TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Paul, Andrea T1 - Man proposes, God disposes – The Way from Reaction Monitoring to Industrial Automation N2 - Compact nuclear magnetic resonance (NMR) instruments make NMR spectroscopy and relaxometry accessible in industrial and harsh environments for reaction and process control. An increasing number of applications are reported. Robust field integration of NMR systems have to face explosion protection or integration into process control systems with short set-up times. Tis paves the way for industrial automation in real process environments. Automated data preparation and analysis are cornerstones for a breakthrough of NMR techniques for process control. Particularly, robust chemometrics as well as automated signal processing methods have to be (further) developed especially for NMR spectroscopy in process control. This becomes even more important for so called “smart sensors” providing the basis for the future project “Industrie 4.0”, and Industrial Internet of Things (IIoT), along with current requirements to process control, model based control, or soft sensing. Data analysis techniques are available but currently mostly used for off-line data analysis to detect the causes of variations in the product quality. The talk presents current research activities towards process control with compact NMR and reflects “cultural differences” between the interdisciplinary parties involved. T2 - Symposium NMRPM - Quantitative NMR Methods for Reaction and Process Monitoring CY - Kaiserslautern, Germany DA - 19.01.2017 KW - Reaction Monitoring KW - Process Analytical Technology KW - Smart Sensors KW - Process Control KW - Industrie 4.0 KW - Online NMR Spectroscopy PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-389940 AN - OPUS4-38994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Kern, Simon A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Wander, Lukas A1 - Paul, Andrea T1 - Already Producing or Still Calibrating? – Online NMR Spectroscopy as Smart Field Device. N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. Here we introduce our smart online NMR sensor module provided in an explosion proof housing as example, which was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme (www.consens-spire.eu). Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. T2 - Tackling the Future of Plant Operation - Jointly towards a Digital Process Industry CY - Barcelona, Spain DA - 13.12.2017 KW - Process Monitoring KW - Smart Sensors KW - Online NMR Spectroscopy KW - Indirect Hard Modeling KW - Process Analytical Technology KW - CONSENS PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-434330 AN - OPUS4-43433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wander, Lukas A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Reading Between the Lines – Automated Data Analysis for Low-Field NMR Spectra N2 - For reaction monitoring using NMR instruments, in particular, after acquisition of the FID the data needs to be corrected in real-time for common effects using automated methods. When it comes to NMR data evaluation under industrial process conditions, the shape of signals can change drastically due to nonlinear effects. However, the structural and quantitative information is still present but needs to be extracted by applying predictive models. Acquired raw spectra were processed with the following tools: · Phase correction using the Entropy minimization method · Baseline correction using a low-order Polynomial fit · Alignment (icoshift) Pure component models based on Pseudo-Voigt functions can be derived via peak fitting of measured pure components or by the use of spin calculations. T2 - Tackling the Future of Plant Operation - Jointly towards a Digital Process Industry CY - Barcelona, Spain DA - 13.12.2017 KW - Process Monitoring KW - Online NMR Spectroscopy KW - Indirect Hard Modeling KW - Spectral Modeling KW - Process Analytical Technology KW - CONSENS PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-434346 AN - OPUS4-43434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Wander, Lukas A1 - Meyer, Klas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Design and Validation of a Compact Online NMR Module N2 - The recent developments of inovative compact NMR spectrometers are therefore remarkable due to their possible application in process analytical technology (PAT) in an industrial environment without high maintenance requirements. spectroscopic methods, NMR spectroscopy offers some unique features for online reaction monitoring. However, those benefits have not been exploited for PAT applications so far. Within the CONSENS Project, the challenge to adapt a commercially available benchtop NMR spectrometer to the full requirements of an automated chemical production environment was tackled successfully. was provided in an explosion proof housing and involves a compact NMR spectrometer together with an automated data acquisition and evaluation unit, flow control, as well as data communication. T2 - Tackling the Future of Plant Operation - Jointly towards a Digital Process Industry CY - Barcelona, Spain DA - 13.12.2017 KW - Process Monitoring KW - Online NMR Spectroscopy KW - Indirect Hard Modeling KW - Explosion Safety KW - Field Integration KW - CONSENS KW - Process Analytical Technology KW - OPC UA PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-434351 AN - OPUS4-43435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Kern, Simon T1 - Innen hui und außen pfui – Smarte Prozess-Sensoren in der gegenwärtigen Automatisierungslandschaft der Prozessindustrie N2 - Prozess-Sensoren 4.0 vereinfachen ihre Einbindung über Plug and Play, obwohl sie komplexer werden. Sie bieten Selbstdiagnose, Selbstkalibrierung und erleichterte Parametrierung. Über die Konnektivität ermöglichen die Prozess-Sensoren den Austausch ihrer Informationen als Cyber-physische Systeme mit anderen Prozess-Sensoren und im Netzwerk. Der Wandel von der aktuellen Automation zum smarten Sensor ist im vollen Gange. Automatisierungstechnik und Informations- und Kommunikationstechnik (IKT) verschmelzen zunehmend. Eine Topologie für smarte Sensoren, die das Zusammenwirken mit daten- und modellbasierte Steuerungen bis hin zur Softsensorik beschreibt gibt es heute jedoch noch nicht. Wir müssen jetzt schnell die Weichen für eine smarte und sichere Kommunikationsarchitektur stellen, um zu einer störungsfreien Kommunikation aller Komponenten auf Basis eines einheitlichen Protokolls zu kommen. Unnötiges Schnickschnack ist nicht erwünscht. Wenn die Prozessindustrie dieses nicht definiert, tun es andere. Für die weitere Entwicklung von der Ist‐Situation zu einer Industrie-4.0-Welt in der Prozessindustrie werden mehrere Szenarien diskutiert. Diese reichen vom erleichterten Abruf sensorbezogener Daten über zusätzliche Kommunikationskanäle zwischen Sensor und mobilen Endgeräten über vollständig bidirektionale Kommunikation bis hin zur Einbindung der Cloud und des Internets in virtualisierte Umgebungen. Um zu einer störungsfreien Kommunikation aller Komponenten untereinander zu kommen, muss mindestens ein einheitliches Protokoll her, das alle sprechen und verstehen. Der derzeit greifbarste offengelegte Standard, der moderne Kommunikationsanforderungen erfüllt, ist OPC Unified Architecture (OPC-UA). Viele halten das Sortieren der Kommunikationsstandards für eines der wesentlichen Errungenschaften von Industrie 4.0. Der Vortrag greift die Anforderungen der Technologie-Roadmap „Prozess-Sensoren 4.0“ auf und zeigt Möglichkeiten zu ihrer Realisierung am Beispiel eines Online-NMR-Analysators, der im Rahmen des EU-Projekts „CONSENS“ (www.consens-spire.eu) entwickelt wurde. Aktuelle und zukünftige öffentliche Förderung von Industrie 4.0-Projekten sind eine gute Investition. Wegen der hohen Komplexität und Interdisziplinarität gelingt die Umsetzung nur gemeinsam zwischen Anwendern aus der Prozessindustrie, Software- und Geräteherstellern sowie Forschungsgruppen. Anwender sind gefragt, diese neue Technologie durch eine beschleunigte Validierung und Akzeptanz umzusetzen. Sie erhalten die einzigartige Chance, ihre Prozesse und Anlagen wettbewerbsfähig zu halten. Kooperativ betriebenen F&E-Zentren und gemeinsam anerkannten Applikationslaboren kommt dafür eine hohe Bedeutung zu. T2 - 13. Dresdner Sensor Symposium CY - Dresden, Germany DA - 04.12.2017 KW - Prozessanalytik KW - Prozess-Sensoren 4.0 KW - Online-NMR-Spektroskopie KW - Continuous Manufacturing KW - Process Analytical Technology KW - CONSENS PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-432056 AN - OPUS4-43205 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -