TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Kern, Simon T1 - Sustainable and Flexible Production of High Quality Chemicals and Pharmaceuticals Using Smart Sensors and Modular Production Units N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. The talk introduces a smart online NMR sensor module provided in an explosion proof housing as example. This sensor was developed for an intensified industrial process (pharmaceutical lithiation reaction step) funded by the EU’s Horizon 2020 research and innovation programme (www.consens-spire.eu). Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. The talk also generally covers current aspects of high-field and low-field online NMR spectroscopy for reaction monitoring and process control and gives also an overview on direct dissolution studies of API cocrystals. T2 - Chemistry Group Seminar Pfizer Inc. CY - La Jolla, California, USA DA - 09.03.2018 KW - Process Monitoring KW - Online NMR Spectroscopy KW - Smart Sensors KW - Indirect Hard Modeling KW - Modular Production KW - CONSENS PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444382 AN - OPUS4-44438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Quantitative NMR Spectroscopy Uncertainty Analysis Workshop N2 - qNMR provides the most universally applicable form of direct concentration or purity determination without need for reference materials of impurities or the calculation of response factors but only exhibiting suitable NMR properties. The workshop presents basic terms of statistics and uncertainty analysis, which are the basis for qNMR spectroscopy and data analysis such as, e.g., standard deviations, linear regression, significance tests, etc. and gives typical examples of applications in qNMR spectroscopy. T2 - Practical Applications of NMR in Industry Conference ​(PANIC) Validation Workshop 2018 CY - La Jolla, California, USA DA - 08.03.2018 KW - qNMR KW - NMR Validation KW - Basic Statistics KW - Linear Regression PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444395 AN - OPUS4-44439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Puthiyaveettil, N. A1 - Ziegler, Mathias A1 - Myrach, Philipp A1 - Unnikrishnakurup, Sreedhar A1 - Krishnamurthy, C. V. A1 - Balasubramaniam, K. T1 - Numerical study of laser line thermography for crack detection at high temperature N2 - The detection of cracks before the failure is highly significant when it comes to safety-relevant structures. Crack detection in metallic samples at high surface temperature is one of the challenging situation in manufacturing industries. Laser thermography has already proved its detection capability of surface cracks in metallic samples at room temperature. In this work a continuous wave (CW) laser use to generate a laser, which is using to scan the metal surface with notch. The corresponding heat distribution on the surface monitored using infrared thermal (IR) camera. A simplified 3D model for laser thermography is developed and validated with experimental results. A dedicated image processing algorithm developed to improve the detectability of the cracks. To understand the dependency of surface temperature, laser power, laser scanning speed etc. in defect detection, we carried out parametric studies with our validated model. Here we report the capability of laser thermography in crack detection at elevated temperature. T2 - Conference QIRT 2018 CY - Berlin, Germany DA - 25.06.2018 KW - Thermography KW - Laser Thermography KW - Cracks PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-454441 DO - https://doi.org/10.21611/qirt.2018.076 AN - OPUS4-45444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd T1 - LIBS - Ein Tool zur Untersuchung der chemischen Zusammensetzung von Beton N2 - Die „Laser Induced Breakdown Spectroscopy“ (LIBS) bietet die Möglichkeit, direkt auf der optisch zugänglichen Oberfläche von Baustoffen 2-dimensional die Elementverteilung zu erfassen. Durch das zugrundeliegende Prinzip sind alle Elemente des Periodensystems detektierbar, auch leichte Elemente wie Wasserstoff oder Lithium. Einerseits können alle für die Zusammensetzung des Zementes und der Gesteinskörnung relevanten Elemente erfasst werden, andererseits auch die für Schädigungsprozesse in Beton wichtigen Elemente Chlor, Schwefel, Natrium, Kalium, Kohlenstoff und Stickstoff. Der Nachweis kann simultan erfolgen. Der Vorteil des Verfahrens liegt in der einfachen Probenvorbereitung, der direkten Messung auf der Oberfläche des Festkörpers und der Schnelligkeit der Messung. Die Heterogenität von Beton wird im Ergebnis berücksichtigt. Die Konzentrationen von schädigenden Ionen lassen sich bezogen auf den Bindemittelgehalt angeben. LIBS liefert standardmäßig qualitative Werte. Durch Kalibrierung anhand von Referenzproben ist eine Quantifizierung der Ergebnisse möglich. Das Potenzial des Verfahrens wird am Beispiel der Bestimmung der Chlorid-Verteilung in der Bindemittelmatrix vorgestellt. Andere Anwendungen sind die Bestimmung der Karbonatisierungstiefe, die Bestimmung des Eintrages von Alkalien oder die Bestimmung der Verteilung von Schwefel. Das Verfahren kann im Labor zur Untersuchung einer großen Anzahl von Proben oder vor-Ort zur schnellen Entscheidungsfindung eingesetzt werden. Kommerzielle Geräte sind seit kurzem verfügbar. Die örtliche Auflösung der Messung beträgt bis zu 0,1 mm × 0,1 mm. Ein Messpunkt hat einen Durchmesser von ca. 100 μm. Die Messfrequenz liegt bei 100 Hz. Als Ergebnis entstehen für jedes Element eine 2D-Darstellungen der Konzentration über der Messfläche. Der Scan eines Bohrkerns von 50 mm x 70 mm dauert bei einer Auflösung von 0,5 mm lateral und 1 mm vertikal ca. 7 min. Es können auch raue oder gebrochene Oberflächen durch Nachführung der z-Achse untersucht werden. Die Nachweisgrenze für die Bestimmung des Chlorgehaltes bezogen auf den Bindemittelgehalt liegt bei 0,03 M-%. Der Unterausschuss LIBS im Bauwesen im FA ZfP im Bauwesen der DGZfP arbeitet an der Erstellung von Merkblättern und Regelwerken zur Anwendung des Verfahrens. T2 - Bauwerksdiagnose 2018 CY - Berlin, Germany DA - 15.02.2018 KW - Alkalien KW - LIBS KW - Beton KW - Schädigung KW - Chlorid KW - Sulfat PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-468076 UR - https://www.ndt.net/search/docs.php3?id=22621 AN - OPUS4-46807 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weise, Frank A1 - Millar, Steven A1 - Günther, Tobias T1 - Analyse des Tausalzeintrages in Fahrbahndeckenbetone im Kontext der Alkali-Kieselsäure-Reaktion N2 - In den letzten Jahren sind im deutschen Bundesautobahnnetz (BAB-Netz) vermehrt AKR-Schäden an Betonfahrbahndecken aufgetreten, die zum Teil zu einer Halbierung ihrer geplanten Nutzungsdauer von 30 Jahren führte. Ursächlich hierfür ist die Verwendung alkaliempfindlicher Gesteinskörnung, die bei gleichzeitiger Anwesenheit von Wasser infolge der Exposition der Fahrbahndecke und dem alkalischen Milieu durch den Einsatz alkalireicher Portlandzemente bei der Betonherstellung zu einer Alkali-Kieselsäure-Reaktion (AKR) führt. Zusätzlich wird der AKR-Schädigungsprozess in Betonfahrbahndecken durch den externen Tausalzeintrag (primär NaCl) im Winter begünstigt. Vor diesem Hintergrund kommt der Ermittlung des Tausalzeintrags in den Fahrbahndeckenbeton eine große Bedeutung zu. Die Analyse des Tausalzeintrags erfolgte bisher ausschließlich nasschemisch an gemahlenen Bohrkernsegmenten. Nachteilig ist hierbei die fehlende differenzierte Betrachtung des Natriumgehaltes im Zementstein und in der Gesteinskörnung. Der alternative Einsatz von LIBS (Laser-induced breakdown spectroscopy) eröffnet in diesem Kontext neue Möglichkeiten. So wird in diesem Beitrag an Hand von Bohrkernen aus einem AKR-geschädigten BAB-Abschnitt exemplarisch die Vorgehensweise bei der LIBS-Analyse zur Ermittlung der Na- und interagierenden Cl-Verteilung an vertikalen Schnittflächen des Bohrkerns aufgezeigt. Da der Tausalzeintrag primär über den Zementstein erfolgt, wurde der verfälschende Na-Grundgehalt der Gesteinskörnung mittels Zementsteinkriteriums (Nutzung unterschiedlichen Ca-Gehalts in Zementstein und Gesteinskörnung) eliminiert. Vergleichend durchgeführte Cl-Mappings mit Mikroröntgenfluoreszenzanalyse (MRFA) belegen die Güte der durchgeführten LIBS-Messungen. Aber auch bei der Verifizierung der Übertragbarkeit der Ergebnisse der zum Ausschluss reaktiver Gesteinskörnung bei Neubau und Erneuerung im BAB-Netz eingesetzten Performanceprüfungen mit externem Alkalieintrag auf Praxisverhältnisse hat sich das LIBSVerfahren bewährt. So wurde festgestellt, dass die mit NaCl-Lösung beaufschlagten Laborprüfkörper aus einem repräsentativen Fahrbahndeckenbeton bei der Klimawechsellagerung (KWL) über ihre gesamte Höhe von 10 cm einen Eintrag von Na und Cl erfahren. Weiterhin konnte im Gegensatz zu bisherigen Annahmen erstmals mit LIBS und Nasschemie gezeigt werden, dass die Frost-Tauwechsel-Phase bei der KWL zu keinem erhöhten Tausalzeintrag führt. T2 - Fachtagung Bauwerksdiagnose 2018 CY - Berlin, Germany DA - 15.02.2018 KW - Baustoffe KW - Betonfahrbahndecken KW - AKR KW - Tausalzeintrag KW - LIBS KW - MRFA KW - Nasschemie KW - Klimawechsellagerung PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-446499 AN - OPUS4-44649 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -