TY - CONF A1 - Wander, Lukas A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Maiwald, Michael T1 - Keramikdurchflusszellen für das industrielle Reaktionsmonitoring mit Niederfeld-NMR-Spektroskopie N2 - Derzeit verfügbare Niederfeld-NMR-Spektrometer sind oft für Laborapplikationen konzipiert. Für den Einsatz im industriellen Prozessmonitoring müssen deshalb Anpassungen vorgenommen werden. Ein wichtiger Aspekt ist die Gestaltung der Messzelle. Sie muss über eine hohe thermische-, chemische und vor allem mechanische Beständigkeit verfügen. Hinzu kommt die Besonderheit des NMR-Experiments, das auf die Durchlässigkeit von Radiofrequenzen angewiesen ist. Keramik ist ein in der Hochfeld-NMR-Spektroskopie bewährtes Material das diese Eigenschaften vereint. Um im Prozessmonitoring die Interessen kleiner Bypass-Volumina, großer Durchflussgeschwindigkeit und großes Signal-zu-Rausch-Verhältnis mit der nötigen Vormagnetisierungszeit in Einklang zu bringen, ist eine im Messbereich aufgeweitete Zellgeometrie vorteilhaft. Die Fertigung einer Keramikmesszelle für die Niederfeld-NMR-Spektroskopie für Drücke bis 7 MPa mit dieser besonderen Geometrie wurde mit Hilfe eines modernen additiven Fertigungsverfahrens realisiert. Quantitative NMR-Messungen an konstant durch das Spektrometer strömenden Flüssigkeiten werden durch eine maximale Durchflussgeschwindigkeit limitiert. Diese wird von vielen Einflussgrößen bestimmt und sollte vor jeder quantitativen Messreihe experimentell für das individuelle System ermittelt werden. Zu diesem Zweck wurde eine automatisierte Laboranordnung konzipiert. Der Vergleich der neuen NMR-Keramikzelle mit bestehenden Messzellen u. a. anhand dieses Parameters untermauert ihre Eignung für das industrielle Prozessmonitoring. T2 - 13. Herbstkolloquium Arbeitskreis Prozessanalytik CY - Esslingen, Germany DA - 20.11.2017 KW - Keramikdurchflusszelle KW - Niederfeld-NMR KW - Online-NMR PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-430918 AN - OPUS4-43091 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Wander, Lukas A1 - Meyer, Klas A1 - Maiwald, Michael T1 - Simple calibration concept of an online NMR module demonstrated in a modularised production plant N2 - Monitoring specific information (such as physico-chemical properties, chemical re-actions, etc.) is the key to chemical process control. Within the CONSENS Project, the challenge to adapt a commercially available benchtop NMR spectrometer to the full requirements of an automated chemical production environment was tack-led. The developed online NMR module was provided in an explosion proof housing and involves a compact 43.5 MHz NMR spectrometer together with an acquisition unit, a programmable logic controller for automated triggering, flow con-trol, as well as data communication. First results of an aromatic coupling reaction in lab scale showed a general feasibil-ity according to the signal information in the acquired NMR spectra even though with a considerable overlap. Due to the comparatively low field strength of the NMR spectrometer multivariate methods had to be considered for the prediction of con-centration profiles based on spectral data. Typically, for industrial application of those methods, e.g. Partial Least Squares Regression (PLS-R) as well as Indirect Hard Modeling, large amount of calibration data is demanded, which must be ac-quired in time consuming lab-scale experiments and offline analytics. When it comes to changes in raw materials (e.g., varying functional groups, additional stabi-lizing agents) calibration experiments and data evaluation models are developed again. Here we present an approach of automated data analysis tools for low field NMR spectra with minimal calibration effort. The algorithms are based on Indirect Hard Modeling, whereby each component in each mixture spectra can be rep-resented by several flexible peak functions (pure component models). This means, that only pure component NMR spectra are needed to generate a first evaluation model. The flexibility of peak functions in the spectral model can be adjusted via constraints of peak parameters. The area of any pure component model can either be converted to concentrations based on a one-point calibration on raw material concentration or even neat solvent signals. In several cases it has been shown, the IHM works almost independently of the matrix of the real samples. Such a calibration can be repeated daily in the beginning of each process run with minimal time effort. Moreover, additional pure components can be added to the model or even substitut-ed while keeping the previously adjusted peak function constraints. The proposed method exhibited good agreement of resulting concentration data from low field NMR spectra, when compared to an online high field NMR spectrometer as refer-ence instrument. T2 - 13. Kolloquium des Arbeitskreises Prozessanalytik der DECHEMA und der GDCh-Fachgruppe Analytische Chemie CY - Esslingen, Germany DA - 20.11.2017 KW - Online monitoring KW - Online NMR spectroscopy KW - Modularised production PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-430999 AN - OPUS4-43099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Kern, Simon T1 - Innen hui und außen pfui – Smarte Prozess-Sensoren in der gegenwärtigen Automatisierungslandschaft der Prozessindustrie N2 - Prozess-Sensoren 4.0 vereinfachen ihre Einbindung über Plug and Play, obwohl sie komplexer werden. Sie bieten Selbstdiagnose, Selbstkalibrierung und erleichterte Parametrierung. Über die Konnektivität ermöglichen die Prozess-Sensoren den Austausch ihrer Informationen als Cyber-physische Systeme mit anderen Prozess-Sensoren und im Netzwerk. Der Wandel von der aktuellen Automation zum smarten Sensor ist im vollen Gange. Automatisierungstechnik und Informations- und Kommunikationstechnik (IKT) verschmelzen zunehmend. Eine Topologie für smarte Sensoren, die das Zusammenwirken mit daten- und modellbasierte Steuerungen bis hin zur Softsensorik beschreibt gibt es heute jedoch noch nicht. Wir müssen jetzt schnell die Weichen für eine smarte und sichere Kommunikationsarchitektur stellen, um zu einer störungsfreien Kommunikation aller Komponenten auf Basis eines einheitlichen Protokolls zu kommen. Unnötiges Schnickschnack ist nicht erwünscht. Wenn die Prozessindustrie dieses nicht definiert, tun es andere. Für die weitere Entwicklung von der Ist‐Situation zu einer Industrie-4.0-Welt in der Prozessindustrie werden mehrere Szenarien diskutiert. Diese reichen vom erleichterten Abruf sensorbezogener Daten über zusätzliche Kommunikationskanäle zwischen Sensor und mobilen Endgeräten über vollständig bidirektionale Kommunikation bis hin zur Einbindung der Cloud und des Internets in virtualisierte Umgebungen. Um zu einer störungsfreien Kommunikation aller Komponenten untereinander zu kommen, muss mindestens ein einheitliches Protokoll her, das alle sprechen und verstehen. Der derzeit greifbarste offengelegte Standard, der moderne Kommunikationsanforderungen erfüllt, ist OPC Unified Architecture (OPC-UA). Viele halten das Sortieren der Kommunikationsstandards für eines der wesentlichen Errungenschaften von Industrie 4.0. Der Vortrag greift die Anforderungen der Technologie-Roadmap „Prozess-Sensoren 4.0“ auf und zeigt Möglichkeiten zu ihrer Realisierung am Beispiel eines Online-NMR-Analysators, der im Rahmen des EU-Projekts „CONSENS“ (www.consens-spire.eu) entwickelt wurde. Aktuelle und zukünftige öffentliche Förderung von Industrie 4.0-Projekten sind eine gute Investition. Wegen der hohen Komplexität und Interdisziplinarität gelingt die Umsetzung nur gemeinsam zwischen Anwendern aus der Prozessindustrie, Software- und Geräteherstellern sowie Forschungsgruppen. Anwender sind gefragt, diese neue Technologie durch eine beschleunigte Validierung und Akzeptanz umzusetzen. Sie erhalten die einzigartige Chance, ihre Prozesse und Anlagen wettbewerbsfähig zu halten. Kooperativ betriebenen F&E-Zentren und gemeinsam anerkannten Applikationslaboren kommt dafür eine hohe Bedeutung zu. T2 - 13. Dresdner Sensor Symposium CY - Dresden, Germany DA - 04.12.2017 KW - Prozessanalytik KW - Prozess-Sensoren 4.0 KW - Online-NMR-Spektroskopie KW - Continuous Manufacturing KW - Process Analytical Technology KW - CONSENS PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-432056 AN - OPUS4-43205 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Mathematical and statistical tools for online NMR spectroscopy in chemical processes N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied, which are calibration intensive. NMR spectroscopy has a high potential for direct loop process control while exhibiting short set-up times. Compact NMR instruments make NMR spectroscopy accessible in industrial and harsh environments for advanced process monitoring and control. Within the European Union’s Research Project CONSENS (Integrated CONtrol and SENsing, www.consens-spire.eu) by development and integration of a smart NMR module for process monitoring was designed and delivers online spectra of various reactions. The presented NMR module is provided in an explosion proof housing of 57 x 57 x 85 cm module size and involves a compact spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction), and evaluation. For reaction monitoring and process control using NMR instruments after acquisition of the FID the data needs to be corrected in real-time for common effects using fast interfaces and automated methods. When it comes to NMR data evaluation under industrial process conditions, the shape of signals can change drastically due to nonlinear effects. Additionally, the multiplet structure becomes more dominant because of the comparably low-field strengths which results in overlapping of multiple signals. However, the structural and quantitative information is still present but needs to be extracted by applying predictive models. We present a range of approaches for the automated spectra analysis moving from statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modelling and Quantum Mechanical calculations). By using the benefits of traditional qNMR experiments data analysis models can meet the demands of the PAT community (Process Analytical Technology) regarding low calibration effort/calibration free methods, fast adaptions for new reactants, or derivatives and robust automation schemes. T2 - 13. Dresdner Sensor Symposium CY - Dresden, Germany DA - 04.12.2017 KW - Process Monitoring KW - Process sensors KW - Process analytical technology KW - Online NMR spectroscopy KW - Direct loop control KW - Numerical methods KW - Spectral modeling KW - Indirect hard modeling KW - CONSENS PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-432085 AN - OPUS4-43208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Krankenhagen, Rainer A1 - Eisenkrein-Kreksch, H. T1 - Thermografische Schichtdickenbestimmung von Oberflächenschutzsystemen für Beton N2 - Im Bauwesen werden häufig Polymerbeschichtungen auf Beton eingesetzt um zum einen ein bestimmtes Aussehen zu schaffen und zum anderen das Bauteil vor Alterung, Verschleiß und Schädigung zu schützen. Für die Erfüllung aller genannten Ziele ist das Erreichen einer vom Hersteller festgelegten Sollschichtdicke essentiell. Daher wird die Dicke der Beschichtung nach erfolgtem Schichtauftrag überprüft. Für den in diesem Zusammenhang anspruchsvollen mineralischen Untergrund Beton stehen bislang allerdings nur zerstörende Prüfverfahren zur Verfügung. Aus diesem Grund wurden im Rahmen des Projektes IRKUTSK in Kollaboration mit der IBOS GmbH ein auf aktiver Thermografie basierendes Verfahren sowie ein Gerät für den vor-Ort-Einsatz entwickelt, mit dessen Hilfe eine zerstörungsfreie Schichtdickenbestimmung möglich ist. Das Poster erläutert das Messverfahren und die Umsetzung in der Praxis. Es werden Messergebnisse sowie der Vergleich mit zerstörend ermittelten Schichtdicken gezeigt. Hierbei konnte eine sehr gute Übereinstimmung nachgewiesen werden. Die notwendigen Erweiterungen des zugrundeliegenden Modells in Bezug auf die einzelnen Parameter werden erläutert und diskutiert. Die hier vorgestellte Arbeit ist Teil des ZIM-Projektes IRKUTSK mit dem Förderkennzeichen KF2201089AT4 und ist gefördert durch das Bundesministerium für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages. T2 - Bauwerksdiagnose 2018 CY - Berlin, Germany DA - 15.02.2018 KW - Thermografie KW - Schichtdickenbestimmung KW - Oberflächenschutzsysteme KW - Beton KW - ZfP PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-442291 UR - https://www.ndt.net/search/docs.php3?id=22642 AN - OPUS4-44229 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Puthiyaveettil, N. A1 - Ziegler, Mathias A1 - Myrach, Philipp A1 - Unnikrishnakurup, Sreedhar A1 - Krishnamurthy, C. V. A1 - Balasubramaniam, K. T1 - Numerical study of laser line thermography for crack detection at high temperature N2 - The detection of cracks before the failure is highly significant when it comes to safety-relevant structures. Crack detection in metallic samples at high surface temperature is one of the challenging situation in manufacturing industries. Laser thermography has already proved its detection capability of surface cracks in metallic samples at room temperature. In this work a continuous wave (CW) laser use to generate a laser, which is using to scan the metal surface with notch. The corresponding heat distribution on the surface monitored using infrared thermal (IR) camera. A simplified 3D model for laser thermography is developed and validated with experimental results. A dedicated image processing algorithm developed to improve the detectability of the cracks. To understand the dependency of surface temperature, laser power, laser scanning speed etc. in defect detection, we carried out parametric studies with our validated model. Here we report the capability of laser thermography in crack detection at elevated temperature. T2 - Conference QIRT 2018 CY - Berlin, Germany DA - 25.06.2018 KW - Thermography KW - Laser Thermography KW - Cracks PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-454441 AN - OPUS4-45444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Kunte, Hans-Jörg A1 - Meyer, Susann A1 - Schröter, Maria-Astrid A1 - Solomun, Tihomir A1 - Sturm, Heinz T1 - Ectoine protects biomolecules from ionizing radiation: Molecular mechanisms N2 - The compatible solute and osmolyte ectoine is an effective protectant of biomolecules and whole cells against heating, freezing and high salinity. The protection of cells (human Keratinocytes) by ectoine against ultraviolet radiation was also reported by various authors, although the underlying mechanism is not yet understood. We present results on the irradiation of biomolecules (DNA) with ionizing radiation (high energy electrons) in fully aqueous environment in the presence of ectoine and high salt concentrations. The results demonstrate an effective radiation protection of DNA by ectoine against the induction of single strand breaks by ionizing radiation. The effect is explained by an increased in low-energy electron scattering at the enhanced free-vibrational density of states of water due to ectoine, as well as the action of ectoine as an OH-radical scavenger. This was demonstrated by Raman spectroscopy, electron paramagnetic resonance (EPR) and Monte-Carlo simulations (Geant4). T2 - DPG-Frühjahrstagung der Sektion Kondensierte Materie gemeinsam mit der EPS CY - Berlin, Germany DA - 11.03.2018 KW - Ionizing radiation KW - Ectoine KW - Radiation damage KW - Radiation protection KW - Dosimetry KW - Ectoin KW - Ectoine radiation protection KW - Compatible solute KW - Osmolyte KW - Aqueous solution KW - OH-radical KW - Radical scavenger KW - Hydroxyl radical KW - Hydroxyectoine KW - Ectoine radical scavenger KW - Low energy electrons KW - Geant4 PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-446202 N1 - Poster basiert auf: https://nbn-resolving.org/urn:nbn:de:kobv:b43-419332 AN - OPUS4-44620 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Wander, Lukas A1 - Bornemann-Pfeiffer, Martin A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Maiwald, Michael T1 - Novel Flow Cell Designs for Process Monitoring with Compact NMR Spectroscopy N2 - Compact nuclear magnetic resonance (NMR) instruments make NMR spectroscopy and relaxometry accessible in industrial and harsh environments for reaction characterization and process control. Robust field integration of NMR systems have to face explosion protection or integration into process control systems with short set-up times. This paves the way for industrial automation in real process environments. The design of failsafe, temperature and pressure resistant flow through cells along with their NMR-specific requirements is an essential cornerstone to enter industrial production plants and fulfill explosion safety requirements. Additionally, if fast reactions are monitored, suitable mixing devices need to be placed in close vicinity to the measuring volume to mix the reactants properly. NMR-specific requirements aim at full quantitative pre-magnetization and acquisition with maximum sensitivity while reducing sample transfer times and dwell-times. All parameters are individually dependent on the applied NMR instrument. Luckily, an increasing number of applications are reported together with an increasing variety of commercial equipment. However, these contributions have to be reviewed thoroughly. The performance of sample flow cells commonly used in online analytics and especially for low-field NMR spectroscopy was experimentally and theoretically investigated by 1H-NMR experiments and numerical simulations. Especially, the applicability of 3D printed zirconium dioxide for innovative flow cell designs was of interest. Here, we demonstrate and discuss an automated test method to determine the critical parameters of flow through cells for quantitative online NMR spectroscopy. The setup is based on randomized setpoints of flow rates in order to reduce temperature related effects. Five flow cells and tubing were assessed and compared for high-field as well as low-field NMR spectrometers. T2 - Practical Applications of NMR in Industry Conference ​(PANIC) 2018 CY - La Jolla, California, USA DA - 04.03.2018 KW - Process Monitoring KW - Process Control KW - Flow Cell KW - Online NMR Spectroscopy KW - Additive Manufacturing KW - CONSENS PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-444364 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-44436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Kern, Simon T1 - Sustainable and Flexible Production of High Quality Chemicals and Pharmaceuticals Using Smart Sensors and Modular Production Units N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. The talk introduces a smart online NMR sensor module provided in an explosion proof housing as example. This sensor was developed for an intensified industrial process (pharmaceutical lithiation reaction step) funded by the EU’s Horizon 2020 research and innovation programme (www.consens-spire.eu). Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. The talk also generally covers current aspects of high-field and low-field online NMR spectroscopy for reaction monitoring and process control and gives also an overview on direct dissolution studies of API cocrystals. T2 - Chemistry Group Seminar Pfizer Inc. CY - La Jolla, California, USA DA - 09.03.2018 KW - Process Monitoring KW - Online NMR Spectroscopy KW - Smart Sensors KW - Indirect Hard Modeling KW - Modular Production KW - CONSENS PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-444382 AN - OPUS4-44438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Quantitative NMR Spectroscopy Uncertainty Analysis Workshop N2 - qNMR provides the most universally applicable form of direct concentration or purity determination without need for reference materials of impurities or the calculation of response factors but only exhibiting suitable NMR properties. The workshop presents basic terms of statistics and uncertainty analysis, which are the basis for qNMR spectroscopy and data analysis such as, e.g., standard deviations, linear regression, significance tests, etc. and gives typical examples of applications in qNMR spectroscopy. T2 - Practical Applications of NMR in Industry Conference ​(PANIC) Validation Workshop 2018 CY - La Jolla, California, USA DA - 08.03.2018 KW - qNMR KW - NMR Validation KW - Basic Statistics KW - Linear Regression PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-444395 AN - OPUS4-44439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -