TY - CONF A1 - Epple, Niklas A1 - Fontoura Barroso, Daniel A1 - Hau, Julia A1 - Niederleithinger, Ernst T1 - Monitoring Reinforced Concrete Structures with Coda Waves The Influence of Temperature on Ultrasound Velocity Changes calculated with Coda Wave Interferometry N2 - Monitoring of reinforced concrete structures to ensure their stability and increase their service-life is a crucial element of a modern infrastructural concept. With classical methods of non-destructive testing and inspection, repeated measurements under comparable conditions are difficult to conduct. Therefore, DFG research unit FOR 2825 CoDA researches the assessment of concrete damage using ultrasound coda wave interferometry and embedded sensors. Embedding the sensors into the monitoring target reduces human and non-human factors influencing repeatability. Using Coda Wave Interferometry (CWI), small velocity changes in the material can be detected by comparison of repeated measurements. The technique is sensitive to damaging changes like cracking as well as to reversible influences like material temperature. The understanding of these different influences on the signal is crucial for the analysis of long-term monitoring data to make an educated assessment of the structure and its integrity. With several laboratory experiments in a climate chamber and a long-term experiment recording an annual cycle in a large model on an outdoor test site in Horstwalde close to Berlin, we try to understand the influence of temperature on the CWI results. The results show that the velocity change calculated by CWI does closely follow the trend of concrete temperature. After one year of data recording with the large model being exposed to environmental variations only, the calculated velocity change resembles the annual temperature curve. The data shows a linear dependency between velocity and temperature change in a range of -0.03 percent per °K to -0.06 percent per °K - regardless of specimen size. An approach to remove temperature influence from the yearly cycle recorded in the large-scale experiment using this linear relation is unable to remove high-frequency variations - especially daily influences. Low-pass filtering the data can eliminate these variations while preserving permanent shifts caused by damages. Although we have shown that the influence of temperature on long term monitoring can be removed to a significant extent, there is still an influence of environmental changes remaining in the data. Possible nonlinear effects and influences not related to temperature need to be investigated in the future. T2 - DGG 81. Jahrestagung 2021 CY - Online meeting DA - 01.03.2021 KW - Ultrasound KW - Bridge Monitoring KW - Coda Wave Interferometry KW - Structural health monitoring PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522401 DO - https://doi.org/10.23689/fidgeo-3975 AN - OPUS4-52240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Prabhakara, Prathik A1 - Heckel, Thomas A1 - Gohlke, Dirk A1 - Brackrock, Daniel A1 - Manzoni, Anna T1 - Ein synergistischer Ansatz zur Charakterisierung anisotroper Materialien mit Hilfe von Ultraschall und Mikrostrukturanalyse N2 - Es wird eine Studie zur Charakterisierung eines anisotropen Stahls vorgestellt, bei der Ultraschalluntersuchungen mit Mikrostrukturanalysen verbunden werden. Das Material weist hohe Festigkeit und Korrosionsbeständigkeit auf, zugleich ist mit anisotropen Eigenschaften die mechanischen und betrieblichen Eigenschaften beeinflussen zu rechnen. Vorläufige Ergebnisse lassen vermuten, dass weitere Untersuchungen notwendig sind, um die Fähigkeiten und Grenzen des Materials genau zu bestimmen. Es wird ein systematischer Ansatz mit Array- Prüfköpfen, Time-of-Flight Diffraction (TOFD) Technik und mikrostrukturellen Untersuchungen angewendet, um die Wechselwirkung zwischen Anisotropie und Mikrostruktur des Stahls zu analysieren. Ultraschallprüfungen mit der TOFD-Technik und in Tauchtechnik liefern Einblicke in das anisotrope Verhalten des Werkstoffes, einschließlich entsprechenden Kornorientierung, Dämpfung und Schallgeschwindigkeitsvariation. Diese Messungen führen in Verbindung mit mikrostrukturellen Analysen zu einem tieferen Verständnis des Materialverhaltens. Unser Hauptziel ist es, ein Framework zu erstellen, welches die Ultraschallantwort anisotroper Materialien mit ihren mikroskopischen Struktureigenschaften verbindet. Die vorgestellte Methodik ermöglicht eine zerstörungsfreie und zügige Bewertung der Materialintegrität, was besonders bei der Anwendung von Hochleistungsmaterialien relevant ist. Durch diesen integrativen Ansatz werden verschiedener Charakterisierungsmethoden kombiniert, um ein umfassenderes Materialverständnis zu erreichen. T2 - DGZfP-Jahrestagung 2024 CY - Osnabrück, Germany DA - 06.05.2024 KW - Ultrasonic Testing KW - Time-offlight Diffraction (TOFD) KW - Microstructure Analysis KW - Non-Destructive Testing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600122 UR - https://www.ndt.net/?id=29535 AN - OPUS4-60012 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Casperson, Ralf A1 - Dey, Anika A1 - Pohl, Rainer A1 - Thomas, Hans-Martin T1 - 'Verortung' der Prüfergebnisse bei der ZfP an Eisenbahnschienen T2 - DGZfP-Jahrestagung 2011 N2 - Das Schienennetz der DB und anderer Bahngesellschaften wird regelmäßig mit Schienenprüfzügen inspiziert. Die mit den Prüfzügen aufgenommenen Messdaten werden offline zu einem späteren Zeitpunkt ausgewertet. Um Prüfbefunde manuell nachprüfen und ggf. Reparaturmaßnahmen einleiten zu können, ist eine möglichst exakte Zuordnung der Befunde zum Prüfort notwendig. Theoretisch ist jeder Ort des Schienennetzes durch Streckennummer, Richtungskennzahl und Kilometrierung exakt beschrieben. In der Praxis treten jedoch bei der Zuordnung diverse Probleme auf: Die Kilometrierung wird während der Prüfung manuell erfasst, indem die Beschriftung der Kilometer- bzw. Hektometertafeln in das Prüfsystem eingegeben und deren Position beim Vorbeifahren per Tastendruck in die Messdaten 'eingeblitzt' wird. Die Hektometertafeln stehen jedoch nicht an der aufgedruckten Position, sondern sind am nächstgelegenen Mast montiert. Dagegen ist die Ungenauigkeit des manuellen 'Einblitzens' vernachlässigbar. Außerdem ist die Kilometrierung nicht immer eindeutig, da nach Umbaumaßnahmen Kilometersprünge (sowohl fehlende als auch doppelte Kilometer) auftreten können. Abhilfe verspricht der Einsatz des satellitengestützten GPS, vorausgesetzt, die Strecken sind exakt vermessen. Um eine ausreichende Positionsgenauigkeit auch bei schlechten Empfangsbedingungen zu erreichen, ist jedoch ein erheblicher Aufwand notwendig. Die Positionsgenauigkeit eines Standard-GPS-Empfängers genügt hier nicht. Es wird ein Verortungssystem hoher Positionsgenauigkeit auf der Basis des GPS vorgestellt, das sich derzeit in der Erprobung befindet. T2 - DGZfP-Jahrestagung 2011 CY - Bremen, Germany DA - 30.05.2011 KW - Zerstörungsfreie Prüfung KW - Verortung KW - GPS PY - 2011 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-252802 SN - 978-3-940283-33-7 IS - DGZfP-BB 127 (P85) SP - 1 EP - 5 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) AN - OPUS4-25280 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien T1 - Detektion innenliegender Defekte mittels photothermischer Super-Resolution-Rekonstruktion und 2D-Beleuchtungsmustern N2 - Für die aktive Thermografie als zerstörungsfreie Prüfmethode galt lange Zeit die Faustformel, dass die Auflösung interner Defekte/Inhomogenitäten auf ein Verhältnis von Defekttiefe/Defektgröße ≤ 1 beschränkt ist. Die Ursache hierfür liegt in der diffusiven Natur der Wärmeleitung in Festkörpern. Sogenannte Super-Resolution-Ansätze erlauben seit Kurzem die Überwindung dieser physikalischen Grenze um ein Vielfaches. Damit ergibt sich die attraktive Möglichkeit die Thermografie von einem rein oberflächensensitiven Prüfverfahren hin zu einem Verfahren mit verbesserter Tiefenreichweite zu entwickeln. Wie weit diese Entwicklung getrieben werden kann, ist Gegenstand aktueller Forschung. Wir konnten bereits zeigen, dass diese klassische Einschränkung für ein- und zweidimensionale Defektgeometrien überwunden werden kann, indem das Prüfobjekt mit einzelnen Laserspots sequenziell strukturiert beleuchtet wird und damit anschließend aus den resultierenden Messdaten durch Anwendung photothermischer Super-ResolutionRekonstruktion eine Defektkarte berechnet werden kann, welche eine deutlich verbesserte Trennung einzelner naheliegender Defekte erlaubt. Dieses Verfahren profitiert dabei im Ergebnis stark von der Kombination von sequenzieller räumlich strukturierter Beleuchtung und modernen numerischen Optimierungsverfahren, was jedoch in Summe stark auf Kosten der experimentellen Komplexität geht. Dies führt im Gegensatz zur Anwendung von etablierten thermografischen Standardverfahren mit vollflächiger Beleuchtung zu langen Messzeiten, großen Datensätzen und langwieriger numerischer Auswertung. In dieser Arbeit berichten wir über die Anwendung vollflächig räumlichstrukturierter zweidimensionaler Beleuchtungsmuster, welche es durch den Einsatz modernster Laserprojektortechnik in Verbindung mit einem Hochleistungslaser überhaupt erst erlaubt, eine effiziente Umsetzung von photothermischer Super-ResolutionRekonstruktion auch für größere Prüfflächen zu erreichen. T2 - Thermographie-Kolloquium 2022 CY - Saarbrücken, Germany DA - 28.09.2022 KW - Thermografie KW - Super resolution KW - Eingeschlossene Defekte KW - ZfP KW - DLP KW - Projektor KW - DMD PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565222 UR - https://www.dgzfp.de/Portals/thermo2022/BB178/Inhalt/13.pdf AN - OPUS4-56522 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahmadi, Samim A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Burgholzer, Peter A1 - Jung, Peter A1 - Caire, Giuseppe A1 - Ziegler, Mathias T1 - Neue Verfahren der thermografischen Super Resolution mit strukturierter 1D-Lasererwärmung N2 - Die thermografische ZfP basiert auf der Wechselwirkung von thermischen Wellen mit Inhomogenitäten. Die Ausbreitung von thermischen Wellen von der Wärmequelle zur Inhomogenität und zur Detektionsoberfläche entsprechend der thermischen Diffusionsgleichung führt dazu, dass zwei eng beieinander liegende Defekte fälschlicherweise als ein Defekt im gemessenen Thermogramm erkannt werden können. Um diese räumliche Auflösungsgrenze zu durchbrechen, also eine Super Resolution zu realisieren, kann die Kombination von räumlich strukturierter Erwärmung und numerischen Verfahren des Compressed Sensings verwendet werden. Für unsere Arbeiten benutzen wir Hochleistungs-Laser im Kilowatt-Bereich um die Probe entweder hochaufgelöst entlang einer Linie (1D) abzurastern oder strukturiert zu erwärmen. Die Verbesserung des räumlichen Auflösungsvermögens zur Defekterkennung hängt dann im klassischen Sinne direkt von der Anzahl der Messungen ab. Mithilfe des Compressed Sensings und Vorkenntnissen über das System ist es jedoch möglich die Anzahl der Messungen zu reduzieren und trotzdem Super Resolution zu erzielen. Wie viele Messungen notwendig sind und wie groß der Auflösungsgewinn gegenüber der konventionellen thermografischen Prüfung mit flächiger Erwärmung ist, hängt von einer Reihe von Messparametern, der Messstrategie, Probeneigenschaften und den verwendeten Rekonstruktionsalgorithmen ab. Unsere Studien befassen sich mit dem Einfluss der experimentellen Parameter, wie z.B. der Pulslänge der Laserbeleuchtung und der Größe des Laserspots. Weiterhin haben wir uns mit der Wahl der Parameter in der Rekonstruktion auseinandergesetzt, die einen Einfluss auf das im Compressed Sensing zugrundeliegende Minimierungsproblem haben. Für jeden getesteten Parametersatz wurde eine Rekonstruktionsqualität berechnet. Schließlich wurden die Defektrekonstruktionen basierend auf den Parameternsätzen verglichen, sodass eine Parameterwahl für hohe Rekonstruktionsqualitäten mit thermografischer Super Resolution empfohlen werden kann. T2 - DGZfP-Jahrestagung 2021 CY - Online meeting DA - 10.05.2021 KW - Super resolution KW - Thermografie KW - Strukturiert KW - Photothermisch PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527820 AN - OPUS4-52782 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien A1 - Ahmadi, Samim A1 - Hirsch, Philipp Daniel A1 - Ziegler, Mathias T1 - Thermografische Super Resolution mit 2D-strukturierter Erwärmung N2 - Thermografische Super Resolution ermöglicht die Auflösung von Defekten/Inhomogenitäten unterhalb des klassischen Limits, welches durch die Diffusionseigenschaften der thermischen Wellenausbreitung bestimmt wird. Basierend auf einer Kombination aus der Anwendung spezieller Abtaststrategien und einer anschließenden numerischen Optimierungsschritt bei der Datenauswertung hat sich die thermografische Super Resolution bereits bei der Detektion von 1D-Defekten gegenüber den Standard-Thermografieverfahren als überlegen erwiesen. In unserer Arbeit erweitern wir die Möglichkeiten der Methode zur effizienten Detektion und Auflösung von Defektquerschnitten mit einer vollständig 2D-strukturierten Erwärmung. Der experimentelle Ansatz basiert auf einer wiederholten räumlich strukturierten Erwärmung durch einen Hochleistungslaser. In einem zweiten Nachbearbeitungsschritt werden mehrere kohärente Messungen mittels mathematischer Optimierung und unter Ausnutzung der (Joint-) Sparsity der Defekte innerhalb des Prüfkörpers kombiniert. Als Ergebnis kann eine 2D-sparse Defekt-/ Inhomogenitätskarte erhalten werden. Da die Kombination von räumlich strukturierter Erwärmung und anschließender numerischer Kombination mehrerer kohärenter Messungen nicht nur die Auflösung verbessert, sondern auch die Messkomplexität drastisch erhöht, werden verschiedene Scanstrategien untersucht. Abschließend werden die erhaltenen Ergebnisse mit denen konventioneller thermografischer Prüfverfahren verglichen. T2 - DGZfP-Jahrestagung 2021 CY - Online meeting DA - 10.05.2021 KW - Thermography KW - Super-resolution KW - NDT KW - Inspection KW - Image resolution PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-526396 UR - https://jahrestagung.dgzfp.de/Programm#P45 AN - OPUS4-52639 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - „Prozess-Sensoren 4.0“ – Chancen für neue Automatisierungskonzepte und neue Geschäftsmodelle in der Prozessindustrie N2 - Prozess-Sensoren 4.0 vereinfachen ihre Einbindung über Plug and Play, obwohl sie komplexer werden. Sie bieten Selbstdiagnose, Selbstkalibrierung und erleichterte Parametrierung. Über die Konnektivität ermöglichen die Prozess-Sensoren den Austausch ihrer Informationen als Cyber-physische Systeme mit anderen Prozess-Sensoren und im Netzwerk. Der Aufbruch von der aktuellen Automation zum smarten Sensor hat bereits begonnen. Automatisierungstechnik und Informations- und Kommunikationstechnik (IKT) verschmelzen zunehmend. Wenn die Prozessindustrie dieses nicht definiert, tun es andere. Für die weitere Entwicklung von der Ist‐Situation zu einer Industrie-4.0-Welt in der Prozessindustrie werden mehrere Szenarien diskutiert. Diese reichen vom erleichterten Abruf sensorbezogener Daten über zusätzliche Kommunikationskanäle zwischen Sensor und mobilen Endgeräten über vollständig bidirektionale Kommunikation bis hin zur Einbindung der Cloud und des Internets in virtualisierte Umgebungen. Um zu einer störungsfreien Kommunikation aller Sensoren untereinander zu kommen, muss mindestens ein einheitliches Protokoll her, das alle Sensoren sprechen und verstehen. Der derzeit greifbarste offengelegte Standard, der moderne Kommunikationsanforderungen erfüllt, ist OPC Unified Architecture (OPC-UA). Viele halten das Sortieren der Kommunikationsstandards für eines der wesentlichen Errungenschaften von Industrie 4.0. Eine Topologie für smarte Sensoren, das Zusammenwirken mit daten- und modellbasierte Steuerungen bis hin zur Softsensorik sowie weitere Anforderungen an Sensoren sind jedoch heute noch nicht angemessen beschrieben. Wir müssen jetzt schnell die Weichen für eine smarte und sichere Kommunikationsarchitektur stellen, um zu einer störungsfreien Kommunikation aller Sensoren auf Basis eines einheitlichen Protokolls zu kommen, welches alle Sensoren ausgeben und verstehen. Aktuelle und zukünftige öffentliche Förderung von Industrie 4.0-Projekten sind eine gute Investition. Wegen der hohen Komplexität und Interdisziplinarität gelingt die Umsetzung nur gemeinsam zwischen Anwendern aus der Prozessindustrie, Software- und Geräteherstellern und Forschungsgruppen. Anwender sind gefragt, diese neue Technologie durch eine beschleunigte Validierung und Akzeptanz umzusetzen. Sie erhalten die einzigartige Chance, ihre Prozesse und Anlagen wettbewerbsfähig zu halten. Kooperativ betriebenen F&E-Zentren und gemeinsam anerkannten Applikationslaboren kommt dafür eine hohe Bedeutung zu. T2 - Tagung Industrie 4.0 - "Safety und Security - Mit Sicherheit gut vernetzt", Hochschule für Technik und Wirtschaft CY - Berlin, Germany DA - 28.04.2017 KW - Prozessanalytik KW - Prozess-Sensoren 4.0 KW - Prozessindustrie KW - Smarte Sensoren KW - Automation PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-400262 AN - OPUS4-40026 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph A1 - Küttenbaum, Stefan T1 - Machbarkeitsstudie zur Zustandserfassung von Spannbetonschwellen mit dem Ultraschallverfahren N2 - Das niederfrequente Ultraschallverfahren zur zerstörungsfreien Zustandserfassung von Stahlbetonkomponenten findet im Bauwesen umfangreiche Anwendung. Multistatische Arrays sind am Markt verfügbar und ausgelegt für die Prüfung großflächiger Betonstrukturen. In einer Machbarkeitsstudie wird überprüft, ob eine Zustandserfassung an schlanken Spannbetonschwellen möglich ist. B70-Schwellen und B90-Weichenschwellen wurden hierfür im Labor, im Schienennetz und während der Wiederaufbereitung mit dem Ultraschallverfahren untersucht. Fokus ist die Detektion von Sickenrisse, Kopfrissen und Treibrissen im Bereich des Schwellenkopfes. Die rekonstruierten Ultraschalldaten zeigen für intakt-klassifizierte Schwellen ein reproduzierbares Rückwandecho und weitere Reflexionen an den Schwellenaußenkanten. Die Ausprägung der Amplitude variiert je nach Degradation durch Belastung und Verwitterung. Defekt-klassifizierte Schwellen mit z. B. Kopfrissen oder unterseitigen Abplatzungen unterscheiden sich im Signalbild deutlich durch oberflächennahe Reflexionen bzw. verschobene Rückwandechos. Basierend auf den untersuchten Schwellen zeigt die Machbarkeitsstudie, dass eine zerstörungsfreie Zustandserfassung mit Hilfe des Ultraschallverfahrens grundsätzlich möglich ist. T2 - 13. Fachtagung ZfP im Eisenbahnwesen CY - Erfurt, Germany DA - 12.03.2024 KW - Zerstörungsfreie Prüfung KW - Spannbetonschwelle KW - Ultraschallverfahren KW - Beton KW - Zustandsermittlung PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596536 AN - OPUS4-59653 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Paul, Andrea T1 - Man proposes, God disposes – The Way from Reaction Monitoring to Industrial Automation N2 - Compact nuclear magnetic resonance (NMR) instruments make NMR spectroscopy and relaxometry accessible in industrial and harsh environments for reaction and process control. An increasing number of applications are reported. Robust field integration of NMR systems have to face explosion protection or integration into process control systems with short set-up times. Tis paves the way for industrial automation in real process environments. Automated data preparation and analysis are cornerstones for a breakthrough of NMR techniques for process control. Particularly, robust chemometrics as well as automated signal processing methods have to be (further) developed especially for NMR spectroscopy in process control. This becomes even more important for so called “smart sensors” providing the basis for the future project “Industrie 4.0”, and Industrial Internet of Things (IIoT), along with current requirements to process control, model based control, or soft sensing. Data analysis techniques are available but currently mostly used for off-line data analysis to detect the causes of variations in the product quality. The talk presents current research activities towards process control with compact NMR and reflects “cultural differences” between the interdisciplinary parties involved. T2 - Symposium NMRPM - Quantitative NMR Methods for Reaction and Process Monitoring CY - Kaiserslautern, Germany DA - 19.01.2017 KW - Reaction Monitoring KW - Process Analytical Technology KW - Smart Sensors KW - Process Control KW - Industrie 4.0 KW - Online NMR Spectroscopy PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-389940 AN - OPUS4-38994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Meyer, Klas A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Online low-field NMR spectroscopy in modular plants for chemical production N2 - Die Online-Reaktionsverfolgung ist der Schlüssel zur chemischen Prozesskontrolle. Heute werden in diesem Bereich hauptsächlich Methoden der optischen Spektroskopie eingesetzt. Durch aktuelle Entwicklungen im Bereich kompakter Niederfeld-NMR-Spektrometer auf Basis von Permanentmagnetsystemen ist erstmals auch die Integration unmittelbar in einer industriellen Produktionsumgebung möglich. Diese Geräte sind robuste und relativ preiswerte Analysatoren, welche die Vorteile eines wartungsfreundlichen Betriebs ohne Notwendigkeit von kryogenen Flüssigkeiten, sowie eine einfache Handhabung vereinen. Aktuell auf dem Markt verfügbare Geräte sind jedoch ausschließlich auf den Einsatz im Laborbetrieb ausgerichtet. Für die Kopplung als Online-Methode im Prozesseinsatz ist die Entwicklung geeigneter Durchflusszellen notwendig. Diese ermöglichen idealerweise ein gutes Signal-Rausch-Verhältnis, eine ausreichende Robustheit und müssen die Anforderungen an die Integration in industrielle Anlagen erfüllen (z.B. Explosionsschutz, Temperierung). Intensivierte kontinuierliche Prozesse stehen im Fokus der aktuellen Forschung. Im Vergleich zu etablierten Batch-Verfahren besteht in modularen chemischen Anlagen die Möglichkeit durch kurze Umrüstzeiten zwischen Kampagnen effektiv auf die Marktentwicklung zu reagieren. Bei kontinuierlicher Prozessführung sind Online-Sensoren und eine zuverlässige und schnelle Regelung der Produktqualität essentiell. Andernfalls besteht ein großes Risiko, große Mengen nicht-spezifikationskonformer Produkte zu erhalten. Dies wird im Rahmen des Forschungsprojekts CONSENS (Integrated Control and Sensing) der Europäischen Union durch die Entwicklung und Integration intelligenter Sensormodule zur Prozessüberwachung und -steuerung in modularen Anlagenkonzepten thematisiert. Das vorgestellte NMR-Analysatormodul mit der Baugröße von 57 x 57 x 85 cm basiert auf einem kompakten 43,5-MHz-NMR-Spektrometer. Dieses ist zusammen mit einem Akquisitionsrechner und einer programmierbaren Steuerung für die automatisierte Daten-aufbereitung (Phasing, Baseline-Korrektur) und Auswertung in ein explosionsgeschütztes Gehäuse integriert. Für die automatisierte Datenanalyse kommt die Methode des Indirect Hard Modelings (IHM) zum Einsatz. Die entwickelten IHM-Modelle werden mittels Online-Hochfeld-NMR-Spektroskopie als Referenzverfahren in einem Versuchsaufbau zur Überwachung kontinuierlicher Reaktionen auf Basis eines mit Spritzenpumpen betriebenen 1/8" Rohrreaktors validiert. N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and relatively inexpensive analysers, which feature advantages like low cost, low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, sufficient robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. Intensified continuous processes are in focus of current research. Flexible (modular) chemical plants can produce different products using the same equipment with short down-times between campaigns and quick introduction of new products to the market. In continuous flow processes online sensor data and tight closed-loop control of the product quality are mandatory. If these are not available, there is a huge risk of producing large amounts of out-of-spec (OOS) products. This is addressed in the European Union’s Research Project CONSENS (Integrated Control and Sensing [3]) by development and integration of smart sensor modules for process monitoring and control within such modular plant setups. The presented NMR module is provided in an explosion proof housing of 57 x 57 x 85 cm module size and involves a compact 43.5 MHz NMR spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction) and evaluation. Indirect Hard Modeling (IHM) was selected for data analysis of the low-field NMR spectra. A set-up for monitoring continuous reactions in a thermostated 1/8” tubular reactor using automated syringe pumps was used to validate the IHM models by using high-field NMR spectroscopy as analytical reference method. T2 - Praktische Probleme der Kernresonanzspektroskopie CY - Erlangen, Germany DA - 16.01.2017 KW - Online NMR spectroscopy KW - Automated data evaluation KW - NMR sensor KW - Process control PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-389819 AN - OPUS4-38981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Die Technologie-Roadmap „Prozess-Sensoren 4.0“ – Chancen für neue Automatisierungskonzepte und neue Geschäftsmodelle N2 - Die auf der NAMUR HS 2015 vorgestellte Technologie-Roadmap „Prozess-Sensoren 4.0“ zeigt die nötigen Anforderungen an Prozess-Sensoren sowie an deren Kommunikations-fähigkeiten auf. Wir berichten über den Stand der Diskussionen im Trialog zwischen Anwendern, Software- und Geräteherstellern sowie der Forschung. Ein wichtiger Schlüssel ist die Definition einer bedarfsgerechten und einheitlichen Topologie für solche smarten Sensoren, die in einem Arbeitskreis „Smarte-Sensorik“ ohne im wechselseitigen Austausch mit Geräte- und Softwareherstellern und Forschungseinrichtungen vorangetrieben werden soll. T2 - 1. Forum Embedded Spektroskopie CY - Berlin, Germany DA - 01.12.2016 KW - Roadmap KW - Prozess-Sensoren 4.0 KW - Prozessanalytik KW - Embedded spectroscopy PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-385611 AN - OPUS4-38561 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Meyer, Klas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Ugly Spectra and Lousy interfaces – Challenges for Compact NMR Spectroscopy in Process Control N2 - With the introduction of advanced process analytical technology, the closeness of key process variables to their limits can be directly controlled and the product can be classified or even released in real time. Compact NMR instruments can make NMR spectroscopy accessible in industrial and harsh environments for process control. T2 - ProcessNet-Jahrestagung und 32. DECHEMA-Jahrestagung der Biotechnologen 2016 CY - Aachen, Germany DA - 12.09.2016 KW - Industrie 4.0 KW - CONSENS KW - Reaction Monitoring KW - Smart Sensors KW - Online NMR Spectroscopy KW - Lithiation PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-373895 AN - OPUS4-37389 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Low field NMR spectroscopy for sustainable and flexible production of high quality chemical products N2 - The main development goal of process industries is to advance the continuous production of high-value products that meet high quality demands in flexible intensified continuous plants by introducing novel online sensing equipment and closed-loop control (CONSENS – integrated control and sensing- is funded from the European Union’s Horizon 2020 research and innovation programme). Therefore, we present the field integration of a benchtop NMR instrument into a modular production environment, focussing on suitable equipment for operation in hazardous areas with risk of explosive atmospheres. We investigated a pharmaceutical reaction step in order to describe challenges for the experimental design, the evaluation of complex NMR spectra and demonstrate automated data analysis tools. T2 - 5th Panic - Practical Applications of NMR in Industry Conferece CY - Hilton Head Island, SC 29928, USA DA - 20.02.2017 KW - Online NMR spectroscopy KW - Automated data evaluation KW - Process control PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-392333 AN - OPUS4-39233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Kern, Simon A1 - Gräßer, Patrick A1 - Maiwald, Michael T1 - Process monitoring of an intensified continuous production unit with compact NMR spectroscopy N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and relatively inexpensive analyzers, which feature advantages like low cost, low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, sufficient robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. Recently, promising benchtop NMR instruments with acceptable performance came to market and process integrated sensors developed on basis of such laboratory instruments are on their way. Intensified continuous processes are in focus of current research. Compared to traditional batch processes, these are giving admittance to new and difficult to produce compounds, leading to better product uniformity, and dras-tically reducing the consumption of raw materials and energy. Flexible (modular) chemical plants can produce different products using the same equipment with short down-times between campaigns, and quick introduction of new products to the market. Typically, such plants have smaller scale than big size facilities for production of basic chemicals but are still capable to produce kilograms to tons of specialty products each day. Such flexible (modular) plants can be provided in the size of 20 ft freight containers and represent a promising approach by their ability of easy transfer to production sites as well as the possibility of increasing production capacity by a simple numbering-up-approach. However, full automation is a prerequisite to realize such benefits of intensified continuous production. In continu-ous flow processes steady automated measurements and tight closed-loop control of the product quality are mandatory. If these are not available, there is a huge risk of producing large amounts of out-of-spec (OOS) prod-ucts. This is addressed in the European Union’s Research Project CONSENS (Integrated Control and Sensing) by development and integration of smart sensor modules for process monitoring and control within such modular plant setups. T2 - 12. Kolloquium des Arbeitskreises Prozessanalytik CY - Berlin, Germany DA - 28.11.2016 KW - Low field NMR spectroscopy KW - Modular production units KW - Online NMR spectroscopy PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-385628 AN - OPUS4-38562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Kern, Simon A1 - Gräßer, Patrick A1 - Maiwald, Michael T1 - Process monitoring of an intensified continuous production unit with compact NMR spectroscopy N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and inexpensive analysers, which feature advantages like low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. Intensified continuous processes are in focus of current research. Flexible (modular) chemical plants can produce different products using the same equipment with short down-times between campaigns and quick introduction of new products to the market. In continuous flow processes online sensor data and tight closed-loop control of the product quality are mandatory. Otherwise there is a huge risk of producing large amounts of out-of-spec (OOS) products. This is addressed in the European Union’s Research Project CONSENS by development and integration of smart sensor modules for process monitoring and control within such modular plant setups. The presented NMR module is provided in an explosion proof housing with a module size of 57 x 57 x 85 cm and involves a compact 43.5 MHz NMR spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction) and evaluation. Indirect Hard Modeling (IHM) was selected for data analysis of the low-field NMR spectra. A set-up for monitoring continuous reactions in a thermostated 1/8” tubular reactor using automated syringe pumps was used to validate the IHM models by using high-field NMR spectroscopy as analytical reference method. T2 - Workshop for Process Industry - Tackling the Future of Plant Operation CY - Frankfurt am Main, Germany DA - 25.01.2017 KW - Online NMR spectroscopy KW - Process analytical technology KW - Prozessanalytik KW - Process control KW - CONSENS PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-391386 AN - OPUS4-39138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Peters, Claudia A1 - Meyer, Klas A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Gräßer, Patrick A1 - Wander, Lukas T1 - How far does the light shine? A check-up of quantitative high and low field NMR spectroscopy N2 - The Royal Society of Chemistry NMR Discussion Group and Molecular Spectroscopy Group would like to invite you to the 2017 Spring Meeting, which will be held at GlaxoSmithKline (GSK), Stevenage. The theme for the meeting is “Low level detection and quantification by NMR” and different NMR technologies, including solution state NMR, solid state NMR and benchtop/low field NMR will be discussed. The presentations will cover a range of NMR related disciplines, including conventional low level detection and quantification, the use of cryoprobes, quantification of polymorphism using ssNMR and also methods for spectral simplification. Recent developments and applications of hyperpolarisation techniques, within both solution state and solid state NMR, will be presented in conjunction with the effect these sensitivity enhancements have with respect to quantification and limits of detection. T2 - NMR Discussion Group and Molecular Spectroscopy Group Spring Meeting: "Low Level Detection and Quantification by NMR Spectroscopy" CY - Stevenage, UK DA - 29.03.2017 KW - Online NMR Spectroscopy KW - Quantitative NMR Spectroscopy KW - qNMR KW - Indirect Hard Modeling KW - Limit of Detection KW - NMR Spectroscopy KW - Metrology PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-395936 AN - OPUS4-39593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Maiwald, Michael T1 - Low field NMR spectroscopy for process control - robust automated data preparation and analysis as prerequisites T1 - Niederfeld NMR-Spektroskopie für die Prozesskontrolle – Robuste und automatisierte Datenvorbehandlung und Datenanalyse als Grundvoraussetzungen N2 - Berichtet wird über die automatisierte und spektral-modellgestützte Datenauswertung quantitativer Online-NMR-Spektren von technischen Systemen, die einen grundlegenden Beitrag zum Thematik Smart Sensors im Sinne kalibrierarmer bzw. kalibrierfreier Verfahren liefern. Die quantitative Online-NMR-Spektroskopie ist besonders reizvoll für diese Thematik: Sie kommt durch den direkten Nachweis der Kernspins ohne Kalibrierung aus und arbeitet auch in Konzentrationsrandbereichen äußerst linear. Als „absolute Vergleichsmethode“ (direkte Proportionalität der Signale zu den Stoffmengen innerhalb eines Spektrums) ist die NMR-Spektroskopie für die durchgeführten Grundlagenuntersuchungen im Zusammenhang mit spektralen Modellen prädestiniert. T2 - Seminar des Institut für Mathematik, Universität Rostock CY - Rostock, Germany DA - 12.07.2017 KW - Prozessanalytik KW - Prozess-Sensoren 4.0 KW - Online NMR Spektroskopie KW - Indirect Hard Modeling PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-409694 AN - OPUS4-40969 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Kern, Simon T1 - Sensor Roadmap 4.0 – Prospects towards a uniform topology for process control and smart sensor networks N2 - Smart functions of sensors simplify their use and enable plug-and-play, even though they are more complex. This is particularly important for, self-diagnostics, self-calibration and self-configuration/parameterization. Intelligent field devices, digital field networks, Internet Protocol (IP)-enabled connectivity and web services, historians, and advanced data analysis software are providing the basis for the future project “Industrie 4.0” and Industrial Internet of Things (IIoT). Important smart features include connectivity and communication ability according to a unified protocol (OPC-UA currently most widely discussed), maintenance and operating functions, traceability and compliance, virtual description to support a continuous engineering, and well as interaction capabilities between sensors. This is a prerequisite for the realization of Cyber Physical Systems (CPS) within these future automation concepts for the process industry. Therefore, smart process sensors enable new business models for users, device manufacturers, and service providers. The departure from current automation to smart sensor has already begun. Further development is based on the actual situation over several steps. Possible perspectives will be via additional communication channels to mobile devices, bidirectional communication, integration of the cloud and virtualization. The integration of virtual runtime environments can provide a more flexible topology for process control environments. The talk summarizes the currently discussed requirements to process sensors 4.0 and introduces an online NMR sensor as an example, which was developed in the EU project CONSENS. T2 - Swiss Chemical Society Fall Meeting, Symposium on PAT & Industry 4.0 CY - Bern, Switzerland DA - 21.08.2017 KW - Process Monitoring KW - Smart Sensors KW - Reaction Monitoring KW - Indirect Hard Modeling KW - Online NMR Spectroscopy KW - Industrie 4.0 PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-414683 AN - OPUS4-41468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Using Smart Sensors and Modular Production Units for Sustainable and Flexible Production of High Quality Chemicals and Pharmaceuticals N2 - The talk reflects how PAT could be applied in future developments ofpharma manufacturing. It shows the benefits, increase quality, size and increasing speed of production with significant reduction of quality costs, which are possible. Using Smart Sensors and model based data evaluation methods are the key to reduce set-up times and costs. Industry 4.0 will help shape the Pharmaceutical industry of tomorrow. This is demonstrated by an example using modular production units for Continuous Manufacturing. The development of a smart online NMR analyser is shown. T2 - Pharma Talk 2017 CY - Berlin, Germany DA - 08.06.2017 KW - Process Monitoring KW - CONSENS KW - Online NMR Spectroscopy KW - Continuous Manufacturing KW - Pharmaceutical Production PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-405039 AN - OPUS4-40503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Paul, Andrea A1 - Wander, Lukas A1 - Gräßer, Patrick A1 - Maiwald, Michael T1 - Design and validation of a compact NMR analyser N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and relatively inexpensive analysers, which feature advantages like low cost, low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, sufficient robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. Intensified continuous processes are in focus of current research. Flexible (modular) chemical plants can produce different products using the same equipment with short down-times between campaigns and quick introduction of new products to the market. In continuous flow processes online sensor data and tight closed-loop control of the product quality are mandatory. If these are not available, there is a huge risk of producing large amounts of out-of-spec (OOS) products. This is addressed in the European Union’s Research Project CONSENS (Integrated Control and Sensing) by development and integration of smart sensor modules for process monitoring and control within such modular plant setups. The presented NMR module is provided in an explosion proof housing of 57 x 57 x 85 cm module size and involves a compact 43.5 MHz NMR spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction) and evaluation. Indirect Hard Modeling (IHM) was selected for data analysis of the low-field NMR spectra. A set-up for monitoring continuous reactions in a thermostated 1/8” tubular reactor using automated syringe pumps was used to validate the IHM models by using high-field NMR spectroscopy as analytical reference method. T2 - EuroPACT 2017 CY - Potsdam, Germany DA - 10.05.2017 KW - Online reaction monitoring KW - NMR spectroscopy PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-402822 AN - OPUS4-40282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Meyer, Klas A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Maiwald, Michael T1 - Online NMR spectroscopy for process monitoring in intensified continuous production plants N2 - Die Überwachung chemischer Reaktionen ist der Schlüssel zur chemischen Prozesskontrolle. Die quantitative NMR-Spektroskopie besitzt ein hohes Potential für das kontinuierliche Prozessmonitoring. Sie arbeitet zerstörungsfrei mit geringen Probenmengen, kommt durch den direkten Nachweis der Kernspins ohne Kalibrierung aus und weist auch in Konzentrationsrandbereichen eine sehr hohe Linearität auf. Durch Innovationen im Bereich der Niederfeld-NMR-Spektroskopie sind seit kurzem kompakte Benchtop-Laborgeräte von einer wachsenden Zahl an Herstellern kommerziell erhältlich. Neben der Verwendung für Lehre und Forschung im Labor besteht ein potentieller Markt für prozesstaugliche Analysatoren auf Basis dieser Technologie. Für die Integration in eine industrielle Umgebung werden hohe Anforderungen an die Robustheit und Sicherheit entsprechender Systeme gestellt. Dies umfasst neben einem zuverlässigen, vollautomatisierten Betrieb vor allem die Konformität mit ATEX-Richtlinien für den Einsatz in den zumeist als explosionsgefährdet geltenden Produktionsbereichen [2]. Insbesondere im Fall kontinuierlicher Prozesse sind Online-Sensoren und eine unmittelbar rückwirkende Regelung (Closed-loop-control) im laufenden Betrieb zur Sicherstellung der Produktqualität zwingend erforderlich. Andernfalls besteht ein hohes Risiko, große Mengen von nicht spezifikationskonformen, sog. Out-of-Spec-Produkten (OOS) zu produzieren, die aufwändig aufbereitet oder schlimmstenfalls verworfen werden müssen. Im Rahmen des EU-Projekts CONSENS (Integrated Control and Sensing) wird ein prozesstauglicher Analysator für den Einsatz in modularen Produktionsanlagen auf Basis eines kommerziell erhältlichen Niederfeld-NMR-Spektrometers entwickelt. Zur Validierung und Verbesserung der Systemintegration dieses Moduls wird eine kontinuierlich betriebene Teilreaktion aus einem pharmazeutischen Produktionsprozess untersucht. Hierbei handelt es sich um die Kopplung der aromatischen Systeme Anilin und o-Fluornitrobenzol unter Verwendung eines Lithiumorganyls. Die hohe Reaktionsgeschwindigkeit dieses Prozessbeispiels erlaubt jedoch keine kinetischen Studien des Reaktionsverlaufs, sodass dies am technisch relevanten Beispiel der katalytischen Hydrierung von 2-Butin-1,4-diol oder weiteren pharmazeutischen Reaktionen demonstriert wird. Im Rahmen dieser Prozessanwendungen ist auch der direkte Vergleich mit etablierten spektroskopischen Verfahren wie UV/VIS-, NIR- und Raman-Spektroskopie geplant. N2 - Process analytical techniques are extremely useful tools for chemical production and manufacture and are of particular interest to the pharmaceutical, food and (petro-) chemical industries. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and relatively inexpensive analysers, which feature advantages like low cost, low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, sufficient robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. A major advantage of NMR spectroscopy is that the method features a high linearity between absolute signal area and sample concentration, which makes it an absolute analytical comparison method which is independent of the matrix. This is an important prerequisite for robust data evaluation strategies within a control concept and reduces the need for extensive maintenance of the evaluation model over the time of operation. Additionally, NMR spectroscopy provides orthogonal, but complimentary physical information to conventional, e.g., optical spectroscopy. It increases the accessible information for technical processes, where aromatic-to-aliphatic conversions or isomerisation’s occur and conventional methods fail due to only minor changes in functional groups. As a technically relevant example, the catalytic hydrogenation of 2-butyne-1,4-diol and further pharmaceutical reactions were studied using an online NMR sensor based on a commercially available low-field NMR spectrometer within the framework of the EU project CONSENS (Integrated Control and Sensing). T2 - 11. Interdisziplinäres Doktorandenseminar CY - Berlin, Germany DA - 12.03.2017 KW - Niederfeld-NMR-Spektroskopie KW - Zerstörungfreie Analytik KW - Online NMR Spektroskopie PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-394241 AN - OPUS4-39424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Meyer, Klas A1 - Maiwald, Michael T1 - Automated data preparation and spectral modeling N2 - For reaction monitoring and process control using NMR instruments, in particular, after acquisition of the FID the data needs to be corrected in real-time for common effects using fast interfaces and automated methods. Conventionally, sensors have to be calibrated in a first step to find a response curve between the sensor signal and physical or chemical properties of the sample. In a second step, a model of the response between these parameters (e.g., concentrations) and the targeted quality specifications is needed. Thanks to the direct proportionality of the molar concentrations and the NMR signal, it could directly be used in the near future to relate the process target quality specification to sensor data – also in combination with multiple other sensor or process information. T2 - qNMR Summit 2017 CY - Berlin, Germany DA - 16.03.2017 KW - Quantitative NMR spectroscopy KW - Automated data evaluation PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-393998 AN - OPUS4-39399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Meyer, Klas A1 - Wander, Lukas A1 - Gräßer, Patrick T1 - Design and validation of a compact NMR analyser N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and inexpensive analysers, which feature advantages like low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. Intensified continuous processes are in focus of current research. Flexible (modular) chemical plants can produce different products using the same equipment with short down-times between campaigns and quick introduction of new products to the market. In continuous flow processes online sensor data and tight closed-loop control of the product quality are mandatory. Otherwise there is a huge risk of producing large amounts of out-of-spec (OOS) products. This is addressed in the European Union’s Research Project CONSENS by development and integration of smart sensor modules for process monitoring and control within such modular plant setups. The presented NMR module is provided in an explosion proof housing with a module size of 57 x 57 x 85 cm and involves a compact 43.5 MHz NMR spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction) and evaluation. Indirect Hard Modeling (IHM) was selected for data analysis of the low-field NMR spectra. A set-up for monitoring continuous reactions in a thermostated 1/8” tubular reactor using automated syringe pumps was used to validate the IHM models by using high-field NMR spectroscopy as analytical reference method. T2 - ANAKON 2017 CY - Tübingen, Germany DA - 03.04.2017 KW - Online NMR spectroscopy KW - Low-Field NMR spectroscopy KW - Modular production plants KW - Process analytical technology PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-396960 AN - OPUS4-39696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Krankenhagen, Rainer A1 - Eisenkrein-Kreksch, H. T1 - Thermografische Schichtdickenbestimmung von Oberflächenschutzsystemen für Beton N2 - Im Bauwesen werden häufig Polymerbeschichtungen auf Beton eingesetzt um zum einen ein bestimmtes Aussehen zu schaffen und zum anderen das Bauteil vor Alterung, Verschleiß und Schädigung zu schützen. Für die Erfüllung aller genannten Ziele ist das Erreichen einer vom Hersteller festgelegten Sollschichtdicke essentiell. Daher wird die Dicke der Beschichtung nach erfolgtem Schichtauftrag überprüft. Für den in diesem Zusammenhang anspruchsvollen mineralischen Untergrund Beton stehen bislang allerdings nur zerstörende Prüfverfahren zur Verfügung. Aus diesem Grund wurden im Rahmen des Projektes IRKUTSK in Kollaboration mit der IBOS GmbH ein auf aktiver Thermografie basierendes Verfahren sowie ein Gerät für den vor-Ort-Einsatz entwickelt, mit dessen Hilfe eine zerstörungsfreie Schichtdickenbestimmung möglich ist. Das Poster erläutert das Messverfahren und die Umsetzung in der Praxis. Es werden Messergebnisse sowie der Vergleich mit zerstörend ermittelten Schichtdicken gezeigt. Hierbei konnte eine sehr gute Übereinstimmung nachgewiesen werden. Die notwendigen Erweiterungen des zugrundeliegenden Modells in Bezug auf die einzelnen Parameter werden erläutert und diskutiert. Die hier vorgestellte Arbeit ist Teil des ZIM-Projektes IRKUTSK mit dem Förderkennzeichen KF2201089AT4 und ist gefördert durch das Bundesministerium für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages. T2 - Bauwerksdiagnose 2018 CY - Berlin, Germany DA - 15.02.2018 KW - Thermografie KW - Schichtdickenbestimmung KW - Oberflächenschutzsysteme KW - Beton KW - ZfP PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-442291 UR - https://www.ndt.net/search/docs.php3?id=22642 AN - OPUS4-44229 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weller, Michael G. A1 - Ramin, Steffen T1 - Antibody-based SAW sensor for the detection of explosives N2 - A robust and sensitive method for the detection of the explosive trinitrotoluene (TNT) was developed. The detection limit was determined to be around 0.5 µg/L. The fast signal response of less than 1 minute shows that this approach is suitable for security and other time-critcal applications. In addition, the very low cross-reactivity highly reduces the number of false-positives in relation to competing techniques, including sniffer dogs. Due to the multianalyte ability of the SAW system, several explosives might be detected in parallel. T2 - BAM Meeting 2016 CY - Berlin, Germany DA - 17.02.2016 KW - TNT KW - Trinitrotoluene KW - Explosives KW - Airport security KW - High-speed biosensor KW - Selectivity KW - Sensitivity KW - Self-assembled monolayer KW - Gold surface KW - Immunosensor KW - Reversibility KW - Inhibition assay KW - Polyethylene glycol KW - PEG PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-366265 UR - http://f1000research.com/posters/5-1352 DO - https://doi.org/10.7490/f1000research.1112309.1 AN - OPUS4-36626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -