven, Belgium DA - 11.09.2018 KW - Additive Manufacturing KW - Selective Laser Melting KW - Residual Stresses PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-459818 SN - 978-1-94529-189-0 SN - 978-1-94529-188-3 DO - https://doi.org/10.21741/9781945291890-41 SN - 2474-395X SN - 2474-3941 VL - 6 SP - 259 EP - 264 PB - Materials Research Forum LLC CY - Millersville, PA 17551, USA AN - OPUS4-45981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiede, Tobias A1 - Cabeza, S. A1 - Mishurova, Tatiana A1 - Nadammal, N. A1 - Kromm, Arne A1 - Bode, Johannes A1 - Haberland, C. A1 - Bruno, Giovanni T1 - Residual stress in selective laser melted Inconel 718: Influence of the removal from base plate and deposition hatch length JF - Materials, Performance & Characterization N2 - The residual stress distribution in IN718 elongated prisms produced by Selective Laser Melting was studied by means of neutron (bulk) and laboratory X-ray (surface) diffraction. Two deposition hatch lengths were considered. A horizontal plane near the top surface (perpendicular to the building direction) and a vertical plane near the lateral surface (parallel to the building direction) were investigated. Samples both in as-built (AB) condition and removed (RE) from the base plate were characterized. While surface stress fields seem constant for AB condition, X-ray diffraction shows stress gradients along the hatch direction in the RE condition. The stress profiles correlate with the distortion maps obtained by tactile probe measurements. Neutron diffraction shows bulk stress gradients for all principal components along the main sample directions. We correlate the observed stress patterns with the hatch length, i.e. with its effect on temperature gradients and heat flow. The bulk stress gradients partially disappear after removal from the baseplate. KW - Residual stress KW - Additive manufacturing KW - Neutron diffraction KW - Selective laser melting KW - Laboratory X-ray diffraction KW - Coordinate measurement machine KW - IN718 PY - 2018 DO - https://doi.org/10.1520/MPC20170119 SN - 2379-1365 VL - 7 IS - 4 SP - 717 EP - 735 PB - ASTM International CY - USA, West Conshohocken AN - OPUS4-46673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nadammal, Naresh A1 - Kromm, Arne A1 - Saliwan Neumann, Romeo A1 - Farahbod, Lena A1 - Haberland, Christoph A1 - Portella, Pedro Dolabella T1 - Influence of support configurations on the characteristics of selective laser-melted Inconel 718 JF - JOM-The Journal of The Minerals, Metals & Materials Society (TMS) N2 - Samples fabricated using two different support configurations by following identical scan strategies during selective laser melting of superalloy Inconel 718 were characterized in this study. Characterization methods included optical microscopy, electron back-scattered diffraction and x-ray diffraction residual stress measurement. For the scan strategy considered, microstructure and residual stress development in the samples were influenced by the support structures. However, crystallographic texture intensity and the texture components formed within the core part of the samples were almost independent of the support. The formation of finer grains closer to the support as well as within the columnar grain boundaries resulted in randomization and texture intensity reduction by nearly half for the sample built on a lattice support. Heat transfer rates dictated by the support configurations in addition to the scan strategy influenced the microstructure and residual stress development in selective laser-melted Inconel 718 samples. KW - Additive manufacturing KW - Selective laser melting KW - Support configurations KW - Microstructure and texture KW - Residual stress PY - 2018 DO - https://doi.org/10.1007/s11837-017-2703-1 SN - 1047-4838 SN - 1543-1851 VL - 70 IS - 3 SP - 343 EP - 348 PB - Springer CY - USA AN - OPUS4-44175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -