TY - JOUR A1 - Heeger, Felix A1 - Bourne, E. C. A1 - Wurzbacher, C. A1 - Funke, E. A1 - Lipzen, A. A1 - He, G. A1 - Ng, V. A1 - Grigoriev, I. V. A1 - Schlosser, D. A1 - Monaghan, M. T. T1 - Evidence for Lignocellulose-Decomposing Enzymes in the Genome and Transcriptome of the Aquatic Hyphomycete Clavariopsis aquatica N2 - Fungi are ecologically outstanding decomposers of lignocellulose. Fungal lignocellulose degradation is prominent in saprotrophic Ascomycota and Basidiomycota of the subkingdom Dikarya. Despite ascomycetes dominating the Dikarya inventory of aquatic environments, genome and transcriptome data relating to enzymes involved in lignocellulose decay remain limited to terrestrial representatives of these phyla. We sequenced the genome of an exclusively aquatic ascomycete (the aquatic hyphomycete Clavariopsis aquatica), documented the presence of genes for the modification of lignocellulose and its constituents, and compared differential gene expression between C. aquatica cultivated on lignocellulosic and sugar-rich substrates. We identified potential peroxidases, laccases, and cytochrome P450 monooxygenases, several of which were differentially expressed when experimentally grown on different substrates. Additionally, we found indications for the regulation of pathways for cellulose and hemicellulose degradation. Our results suggest that C. aquatica is able to modify lignin to some extent, detoxify aromatic lignin constituents, or both. Such characteristics would be expected to facilitate the use of carbohydrate components of lignocellulose as carbon and energy sources. KW - Aquatic fungi KW - Differential expression KW - Lignocellulose KW - Laccase KW - RNA-Seq PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536843 DO - https://doi.org/10.3390/jof7100854 VL - 7 IS - 10 SP - 2 EP - 11 PB - MDPI CY - Basel, Schweiz AN - OPUS4-53684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Albarrán Martínez, M. J. A1 - Ghigo, Tea T1 - The practice of writing inside an Egyptian monastic settlement N2 - Over the last few years, the Federal Institute for material research (BAM, Berlin) together with the Centre for the Study of Manuscript Cultures (CSMC, University of Hamburg) have initiated a systematic material investigation of black inks produced from Late Antiquity to the Middle Ages (ca. fourth century CE–fourteenth/fifteenth centuries CE), aimed primarily at extending and complementing findings from previous sporadic studies. Part of this systematic investigation has focused on Egyptian Coptic manuscripts, and the present preliminary study is one of its outputs. It centres on a corpus of 45 Coptic manuscripts—43 papyri and 2 ostraca—preserved at the Palau-Ribes and Roca-Puig collections in Barcelona. The manuscripts come from the Monastery of Apa Apollo at Bawit, one of the largest monastic settlements in Egypt between the Late Antiquity and the Early Islamic Period (sixth–eighth centuries CE). The composition of their black inks was investigated in situ using near-infrared reflectography (NIRR) and X-ray fluorescence (XRF). The analyses determined that the manuscripts were written using different types of ink: pure carbon ink; carbon ink containing iron; mixed inks containing carbon, polyphenols and metallic elements; and iron-gall ink. The variety of inks used for the documentary texts seems to reflect the articulate administrative system of the monastery of Bawit. This study reveals that, in contrast to the documents, written mostly with carbon-based inks, literary biblical texts were written with iron-gall ink. The frequent reuse of papyrus paper for certain categories of documents may suggest that carbon-based inks were used for ephemeral manuscripts, since they were easy to erase by abrasion. KW - Papyrus KW - Ink analysis KW - Coptic manuscripts KW - Bawit KW - Mixed ink KW - Near-infrared refectography KW - X-ray fuorescence PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528833 DO - https://doi.org/10.1186/s40494-021-00541-0 SN - 2050-7445 VL - 9 IS - 1 SP - 1 EP - 15 PB - Springer Open CY - Rome, Italy AN - OPUS4-52883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Seeger, Stefan T1 - Analysis of air pollutants in ambient and indoor aerosolsby TXRF - application examples N2 - Quantitative chemical analysis of airborne particulate matter (PM) is vital for the understanding of health effects in indoor and outdoor environments, as well as for enforcing air quality regulations. Typically, airborne particles are sampled over long time periods on filters, followed by lab-based analysis, e.g., with inductively coupled plasma mass spectrometry (ICP-MS). Within the EURAMET EMPIR AEROMET project, cascade impactor aerosol sampling was combined for the first time with on-site total reflection X-ray fluorescence (TXRF) spectroscopy to develop a tool for quantifying particle element compositions within short time intervals and even on-site. This makes variations of aerosol chemistry observable with time resolution of only a few hours and with good size resolution in the PM10 range. A proof of principles of this methodological approach and the comparison to standard methods within the scope of a field campaign will be presented. Secondly, aerosol sampling and TXRF analysis seems suitable for the quantification of elements in indoor aerosols as well and may provide an important enhancement of existing methods for the analysis of organic species in aerosols (such as sampling and TD-GC/MS). As an example, the TXRF analysis of particles emitted from laser printers under controlled conditions in an environmental test chamber will be presented. T2 - TXRF Journal ClubB CY - Online meeeting DA - 24.02.2022 KW - Aerosol KW - TXRF KW - Cascade impactor KW - ICP-MS KW - Particles KW - Air quality monitoring KW - Element mass concentration PY - 2022 AN - OPUS4-54418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cook, Jake Thomas T1 - Assessment of concrete bioreceptivity in algal biofilm green façade systems N2 - Algal biofilm façades are an alternative to traditional green façades which can help to improve biodiversity and air quality within cities. They present a low maintenance approach in which subaerial algae are grown directly on concrete substrates. The intrinsic bioreceptivity of the substrate is a critical factor in successful facade colonisation. Existing research has identified several environmental and material properties which influence concrete bioreceptivity, however a consensus has yet to be made on which properties are most influential and how the interaction between properties may promote algal biofilm growth under specific conditions. T2 - International Conference on Bio-Based Building Materials CY - Vienna, Austria DA - 21.06.2023 KW - Concrete KW - Façade KW - Bio-receptive KW - Extracellular polymeric substances KW - Fractional factorial PY - 2023 UR - https://www.rilem.net/agenda/5th-international-conference-on-bio-based-building-materials-1501 AN - OPUS4-58976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kazemifard, N. A1 - Dehkohneh, Abolfazl A1 - Baradaran Ghavami, S. T1 - Probiotics and probiotic-based vaccines: A novel approach for improving vaccine efficacy N2 - Vaccination is defined as the stimulation and development of the adaptive immune system by administering specific antigens. Vaccines' efficacy, in inducing immunity, varies in different societies due to economic, social, and biological conditions. One of the influential biological factors is gut microbiota. Cross-talks between gut bacteria and the host immune system are initiated at birth during microbial colonization and directly control the immune responses and protection against pathogen colonization. Imbalances in the gut microbiota composition, termed dysbiosis, can trigger several immune disorders through the activity of the adaptive immune system and impair the adequate response to the vaccination. The bacteria used in probiotics are often members of the gut microbiota, which have health benefits for the host. Probiotics are generally consumed as a component of fermented foods, affect both innate and acquired immune systems, and decrease infections. This review aimed to discuss the gut microbiota's role in regulating immune responses to vaccination and how probiotics can help induce immune responses against pathogens. Finally, probiotic-based oral vaccines and their efficacy have been discussed. KW - Probiotics KW - Gut microbiota KW - Probiotic-based vaccines PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-561767 DO - https://doi.org/10.3389/fmed.2022.940454 SN - 2296-858X VL - 9 SP - 1 EP - 15 PB - Frontiers Media CY - Lausanne AN - OPUS4-56176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fuentes, Elsa A1 - Prieto, Beatriz T1 - Effect of climate change on phototrophic biofilms colonizing granitic rocks and their biodeteriogenic activity. N2 - Material cultural heritage from NW of the Iberian Peninsula is linked to the use or presence of granite, whether in historical buildings, sculptures, archaeological sites or any other artistic manifestation. This resistant material has the ideal physical characteristics that favor its longevity, but, like any material exposed to the environment, it is susceptible to deterioration. To this respect, environmental changes due to climate change and global change may modify biological colonization-substrate interactions. The main objective of the present research was to analyse the effects of Climate Change, more specifically changes in water availability, increased temperature, increased CO2 concentrations and changes in UV-B radiation patterns, on the survival and biodeteriogenic activity of phototrophic biofilms on granite heritage and the consequences for the built heritage. Both field and laboratory work were carried out. Field studies were conducted on three rural churches to characterise the current biological colonization. A higher proportion of algae than cyanobacteria was identified, with the genera Trentepohlia and Desmococcus standing out among the former. The most common current fungi are lichenised fungi, but black fungal genera such as Catenulostroma, Rhinocladiella and Knufia were also identified. Bacterial genera related to the production of sphinganes, EPS, carotenoids and some causing the so-called pink discolouration are also present. The effect of climate change on the growth and physiological state of the organisms was analysed in the laboratory. For this purpose, mixed biofilms were developed in the laboratory and exposed to changing conditions of temperature, water availability, CO2 and UV-B. A reduction in growth was observed with increasing water restriction, although in the initial colonization process, rock bioreceptivity was shown to be a more important aspect in favoring anchorage and retention of organisms. Temperature was shown to have a growth-enhancing effect when water availability was low, whereas an increase in CO2 only resulted in increased growth under conditions of high-water availability. Increased UV-B produced a reduction in growth, especially at the highest dose (equivalent to the current dose of a west-facing wall in southern Portugal, which is considered as high), while little difference in the physiological state of the organisms was observed at the current doses in Galicia (considered as medium) and southern Ireland (considered as low). Clear changes in microbial composition were observed, with a trend towards increased or greater resistance of cyanobacteria to higher temperature, lower water availability and higher UV-B doses. In addition, all these changes in development, physiological and microbial composition had an effect on the predominant pigments, tending towards more yellowish-brownish colourations, and on the ability of the organisms to generate biodeterioration by affecting ion concentrations on water solutions by enhancing their consumption or adhesion which lead to granite deterioration. Future work should take into account the combination of a greater number of climatic parameters simultaneously and also the possible resistances associated with the nature of the SAB community studied. T2 - 19th International Biodeterioration and Biodegradation Symposium CY - Berlin, Germany DA - 09.09.2024 KW - Biofilm KW - Granite KW - Climate change KW - Biodeterioration KW - Cultural heritage PY - 2024 AN - OPUS4-62271 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Taghavi Kalajahi, Sara T1 - Pilot Study of a Laboratory- Based Microbiologically Influenced Corrosion (MIC) Test Using Microbiological Consortia Sampled from the Field N2 - Experts widely agree that the verification of microbiologically influenced corrosion (MIC) require the use of multiple lines of evidence (MLOE), including metallurgical, microbiological, operational/historical and environmental/chemical aspects. Existing standards related to MIC, such as NACE TM0106, TMO212 and TM0194, primarily aim to offer guidance on gathering such evidence. Working Group 5 of Euro-MIC COST action 20130 (Achieving standardization) proposed a laboratory-based approach that directly confirms the capability of the sampled consortium of microorganisms, obtained from the specific field location under investigation, to increase and/or alter the corrosion processes. It is necessary to verify this laboratory approach by conducting it in different laboratories, performed by different scientist. In the current study, the experiments based on the laboratory protocol of WG5 were conducted at Endures’s laboratory using environmental samples (sediment and seawater) from the North Sea. Metal coupons (carbon steel C1010) were exposed to sediment and seawater samples with varying microbial inoculums and controls over 150 days. Microbial identification, corrosion product analysis, and surface morphology assessments were conducted using molecular and microscopy techniques. The results indicate distinct microbial influences, particularly in treatments containing yeast, which fostered heightened anaerobic activity, notably by sulfate-reducing bacteria (SRB). Weight loss measurements and surface analysis revealed elevated corrosion rates and susceptibility to pitting corrosion in microbial inoculum treatments, with yeast presence exacerbating corrosion processes. Elemental analysis confirmed the presence of iron sulfide in corrosion byproducts, affirming SRB activity. The findings emphasize the importance of employing a MLOE approach and investigating pitting corrosion to better understand the impact of microorganisms on metal corrosion in the marine environments. This study contributes to advancing knowledge in the field and developing standardization: the lab-to-field transition for MIC testing. T2 - MIC-STANDS CY - Lisbon, Portugal DA - 24.07.2024 KW - Microbiologically influenced corrosion (MIC), Multiple lines of evidence (MLOE) KW - Marine Corrosion KW - Achieving standardization PY - 2024 AN - OPUS4-61979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Hensel, Jonas T1 - Application of fracture mechanics to weld fatigue N2 - The application of fracture mechanics to the determination of the fatigue behavior of weldments is discussed with the focus on classic fatigue, i.e., the overall fatigue life and the fatigue strength in terms of an S-N curve and the endurance limit. The following issues are addressed: specific features of short fatigue crack propagation, an adequate initial crack size, multiple crack propagation and its statistical treatment as well as welding residual stresses. As an example, an approach of the authors is applied to the determination of FAT classes for a butt weld with varying weld toe geometry. KW - Weld fatigue KW - Weld toe geometry KW - Short crack propagation KW - FAT class concept PY - 2020 DO - https://doi.org/10.1016/j.ijfatigue.2020.105801 SN - 0142-1123 VL - 139 SP - 105801 PB - Elsevier Ltd. AN - OPUS4-50991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Life on the rocks and other hard surfaces N2 - After their discovery on rock surfaces in cold and hot deserts, a polyphyletic group of ascomycetous black fungi was found to dominate a range of hostile environments – natural and man-made, from salterns to dishwashers, roofs and solar panels. Together with bacteria and algae they may establish subaerial biofilms and cause weathering of the surfaces they grow on. Their impressive survival abilities as well as their constitutive protective pigmentation and cluster-like microcolony organisation are similar in environmental isolates as well as in heat-tolerant opportunistic pathogens of animals and humans. We selected the rock-inhabiting fungus Knufia petricola (class Eurotiomycetes, order Chaetothyriales) that exhibits all the characteristics of microcolonial black fungi such as yeast-like cell growth, absence of reproductive structures and constitutive dihydroxynaphthalene (DHN) melanogenesis (Nai et al. 2013, Fungal Genet Biol). We developed protocols to efficiently generate and transform protoplasts resulting in stable homokaryotic transformants by targeting genes involved in pigment synthesis. The differences between the wild-type fungus and its melanin-deficient mutants were tested in geomicrobiological experiments and measured are now discussed in detail, with special accent on the possible effects of the mutation on EPS and other exuded substances. T2 - Departmental colloquium of the Tuscia University CY - Viterbo, Italy DA - 14.02.2020 KW - Ascomycetes KW - Fungal biofilms KW - Material surface colonisation KW - Genetics KW - Genomics KW - Extremophilic fungi PY - 2020 AN - OPUS4-50643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strzelczyk, Rebecca T1 - Constant emitting reference material for emissions test procedures N2 - Since nowadays people spend most of their time indoors, a healthy environment is essential. Volatile organic compounds (VOCs) emitted from furniture and building materials are reported to cause health complaints. Therefore, the usage of low emitting materials will improve the indoor air quality. Quantitative VOC emission testing is usually conducted in emission test chambers under specified controlled conditions as described in DIN 16000-9 and DIN EN 16516. For reasons of quality control/quality assurance (QC/QA) and for a better comparability of test results from different laboratories, suitable emission reference materials (ERM) are needed. Here, it is important to have a homogenous material with known emission rates over a specific time. Different approaches can be found in literature, inter alia polymer films loaded with the target compound to be released again, or a lacquer material to which a VOC mixture is added. After curing of the lacquer, the material can be loaded into a test chamber. Drawback of those approaches are their relatively fast decreasing emission profiles. For QC/QA purposes according to the test standards, VOC sources with constant emission profiles are desirable. The EU-funded research project MetrIAQ “Metrology for the determination of emissions of dangerous substances from building materials into indoor air” is working on a multi-component ERM with an envisaged instability of ≤ 10 % in the emission rate over at least 14 days. Within a doctoral thesis porous materials are impregnated with VOCs. Supercritical CO2 is used as solvent. Thus, the impregnated material does not contain any solvent that may show a measurable amount of emission in the emission test chamber. Furthermore, CO2 has the benefits to have a good availability and low costs. For the selection of porous materials several properties like the pore size, the surface, and the interaction with the components in the atmosphere need to be considered. The impregnation method is optimised while the different porous materials are tested. For the selection of porous materials the pores need to be large enough for the VOC molecules, further influence of the pore size is tested. T2 - Healthy Buildings CY - Aachen, Germany DA - 11.06.2023 KW - VOC KW - Emission KW - Quality assurance KW - Reference material PY - 2023 AN - OPUS4-59842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bell, Jérémy A1 - Climent, Estela A1 - Gotor, Raúl A1 - Tobias, Charlie A1 - Martin-Sanchez, Pedro M. A1 - Rurack, Knut T1 - Dipstick coated with polystyrene-silica core-shell particles for the detection of microbiological fuel contamination N2 - Microbial contamination of fuels by fungi or bacteria poses risks such as corrosion and fuel system fouling, which can lead to critical problems in refineries and distribution systems and has a significant economic impact at every stage of the process. Many factors have been cited as being responsible for microbial growth, like the presence of water in the storage tanks. In fact, only 1 % water in a storage system is sufficient for the growth of microorganisms like bacteria or yeasts, as well as for the development of fungal biomass at the oil/water interface. This work presents a rapid test for the accurate determination of genomic DNA from aqueous fuel extracts. The detection is based on the use of polystyrene-mesoporous silica core-shell particles onto which modified fluorescent molecular beacons are covalently grafted. These beacons contain in the hairpin loop a target sequence highly conserved in all bacteria, corresponding to a fragment of the 16S ribosomal RNA subunit. The designed single-stranded molecular beacon contained fluorescein as an internal indicator and a quencher in its proximity when not hybridized. Upon hybridization in presence of the target sequence, the indicator and the quencher are spatially separated, resulting in fluorescence enhancement. To perform the assay the developed particles were deposited on different glass fibre strips to obtain a portable and sensitive rapid test. The assays showed that the presence of genomic DNA extracts from bacteria down to 50–70 μg L–1 induced a fluorescence response. The optical read-out was adapted for on-site monitoring by fitting a 3D-printed case to a conventional smartphone, taking advantages of the sensitivity of the CMOS detector. Such embedded assembly enabled the detection of genomic DNA in aqueous extracts down to the mg L–1 range and represents an interesting step toward on-site monitoring of fuel contamination. T2 - IMA 2023 CY - Chania, Greece DA - 18.09.2023 KW - Teststreifen KW - Test strip KW - Microbial KW - Mikrobiell KW - Smartphone KW - Particles KW - Partikeln PY - 2023 AN - OPUS4-58526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Werder, Julia T1 - Biorezeptivität und Optimierung von Lehmbaustoffen - Forschung an der BAM N2 - Der Vortrag fasst die Forschungsaktivitäten der BAM in den Themengebieten Biorezeptivität von Beton und Optimierung von Lehmbaustoffen zusammen. Er diente als Kurzpräsentation für eine anschließende Podiumsdiskussion. T2 - Transformationsdialog "Material als Motor" CY - Berlin, Germany DA - 10.10.2024 KW - Biorezeptivität KW - Beton KW - Lehmbaustoffe PY - 2024 AN - OPUS4-62220 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Werder, Julia T1 - Living Concrete Walls: Engineering Bioreceptivity and Biofilms N2 - Building envelopes are a natural habitat of subaerial biofilms and can be more or less prone to be colonized (i.e. to be bioreceptive). Focusing on the added value of biofilms on manmade substrates represents new aesthetic frontiers and reduces the use of biocides. Moreover, the metabolic processes of photosynthetic biofilms can positively influence human health and life quality in densely populated cities by converting or absorbing pollutants. In the presented research the bioreceptivity of concrete claddings for building facades is engineered to sustain either natural or artificial establishment of microalgae-dominated biofilms. To be able to differentiate between the intrinsic material properties and the climatic boundary conditions, the experimental design in the first step comprised different analyses with model mono- and multi-species biofilms in sterile conditions and a high control of the environmental parameters. Growth and vitality of the algal component of the biofilms has been assessed with Pulse-amplitude modulation (PAM) fluorometry. T2 - 78th RILEM Annual Week & RILEM International Conference on Sustainable Materials & Structures: Meeting the major challenges of the 21st century - SMS 2024 CY - Toulouse, France DA - 25.08.2024 KW - Bioreceptivity KW - Biofilm KW - Weathering KW - Concrete KW - PAM fluorometry KW - Carbonation PY - 2024 AN - OPUS4-62224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Werder, Julia T1 - Gebäudebegrünung mit Biofilmen: Herausforderungen und Chancen N2 - Der Vortrag stellt die Ergebnisse der Forschungsarbeiten zur Biorezeptivität von Betonfassaden sowie der gezielten Applikation von Algen dominierten Biofilmen auf Betonfassaden vor. Insbesondere werden die Anforderungen an eine repräsentative Prüfmethode erläutert. T2 - BuGG-Tag der Forschung und Lehre Gebäudegrün 2024 CY - Leipzig, Germany DA - 26.09.2024 KW - Begrünung KW - Biorezeptivität KW - Beton KW - Biofilm PY - 2024 AN - OPUS4-62221 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schumacher, Julia A1 - Gorbushina, Anna T1 - Schwarze Pilze – Wüstenbesiedler finden neue Lebensräume N2 - Schwarze mikrokoloniale Pilze besiedeln zunehmend von Menschen geschaffene Habitate, wie schadstoffbelastete Böden, Statuen, Gebäudefassaden und Dächer. Sie verfärben und zersetzen die Oberflächen von anfälligen Materialien oder reduzieren die Lichtausbeute von Solaranlagen. Die Biologie dieser Pilze und ihre Relevanz für die Materialforschung stehen im Fokus unserer Studien an der Bundesanstalt für Materialforschung und -prüfung (BAM). Mit einer Kollektion schwarzer Pilze, die von Solaranlagen isoliert wurden, bringen wir klima- und materialrelevante Biodiversität in den Stammbaum des Lebens. Die Überlebensstrategien dieser Organismen versuchen wir mit molekularbiologischen und genetischen Untersuchungsansätzen zu entschlüsseln. KW - Pilze KW - Genetik KW - Diversität PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541037 DO - https://doi.org/10.1007/s12268-021-1646-9 VL - 27 IS - 6 SP - 665 EP - 666 PB - Springer AN - OPUS4-54103 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Catanzaro, Ilaria A1 - Gerrits, Ruben A1 - Feldmann, Ines A1 - Gorbushina, Anna A1 - Onofri, Silvano A1 - Schumacher, Julia T1 - Deletion of the polyketide synthase‐encoding gene pks1 prevents melanization in the extremophilic fungus Cryomyces antarcticus N2 - Cryomyces antarcticus, a melanized cryptoendolithic fungus endemic to Antarctica, can tolerate environmental conditions as severe as those in space. Particularly, its ability to withstand ionizing radiation has been attributed to the presence of thick and highly melanized cell walls, which—according to a previous investigation—may contain both 1,8‐dihydroxynaphthalene (DHN) and L‐3,4 dihydroxyphenylalanine (L‐DOPA) melanin. The genes putatively involved in the synthesis of DHN melanin were identified in the genome of C. antarcticus. Most important is capks1 encoding a non‐reducing polyketide synthase (PKS) and being the ortholog of the functionally characterized kppks1 from the rock‐inhabiting fungus Knufia petricola. The co‐expression of CaPKS1 or KpPKS1 with a 4′‐phosphopantetheinyl transferase in Saccharomyces cerevisiae resulted in the formation of a yellowish pigment, suggesting that CaPKS1 is the enzyme providing the precursor for DHN melanin. To dissect the composition and function of the melanin layer in the outer cell wall of C. antarcticus, non‐melanized mutants were generated by CRISPR/Cas9‐mediated genome editing. Notwithstanding its slow growth (up to months), three independent non‐melanized Δcapks1 mutants were obtained. The mutants exhibited growth similar to the wild type and a light pinkish pigmentation, which is presumably due to carotenoids. Interestingly, visible light had an adverse effect on growth of both melanized wild‐type and non‐melanized Δcapks1 strains. Further evidence that light can pass the melanized cell walls derives from a mutant expressing a H2B‐GFP fusion protein, which can be detected by fluorescence microscopy. In conclusion, the study reports on the first genetic manipulation of C. antarcticus, resulting in non‐melanized mutants and demonstrating that the melanin is rather of the DHN type. These mutants will allow to elucidate the relevance of melanization for surviving extreme conditions found in the natural habitat as well as in space. KW - Astrobiology KW - Black fungi KW - CRISPR/Cas9 KW - DHN melanin KW - Cryptoendolithism PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-606599 DO - https://doi.org/10.1002/iub.2895 SN - 1521-6551 VL - 76 IS - 12 SP - 1072 EP - 1090 PB - Wiley AN - OPUS4-60659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mallikarjun, Jhenkhar A1 - Gorbushina, Anna A1 - Kuzyakov, Yakov A1 - Koester, Moritz A1 - Castro, Rodrigo A1 - Yudina, Anna A1 - Abdallah, Khaled A1 - Matus, Francisco J. A1 - Dippold, Michaela A. T1 - Post-fire recovery of temperate and mediterranean ecosystems: An interplay between fire severity, soil nutrients, and vegetation from early-stage to decadal-scale dynamics N2 - Wildfires strongly alter soil properties, which in turn affect ecosystem recovery over extended periods, though long-term impacts are less certain. This study investigated a 14-year post-fire chronosequence in Chile’s mediterranean and temperate humid forests, revealing ecosystem-specific soil properties and nutrient recovery mechanisms. By analysing sites at successional stages, the chronosequence approach assessed temporal changes and ecosystem recovery, revealing long-term wildfire effects on soil dynamics and nutrients recovery. Wildfires raised soil bulk density to 0.9 g cm−3 in humid temperate and 1.2 g cm−3 in mediterranean ecosystems. Mediterranean soils experienced greater compaction from organic matter loss, soil aggregate destruction, ash-clogged pores, and topsoil erosion. Soil texture shifts were ecosystem-dependent: mediterranean soils increased 10–12 % in clay and silt through ash redistribution and aggregation, while temperate soils saw sand content rise by 0.74 % and 0.32 % yearly at 0–5 and 5–10 cm depths from thermal disaggregation and erosion. Ground vegetation recovers quickly, but physical soil properties like bulk density require over 14 years to return to pre-fire conditions. In humid temperate forests, ash input initially increased soil pH (4.8 to 5.8), reducing acidity, mitigating aluminium toxicity, while increasing nutrient availability. Base cation stocks increased in mediterranean woodlands (e.g., Ca: up to 0.41 Mg ha−1 y−1) due to ash retention, lower leaching, and ash infiltration into subsoil. Nutrient stocks in humid forests recovered slowly (Ca: 0.087–0.13 Mg ha−1 y−1) due to rainfall-driven leaching and low subsoil reserves. Carbon and N losses were restricted to the litter horizon in temperate forests, recovering via fire-resistant tree inputs, whereas mediterranean soils suffered severe C and N depletion from vegetation loss, erosion, and low N fixation. Fire effects and recovery are ecosystem-specific, shaped by landscape, geology, hydrology, and vegetation resilience. Understanding how fire regimes affect soil and nutrient recovery is vital for improving projections in fire-prone regions. KW - Historical fire & Wildfire KW - Nutrients Ecosystem recovery & Vegetation succession KW - Chronosequence approach KW - Losses of nutrients & Nutrients stocks KW - Wildfire PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-642918 DO - https://doi.org/10.1016/j.catena.2025.109431 SN - 0341-8162 VL - 260 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-64291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schumacher, Julia T1 - CRISPR-Cas9 in der Materialforschung - Den gesteinsbesiedelnden Pilzen auf der Spur T1 - CRISPR-Cas9 in materials research - On the trail of rock-inhabiting fungi N2 - Das mikroskopische Leben auf exponierten Oberflächen ist genügsam und kooperativ. Gesteinsbesiedelnde schwarze Pilze, Grünalgen und Cyanobakterien unterstützen einander in der Eroberung von Felsen, Mauern, Denkmälern, Dächern, Fassaden und Sonnenkollektoren. Bedeutend sind die schwarzen Pilze als Gesteinszerstörer und Biofilmbildner. Ihre massiven Zellwände und ihr langsames Wachstum machen sie stresstolerant und fordern zugleich die experimentelle Forschung heraus. In der Materialforschung können Biofilme erwünscht oder unerwünscht sein. Biofilme auf Fassaden können das Innenstadtklima positiv beeinflussen, während sie auf einem Marmordenkmal unwillkommen sind. Ohne tieferes Verständnis der angepassten Mikroben ist weder ihre Bekämpfung noch ihre gezielte Förderung auf Materialien möglich. Hier treffen sich Genetik und Materialforschung: Die CRISPR-Cas9-Technologie ermöglicht es, die Genome der Pilze für funktionale Analysen zu editieren, um die Mechanismen der Materialbesiedlung und Materialschädigung zu entschlüsseln. N2 - Rock-inhabiting black fungi are adapted to the harsh life on rocks in deserts and release minerals from the rocks. The same adaptations enable these fungi to colonize man-made surfaces such as monuments, building facades and solar systems. Black fungi are often associated with phototrophic microorganisms. The slow growth and the melanized cell walls, which protect the fungi from extreme environmental infuences, render molecular biological and genetic engineering methods diffcult, which is why little is known about the biology of these fungi. Knufa petricola was selected to understand the processes of material colonization and damage with the help of adapted methods such as CRISPR-Cas9-mediated genome editing. KW - Knufia petricola KW - Schwarze Pilze KW - Bioflme KW - Genomeditierung KW - Pigmente KW - Multiplexing KW - Resistenzkassette KW - Transformanten KW - Knufia petricola KW - Black fungi KW - Biofilms KW - Pigments KW - Genome editing KW - Multiplexing KW - Resistance cassette KW - Transformants PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-620500 DO - https://doi.org/10.11576/biuz-7595 SN - 0045-205X SN - 1521-415X N1 - Volltext (PDF) in deutsch und englisch - Full text (PDF) in German and English VL - 54 SP - 41 EP - 50 PB - Verband Biologie, Biowissenschaften und Biomedizin in Deutschland (VBiO) CY - München AN - OPUS4-62050 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schumacher, Julia T1 - Schwarze Pilze: Robuste Multitalente für die Biotechnologie T1 - Black fungi: Robust all-rounders for biotechnology N2 - Knufia petricola ist ein gesteinsbesiedelnder Pilz aus der polyphyletischen Gruppe der schwarzen Pilze. Diese Pilze entwickelten außergewöhnliche – und bisher kaum erforschte – Fähigkeiten, in verschiedenen extremen Umgebungen zu gedeihen. Die Nutzung der genetischen Vielfalt des Genoms von schwarzen Pilzen und die Nutzung von K. petricola als alternativer Wirt für die Produktion von Enzymen und Sekundärmetaboliten eröffnen Perspektiven für die Nutzung dieser bislang wenig bekannten Pilze für biotechnologische Anwendungen. N2 - Knufia petricola is a rock-inhabiting fungus belonging to the polyphyletic group of black fungi. These fungi developed extraordinary – and so far hardly studied – capabilities to thrive in different extreme environments. Accessing the genetic diversity of black fungal genomes and using K. petricola as an alternative host for producing enzymes and secondary metabolites opens perspectives for utilizing these so far little recognized fungi for biotechnological applications. KW - Knufia petricola KW - Fungal pigments KW - Genetic engineering KW - Knufia petricola KW - Pilzpigmente KW - Gentechnik PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-628150 DO - https://doi.org/10.1007/s12268-025-2442-8 SN - 0947-0867 SN - 1868-6249 VL - 31 IS - 2 SP - 159 EP - 162 PB - Springer CY - Heidelberg AN - OPUS4-62815 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Eileen A1 - Nitsche, Sarah A1 - Gorbushina, Anna A1 - Schumacher, Julia T1 - Genetic Engineering of the Rock Inhabitant Knufia petricola Provides Insight Into the Biology of Extremotolerant Black Fungi N2 - Black microcolonial fungi (Ascomycetes from Arthonio-, Dothideo-, and Eurotiomycetes) are stress-tolerant and persistent dwellers of natural and anthropogenic extreme habitats. They exhibit slow yeast-like or meristematic growth, do not form specialized reproduction structures and accumulate the black pigment 1,8-dihydroxynaphthalene (DHN) melanin in the multilayered cell walls. To understand how black fungi live, survive, colonize mineral substrates, and interact with phototrophs genetic methods are needed to test these functions and interactions. We chose the rock inhabitant Knufia petricola of the Chaetothyriales as a model for developing methods for genetic manipulation. Here, we report on the expansion of the genetic toolkit by more efficient multiplex CRISPR/Cas9 using a plasmid-based system for expression of Cas9 and multiple sgRNAs and the implementation of the three resistance selection markers genR (geneticin/nptII), baR (glufosinate/bar), and suR (chlorimuron ethyl/sur). The targeted integration of expression constructs by replacement of essential genes for pigment synthesis allows for an additional color screening of the transformants. The black-pink screening due to the elimination of pks1 (melanin) was applied for promoter studies using GFP fluorescence as reporter. The black-white screening due to the concurrent elimination of pks1 and phs1 (carotenoids) allows to identify transformants that contain the two expression constructs for co-localization or bimolecular fluorescence complementation (BiFC) studies. The co-localization and interaction of the two K. petricola White Collar orthologs were demonstrated. Two intergenic regions (igr1, igr2) were identified in which expression constructs can be inserted without causing obvious phenotypes. Plasmids of the pNXR-XXX series and new compatible entry plasmids were used for fast and easy generation of expression constructs and are suitable for a broad implementation in other fungi. This variety of genetic tools is opening a completely new perspective for mechanistic and very detailed study of expression, functioning and regulation of the genes/proteins encoded by the genomes of black fungi. KW - Microcolonial fungi KW - DHN melanin KW - Cloning vectors KW - Genetics PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546192 DO - https://doi.org/10.3389/ffunb.2022.862429 SN - 2673-6128 VL - 3 PB - Frontiers Media CY - Lausanne AN - OPUS4-54619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -