TY - JOUR A1 - Zaki, Mohammad A1 - Prinz, Carsten A1 - Ruehle, Bastian T1 - A Self-Driving Lab for Nano- and Advanced Materials Synthesis N2 - The recent emergence of self-driving laboratories (SDL) and material acceleration platforms (MAPs) demonstrates the ability of these systems to change the way chemistry and material syntheses will be performed in the future. Especially in conjunction with nano- and advanced materials which are generally recognized for their great potential in solving current material science challenges, such systems can make disrupting contributions. Here, we describe in detail MINERVA, an SDL specifically built and designed for the synthesis, purification, and in line characterization of nano- and advanced materials. By fully automating these three process steps for seven different materials from five representative, completely different classes of nano- and advanced materials (metal, metal oxide, silica, metal organic framework, and core–shell particles) that follow different reaction mechanisms, we demonstrate the great versatility and flexibility of the platform. We further study the reproducibility and particle size distributions of these seven representative materials in depth and show the excellent performance of the platform when synthesizing these material classes. Lastly, we discuss the design considerations as well as the hardware and software components that went into building the platform and make all of the components publicly available. KW - Self-driving laboratories KW - Materials acceleration platforms KW - Nanomaterials KW - Advanced materials KW - Automation KW - Robotics KW - In-line characterization PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-627361 DO - https://doi.org/10.1021/acsnano.4c17504 SN - 1936-086X VL - 19 IS - 9 SP - 9029 EP - 9041 PB - ACS Publications CY - Washington, DC AN - OPUS4-62736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -