TY - CONF A1 - Karafiludis, Stephanos A1 - Stawski, Tomasz T1 - Trash to treasure: recovery of transition metal phosphates for (electro-)catalytical applications N2 - Wastewaters containing high concentrations of NH4+, PO43- and transition metals are environmentally harmful and toxic pollutants. At the same time phosphorous and transition metals constitute valuable resources. Here, we report the synthesis routes for Co- and Ni-struvites (NH4MPO4∙6H2O, M = Ni2+, Co2+) out of aqueous solutions resembling synthetic/industrial waste water compositions, and allowing for P, ammonia and metal co-precipitation. Furthermore, the as-obtained struvites were further up-cycled. When heated, these transition metal phosphates (TMPs) demonstrate significant changes in the degree of crystallinity/coordination environment involving a high amount of amorphous phases and importantly develop mesoporosity (Figure 1). In this regard, amorphous and mesoporous TMPs are known to be highly promising (electro-)catalysts. Amorphous phases do not represent a simple “disordered” crystal but more a complex system with a broad range of compositions and physicochemical properties, which remain mostly unknown. Consequently, we investigated the recrystallization and amorphization process during thermal treatment and a resolved the complex amorphous/crystalline structures (Figure 2). As a proof-of-principle for their applicational use, the as-obtained TMPs demonstrate significant proton conductivity properties similar to apatite-like structures from room to high temperatures (>800°C). Hence, we have developed a promising recycling route in which environmental harmful contaminants like PO43-, NH4+ and 3d metals would be extracted out of waste waters in the form of precursor raw materials. These raw materials can be then further up-cycled through a simple thermal treatment for their specific application in electrocatalysis. T2 - Goldschmidt Conference 2022 CY - Hawai'i, USA DA - 10.07.2022 KW - Mesoporosity KW - Amorphous phases KW - Transition metals KW - Struvite KW - Phosphates PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552852 UR - https://conf.goldschmidt.info/goldschmidt/2022/meetingapp.cgi/Paper/9501 AN - OPUS4-55285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weller, Michael G. A1 - Ramin, Steffen T1 - Antibody-based SAW sensor for the detection of explosives N2 - A robust and sensitive method for the detection of the explosive trinitrotoluene (TNT) was developed. The detection limit was determined to be around 0.5 µg/L. The fast signal response of less than 1 minute shows that this approach is suitable for security and other time-critcal applications. In addition, the very low cross-reactivity highly reduces the number of false-positives in relation to competing techniques, including sniffer dogs. Due to the multianalyte ability of the SAW system, several explosives might be detected in parallel. T2 - BAM Meeting 2016 CY - Berlin, Germany DA - 17.02.2016 KW - TNT KW - Trinitrotoluene KW - Explosives KW - Airport security KW - High-speed biosensor KW - Selectivity KW - Sensitivity KW - Self-assembled monolayer KW - Gold surface KW - Immunosensor KW - Reversibility KW - Inhibition assay KW - Polyethylene glycol KW - PEG PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-366265 UR - http://f1000research.com/posters/5-1352 DO - https://doi.org/10.7490/f1000research.1112309.1 AN - OPUS4-36626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Kunte, Hans-Jörg A1 - Meyer, Susann A1 - Schröter, Maria-Astrid A1 - Solomun, Tihomir A1 - Sturm, Heinz T1 - Ectoine protects biomolecules from ionizing radiation: Molecular mechanisms N2 - The compatible solute and osmolyte ectoine is an effective protectant of biomolecules and whole cells against heating, freezing and high salinity. The protection of cells (human Keratinocytes) by ectoine against ultraviolet radiation was also reported by various authors, although the underlying mechanism is not yet understood. We present results on the irradiation of biomolecules (DNA) with ionizing radiation (high energy electrons) in fully aqueous environment in the presence of ectoine and high salt concentrations. The results demonstrate an effective radiation protection of DNA by ectoine against the induction of single strand breaks by ionizing radiation. The effect is explained by an increased in low-energy electron scattering at the enhanced free-vibrational density of states of water due to ectoine, as well as the action of ectoine as an OH-radical scavenger. This was demonstrated by Raman spectroscopy, electron paramagnetic resonance (EPR) and Monte-Carlo simulations (Geant4). T2 - DPG-Frühjahrstagung der Sektion Kondensierte Materie gemeinsam mit der EPS CY - Berlin, Germany DA - 11.03.2018 KW - Ionizing radiation KW - Ectoine KW - Radiation damage KW - Radiation protection KW - Dosimetry KW - Ectoin KW - Ectoine radiation protection KW - Compatible solute KW - Osmolyte KW - Aqueous solution KW - OH-radical KW - Radical scavenger KW - Hydroxyl radical KW - Hydroxyectoine KW - Ectoine radical scavenger KW - Low energy electrons KW - Geant4 PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-446202 N1 - Poster basiert auf: https://nbn-resolving.org/urn:nbn:de:kobv:b43-419332 AN - OPUS4-44620 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fabry, Cagtay A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - WelDX – data and quality standards for welding research N2 - The WelDX research project aims to foster the exchange of scientific data inside the welding community by developing and establishing a new open source file format suitable for documentation of experimental welding data and upholding associated quality standards. In addition to fostering scientific collaboration inside the national and international welding community an associated advisory committee will be established to oversee the future development of the file format. The proposed file format will be developed with regards to current needs of the community regarding interoperability, data quality and performance and will be published under an appropriate open source license. By using the file format objectivity, comparability and reproducibility across different institutes and experimental setups can be improved. T2 - Open Research Data - Open your data for research CY - Berlin, Germany DA - 21.10.2019 KW - Welding KW - Research data management KW - Open science KW - Open data KW - Digitalization PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-493842 DO - https://doi.org/10.5281/zenodo.3514199 AN - OPUS4-49384 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Drobne, D. A1 - Novak, S. A1 - Kranjc, E. A1 - Bohmer, N. A1 - Hodoroaba, Vasile-Dan T1 - Knowledge Readiness Level (KaRL) approach for nanorisk governance and beyond N2 - Regulatory decisions require reliable data and knowledge derived from this. Among stakeholders in nanotechnology, however, there is often uncertainty about the quality of data for regulatory purposes. In addition, the general public often finds itself excluded from nanoregulation and policy decisions. This creates uncertainty in the nanotechnology field and also in other branches of technology and leads to concerns among the society. To address these issues, NANORIGO elaborates a framework to support decision making as well as data, information and knowledge sharing and use. We refer to “reliability” of data and knowledge as a degree of readiness or maturity. According to these criteria we worked out a 9-level scale in analogy to TRL (technology readiness level), the KaRL system (Knowledge, Data and Information Readiness Level). KaRL allows assessment of knowledge readiness for decision making by applying defined quality criteria for each level. It also provides guidance on how to enhance the readiness level by the help of available tools and procedures. KaRL addresses SEIN[1] principles, circular economy and thus involves the public concerns in regulation. A specialized nanorisk governance council (being under development in NANORIGO) is suggested to perform quality check of an actionable document, thus, aiding in consensus on the reliability (maturity) of knowledge for decision making. Moreover, KaRL facilitates traceability of knowledge before its use in decision making. This enables the transparency demanded by all stakeholders. T2 - EuroNanoForum 2021 CY - Online meeting DA - 05.05.2021 KW - Knowledge Readiness Level KW - Nanorisk KW - Nanomaterials KW - Data PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524725 AN - OPUS4-52472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Wander, Lukas A1 - Bornemann-Pfeiffer, Martin A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Maiwald, Michael T1 - Novel Flow Cell Designs for Process Monitoring with Compact NMR Spectroscopy N2 - Compact nuclear magnetic resonance (NMR) instruments make NMR spectroscopy and relaxometry accessible in industrial and harsh environments for reaction characterization and process control. Robust field integration of NMR systems have to face explosion protection or integration into process control systems with short set-up times. This paves the way for industrial automation in real process environments. The design of failsafe, temperature and pressure resistant flow through cells along with their NMR-specific requirements is an essential cornerstone to enter industrial production plants and fulfill explosion safety requirements. Additionally, if fast reactions are monitored, suitable mixing devices need to be placed in close vicinity to the measuring volume to mix the reactants properly. NMR-specific requirements aim at full quantitative pre-magnetization and acquisition with maximum sensitivity while reducing sample transfer times and dwell-times. All parameters are individually dependent on the applied NMR instrument. Luckily, an increasing number of applications are reported together with an increasing variety of commercial equipment. However, these contributions have to be reviewed thoroughly. The performance of sample flow cells commonly used in online analytics and especially for low-field NMR spectroscopy was experimentally and theoretically investigated by 1H-NMR experiments and numerical simulations. Especially, the applicability of 3D printed zirconium dioxide for innovative flow cell designs was of interest. Here, we demonstrate and discuss an automated test method to determine the critical parameters of flow through cells for quantitative online NMR spectroscopy. The setup is based on randomized setpoints of flow rates in order to reduce temperature related effects. Five flow cells and tubing were assessed and compared for high-field as well as low-field NMR spectrometers. T2 - Practical Applications of NMR in Industry Conference ​(PANIC) 2018 CY - La Jolla, California, USA DA - 04.03.2018 KW - Process Monitoring KW - Process Control KW - Flow Cell KW - Online NMR Spectroscopy KW - Additive Manufacturing KW - CONSENS PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444364 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-44436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wander, Lukas A1 - Kern, Simon A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Maiwald, Michael T1 - Assessment and validation of various flow cell designs for quantitative online NMR spectroscopy N2 - Compact nuclear magnetic resonance (NMR) instruments make NMR spectroscopy and relaxometry accessible in industrial and harsh environments for reaction and process control. Robust field integration of NMR systems have to face explosion protection or integration into process control systems with short set-up times. This paves the way for industrial automation in real process environments. The design of failsafe, temperature and pressure resistant flow through cells along with their NMR-specific requirements is an essential cornerstone to enter industrial production plants and fulfill explosion safety requirements. NMR-specific requirements aim at full quantitative pre-magnetization and acquisition with maximum sensitivity while reducing sample transfer times and dwell-times. All parameters are individually dependent on the applied NMR instrument. Luckily, an increasing number of applications are reported together with an increasing variety of commercial equipment. However, these contributions have to be reviewed thoroughly. The performance of sample flow cells commonly used in online analytics and especially for low-field NMR spectroscopy was experimentally and theoretically investigated by 1H-NMR experiments and numerical simulations. Here, we demonstrate and discuss an automated test method to determine the critical parameters of flow through cells for quantitative online NMR spectroscopy. The setup is based on randomized setpoints of flow rates in order to reduce temperature related effects. Five flow cells and tubings were assessed and compared for high-field as well as low-field NMR spectrometers. T2 - Small Molecule NMR Conference (SMASH) CY - Baveno, Italy DA - 17.09.2017 KW - Online NMR spectroscopy KW - Reaction monitoring KW - Flow cell KW - Process control KW - SMASH PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-419485 UR - http://www.smashnmr.org/conference/program AN - OPUS4-41948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Meyer, Klas A1 - Wander, Lukas A1 - Gräßer, Patrick A1 - Maiwald, Michael T1 - Process monitoring of an intensified continuous production unit with compact NMR spectroscopy N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and inexpensive analysers, which feature advantages like low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. Intensified continuous processes are in focus of current research. Flexible (modular) chemical plants can produce different products using the same equipment with short down-times between campaigns and quick introduction of new products to the market. In continuous flow processes online sensor data and tight closed-loop control of the product quality are mandatory. Otherwise there is a huge risk of producing large amounts of out-of-spec (OOS) products. This is addressed in the European Union’s Research Project CONSENS by development and integration of smart sensor modules for process monitoring and control within such modular plant setups. The presented NMR module is provided in an explosion proof housing with a module size of 57 x 57 x 85 cm and involves a compact 43.5 MHz NMR spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction) and evaluation. Indirect Hard Modeling (IHM) was selected for data analysis of the low-field NMR spectra. A set-up for monitoring continuous reactions in a thermostated 1/8” tubular reactor using automated syringe pumps was used to validate the IHM models by using high-field NMR spectroscopy as analytical reference method. T2 - Quantitative NMR Methods for Reaction and Process Monitoring (NMRPM) CY - Kaiserslautern, Germany DA - 19.01.2017 KW - Online NMR spectroscopy PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-390117 AN - OPUS4-39011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Wander, Lukas A1 - Meyer, Klas A1 - Paul, Andrea T1 - Already Producing or Still Calibrating? – Advances of Model-Based Data Evaluation Concepts for Quantitative Online NMR Spectroscopy N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. Here we introduce our smart online NMR sensor module provided in an explosion proof housing as example. Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. We present a range of approaches for the automated spectra analysis moving from statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modelling and Quantum Mechanical calculations). Based on concentration measurements of reagents and products by the NMR analyzer a continuous production and direct loop process control were successfully realized for several validation runs in a modular industrial pilot plant and compared to conventional analytical methods (HPLC, near infrared spectroscopy). The NMR analyser was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme (“Integrated CONtrol and SENsing”, www.consens-spire.eu). T2 - Practical Applications of NMR in Industry Conference (PANIC) 2018 CY - La Jolla, California, USA DA - 04.03.2018 KW - Process Monitoring KW - Process Control KW - Process analytical technology KW - Spectral Modeling KW - Smart Sensors KW - CONSENS KW - Industrie 4.0 PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444357 AN - OPUS4-44435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Meyer, Klas A1 - Wander, Lukas A1 - Gräßer, Patrick A1 - Maiwald, Michael T1 - Online NMR Spectroscopy for Process Monitoring in Intensified Continuous Production Plants N2 - Process analytical techniques are extremely useful tools for chemical production and manufacture and are of particular interest to the pharmaceutical, food and (petro-) chemical industries. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and relatively inexpensive analysers, which feature advantages like low cost, low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, sufficient robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. A major advantage of NMR spectroscopy is that the method features a high linearity between absolute signal area and sample concentration, which makes it an absolute analytical comparison method which is independent of the matrix. This is an important prerequisite for robust data evaluation strategies within a control concept and reduces the need for extensive maintenance of the evaluation model over the time of operation. Additionally, NMR spectroscopy provides orthogonal, but complimentary physical information to conventional, e.g., optical spectroscopy. It increases the accessible information for technical processes, where aromatic-to-aliphatic conversions or isomerizations occur and conventional methods fail due to only minor changes in functional groups. As a technically relevant example, the catalytic hydrogenation of 2-butyne-1,4-diol and further pharmaceutical reactions were studied using an online NMR sensor based on a commercially available low-field NMR spectrometer within the framework of the EU project CONSENS (Integrated Control and Sensing). T2 - EuroPACT 2017 CY - Potsdam, Germany DA - 10.05.2017 KW - Process Monitoring KW - Online NMR Spectroscopy KW - Process analytical technology KW - Hydrogenation KW - Indirect Hard Modeling KW - CONSENS PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-435507 AN - OPUS4-43550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Reading between the lines – Automated data analysis for low field NMR spectra N2 - For reaction monitoring and process control using NMR instruments, in particular, after acquisition of the FID the data needs to be corrected in real-time for common effects using fast interfaces and automated methods. When it comes to NMR data evaluation under industrial process conditions, the shape of signals can change drastically due to nonlinear effects. Additionally, the multiplet structure becomes more dominant because of the comparably low-field strengths which results in overlapping of multiple signals. However, the structural and quantitative information is still present but needs to be extracted by applying predictive models. We present a range of approaches for the automated spectra analysis moving from statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modeling). By using the benefits of traditional qNMR experiments data analysis models can meet the demands of the PAT community (Process Analytical Technology) regarding low calibration effort/calibration free methods, fast adaptions for new reactants, or derivatives and robust automation schemes. T2 - Small Molecule NMR Conference (SMASH) CY - Baveno, Italy DA - 17.09.2017 KW - Online NMR spectroscopy KW - Data analysis KW - Chemometrics KW - Indirect hard modeling KW - Spectral modeling KW - Line prediction KW - CONSENS KW - SMASH PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-419498 UR - http://www.smashnmr.org/conference/program AN - OPUS4-41949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wander, Lukas A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Reading Between the Lines – Automated Data Analysis for Low-Field NMR Spectra N2 - For reaction monitoring using NMR instruments, in particular, after acquisition of the FID the data needs to be corrected in real-time for common effects using automated methods. When it comes to NMR data evaluation under industrial process conditions, the shape of signals can change drastically due to nonlinear effects. However, the structural and quantitative information is still present but needs to be extracted by applying predictive models. Acquired raw spectra were processed with the following tools: · Phase correction using the Entropy minimization method · Baseline correction using a low-order Polynomial fit · Alignment (icoshift) Pure component models based on Pseudo-Voigt functions can be derived via peak fitting of measured pure components or by the use of spin calculations. T2 - Tackling the Future of Plant Operation - Jointly towards a Digital Process Industry CY - Barcelona, Spain DA - 13.12.2017 KW - Process Monitoring KW - Online NMR Spectroscopy KW - Indirect Hard Modeling KW - Spectral Modeling KW - Process Analytical Technology KW - CONSENS PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-434346 AN - OPUS4-43434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Wander, Lukas A1 - Meyer, Klas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Design and Validation of a Compact Online NMR Module N2 - The recent developments of inovative compact NMR spectrometers are therefore remarkable due to their possible application in process analytical technology (PAT) in an industrial environment without high maintenance requirements. spectroscopic methods, NMR spectroscopy offers some unique features for online reaction monitoring. However, those benefits have not been exploited for PAT applications so far. Within the CONSENS Project, the challenge to adapt a commercially available benchtop NMR spectrometer to the full requirements of an automated chemical production environment was tackled successfully. was provided in an explosion proof housing and involves a compact NMR spectrometer together with an automated data acquisition and evaluation unit, flow control, as well as data communication. T2 - Tackling the Future of Plant Operation - Jointly towards a Digital Process Industry CY - Barcelona, Spain DA - 13.12.2017 KW - Process Monitoring KW - Online NMR Spectroscopy KW - Indirect Hard Modeling KW - Explosion Safety KW - Field Integration KW - CONSENS KW - Process Analytical Technology KW - OPC UA PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-434351 AN - OPUS4-43435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Gräßer, Patrick A1 - Zientek, Nicolai A1 - Maiwald, Michael A1 - Paul, Andrea A1 - Kern, Simon T1 - Field integration of benchtop NMR instruments for online monitoring and process control of a modular industrial reaction step N2 - Online monitoring and process control requires fast and noninvasive analytical methods, which are able to monitor the concentration of reactants in multicomponent mixtures with parts-per-million resolution. Online NMR spectroscopy can meet these demands when flow probes are directly coupled to reactors, since this method features a high linearity between absolute signal area and sample concentration, which makes it an absolute analytical comparison method being independent on the matrix. Due to improved magnet design and field shimming strategies portable and robust instruments have been introduced to the market by several manufacturers during the last few years. First studies with this technology showed promising results to monitor chemical reaction in the laboratory. Within the project CONSENS, the continuous production of high-value products in small production scale is advanced by introducing benchtop NMR spectroscopy. CONSENS is a research and innovation project on integrated control and sensing for sustainable operation of flexible intensified processes. This poster will present the first steps of the process integration of a benchtop NMR instrument for a lithiation process and outlines further fields of activity and potential challenges. Hereby, the following issues are going to be addressed: explosion-proof housing for the spectrometer, automation of signal processing (data pretreatment, evaluation and communication to the control system), flow cells and measuring conditions. Furthermore, first online spectra of the lithiation reaction in batch mode were acquired in lab scale. The reaction was performed in a 25 mL glass reactor with thermal jackets for temperature control of the reaction mixture. The Li-HMDS was dosed stepwise by using a glass syringe. First spectra in the proton and fluorine domain were recorded online using a flowrate of 3.5 mL min–1 and a simple 5 mm polytetrafluoroethylene tube (PTFE) as a flow cell. T2 - 4th Practical Applications of NMR in Industry Conference (PANIC) CY - Houston, Texas, USA DA - 15.02.2016 KW - Reaction monitoring KW - Online NMR spectroscopy PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-354427 AN - OPUS4-35442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Maiwald, Michael T1 - First steps towards field integration of benchtop NMR spectroscopy for online monitoring and process control T2 - 11. Kolloquium Prozessanalytik N2 - Online monitoring and process control requires fast and noninvasive analytical methods, which are able to monitor the concentration of reactants in multicomponent mixtures with parts-per-million resolution. Online NMR spectros-copy can meet these demands when flow probes are directly coupled to reactors, since this method features a high linearity between absolute signal area and sample concentration, which makes it an absolute analytical com-parison method being independent on the matrix. Due to improved magnet design and field shimming strategies portable and robust instruments have been introduced to the market by several manufacturers during the last few years. First studies with this technology showed promising results to monitor chemical reaction in the laboratory. Wthin the project CONSENS (www.consens-spire.eu), the continuous production of high-value products in small production scale is advanced by introducing benchtop NMR spectroscopy. CONSENS is a research and innovation project on inte-grated control and sensing for sustainable operation of flexible intensified processes. This poster will present the first steps of the process integration of a benchtop NMR instrument for a lithiation process and outlines further fields of activity and potential challenges. Hereby, the following issues are going to be addressed: explosion-proof housing for the spectrometer, automation of signal processing (data pretreatment, evaluation and communication to the control system), flow cells and measuring conditions. Furthermore, first online spectra of the lithiation reaction in batch mode were acquired in lab scale. The reaction was performed in a 25 mL glass reactor with thermal jackets for temperature control of the reaction mixture. The Li-HMDS was dosed stepwise by using a glass syringe. First spectra in the proton and fluorine domain were recorded online using a flowrate of 3.5 mL min–1 and a simple 5 mm polytetrafluoroethylene tube (PTFE) as a flow cell. T2 - 11. Kolloquium Prozessanalytik CY - Wien, Autria DA - 30.11.2015 PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-351597 AN - OPUS4-35159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Zientek, Nicolai A1 - Maiwald, Michael A1 - Gräßer, P. T1 - First steps towards field integration of benchtop NMR spectroscopy for online monitoring and process control T2 - Pro2NMR Autum School N2 - Online monitoring and process control requires fast and noninvasive analytical methods, which are able to monitor the concentration of reactants in multicomponent mixtures with parts-per-million resolution. Online NMR spectroscopy can meet these demands when flow probes are directly coupled to reactors, since this method features a high linearity between absolute signal area and sample concentration, which makes it an absolute analytical comparison method being independent on the matrix. Due to improved magnet design and field shimming strategies portable and robust instruments have been introduced to the market by several manufacturers during the last few years. First studies with this technology showed promising results to monitor chemical reaction in the laboratory. Within the project CONSENS, the continuous production of high-value products in small production scale is advanced by introducing MR-NMR spectroscopy. CONSENS is a research and innovation project on integrated control and sensing for sustainable operation of flexible intensified processes. This poster will present the first steps of the process integration of a benchtop NMR instrument for a lithiation process and outlines further fields of activity and potential challenges. Hereby, the following issues are going to be addressed: explosion-proof housing for the spectrometer, automation of signal processing (data pretreatment, evaluation and communication to the control system), flow cells and measuring conditions. Additionally, the first results of the lithiation reaction in lab scale regarding the pure components and reaction mixtures are going to be discussed. T2 - Pro2NMR Autum School CY - Aachen, Germany DA - 08.12.2015 PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-351097 AN - OPUS4-35109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Zientek, Nicolai A1 - Maiwald, Michael T1 - First steps towards field integration of benchtop NMR spectroscopy for online monitoring and process control T2 - Small Molecule NMR Conference N2 - Online monitoring and process control requires fast and noninvasive analytical methods, which are able to monitor the concentration of reactants in multicomponent mixtures with parts-per-million resolution. Online NMR spectroscopy can meet these demands when flow probes are directly coupled to reactors, since this method features a high linearity between absolute signal area and sample concentration, which makes it an absolute analytical comparison method being independent on the matrix. Due to improved magnet design and field shimming strategies portable and robust instruments have been introduced to the market by several manufacturers during the last few years. First studies with this technology showed promising results to monitor chemical reaction in the laboratory. Within the project CONSENS, the continuous production of high-value products in small production scale is advanced by introducing MR-NMR spectroscopy. CONSENS is a research and innovation project on integrated control and sensing for sustainable operation of flexible intensified processes. This poster will present the first steps of the process integration of a benchtop NMR instrument for a lithiation process and outlines further fields of activity and potential challenges. Hereby, the following issues are going to be addressed: explosion-proof housing for the spectrometer, automation of signal processing (data pretreatment, evaluation and communication to the control system), flow cells and measuring conditions. Additionally, the first results of the lithiation reaction in lab scale regarding the pure components and reaction mixtures are going to be discussed. T2 - Small Molecule NMR Conference CY - Baveno, Italy DA - 17.09.2015 PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-351085 AN - OPUS4-35108 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bremser, Wolfram A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Mathematical and statistical tools for online NMR spectroscopy in chemical processes N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied, which are calibration intensive. NMR spectroscopy has a high potential for direct loop process control while exhibiting short set-up times. Compact NMR instruments make NMR spectroscopy accessible in industrial and harsh environments for advanced process monitoring and control. Within the European Union’s Research Project CONSENS (Integrated CONtrol and SENsing by development and integration of a smart NMR module for process monitoring was designed and delivers online spectra of various reactions. The presented NMR module is provided in an explosion proof housing of 57 x 57 x 85 cm module size and involves a compact spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction), and evaluation. For reaction monitoring and process control using NMR instruments after acquisition of the FID the data needs to be corrected in real-time for common effects using fast interfaces and automated methods. When it comes to NMR data evaluation under industrial process conditions, the shape of signals can change drastically due to nonlinear effects. Additionally, the multiplet structure becomes more dominant because of the comparably low-field strengths which results in overlapping of multiple signals. However, the structural and quantitative information is still present but needs to be extracted by applying predictive models. We present a range of approaches for the automated spectra analysis moving from statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modelling and Quantum Mechanical calculations). By using the benefits of traditional qNMR experiments data analysis models can meet the demands of the PAT community (Process Analytical Technology) regarding low calibration effort/calibration free methods, fast adaptions for new reactants, or derivatives and robust automation schemes. T2 - Advanced Mathematical and Computational Tools in Metrology and Testing XI (AMCTM) CY - Glasgow, UK DA - 29.08.2017 KW - Process Monitoring KW - CONSENS KW - Online NMR Spectroscopy KW - Indirect Hard Modeling KW - Data Analysis PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-416560 AN - OPUS4-41656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Kern, Simon A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Paul, Andrea A1 - Wander, Lukas T1 - Design and validation of a compact online NMR module N2 - Monitoring chemical reactions is the key to process control. Today, mainly optical online methods are applied, which are calibration intensive. NMR spectroscopy has a high potential for direct loop process control while cutting the calibration and validation needs to an minimum and thus exhibiting short set-up times. Compact NMR instruments make NMR spectroscopy accessible in industrial and harsh environments for advanced process monitoring and control. Intensified continuous processes are in focus of current research. Flexible (modular) chemical plants can produce different products using the same equipment with short down-times between campaigns and quick introduction of new products to the market. In continuous flow processes online sensor data and tight closed-loop control of the product quality are mandatory. Data analysis techniques are available but currently mostly used for off-line data analysis to detect the causes of variations in the product quality. This is addressed within the EU’s Research Project CONSENS by the development and integration of a smart NMR module for process monitoring. The presented NMR module is provided in a mobile explosion proof housing and involves a compact spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction), and evaluation. Such “smart sensors” provide the basis for the future project “Industrie 4.0”, and Industrial Internet of Things (IIoT), along with current requirements to process control, model based control, or soft sensing. The module transforms the acquired online spectra of various technically relevant reactions to either conventional 4‒20 mA signals as well as WiFi based OPC-UA communication protocols, which enables NMR-based advanced process control and funny discussions with plant managers along with automation and safety engineers. T2 - Small Molecule NMR Conference (SMASH) CY - Baveno, Italy DA - 17.09.2017 KW - Online NMR spectroscopy KW - CONSENS KW - Reaction monitoring KW - Process control KW - Process analytical technology KW - Indirect hard modeling KW - Industrie 4.0 KW - Smart sensors KW - SMASH PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-419473 UR - http://www.smashnmr.org/conference/program AN - OPUS4-41947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Wander, Lukas A1 - Meyer, Klas A1 - Maiwald, Michael T1 - Simple calibration concept of an online NMR module demonstrated in a modularised production plant N2 - Monitoring specific information (such as physico-chemical properties, chemical re-actions, etc.) is the key to chemical process control. Within the CONSENS Project, the challenge to adapt a commercially available benchtop NMR spectrometer to the full requirements of an automated chemical production environment was tack-led. The developed online NMR module was provided in an explosion proof housing and involves a compact 43.5 MHz NMR spectrometer together with an acquisition unit, a programmable logic controller for automated triggering, flow con-trol, as well as data communication. First results of an aromatic coupling reaction in lab scale showed a general feasibil-ity according to the signal information in the acquired NMR spectra even though with a considerable overlap. Due to the comparatively low field strength of the NMR spectrometer multivariate methods had to be considered for the prediction of con-centration profiles based on spectral data. Typically, for industrial application of those methods, e.g. Partial Least Squares Regression (PLS-R) as well as Indirect Hard Modeling, large amount of calibration data is demanded, which must be ac-quired in time consuming lab-scale experiments and offline analytics. When it comes to changes in raw materials (e.g., varying functional groups, additional stabi-lizing agents) calibration experiments and data evaluation models are developed again. Here we present an approach of automated data analysis tools for low field NMR spectra with minimal calibration effort. The algorithms are based on Indirect Hard Modeling, whereby each component in each mixture spectra can be rep-resented by several flexible peak functions (pure component models). This means, that only pure component NMR spectra are needed to generate a first evaluation model. The flexibility of peak functions in the spectral model can be adjusted via constraints of peak parameters. The area of any pure component model can either be converted to concentrations based on a one-point calibration on raw material concentration or even neat solvent signals. In several cases it has been shown, the IHM works almost independently of the matrix of the real samples. Such a calibration can be repeated daily in the beginning of each process run with minimal time effort. Moreover, additional pure components can be added to the model or even substitut-ed while keeping the previously adjusted peak function constraints. The proposed method exhibited good agreement of resulting concentration data from low field NMR spectra, when compared to an online high field NMR spectrometer as refer-ence instrument. T2 - 13. Kolloquium des Arbeitskreises Prozessanalytik der DECHEMA und der GDCh-Fachgruppe Analytische Chemie CY - Esslingen, Germany DA - 20.11.2017 KW - Online monitoring KW - Online NMR spectroscopy KW - Modularised production PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-430999 AN - OPUS4-43099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Mathematical and statistical tools for online NMR spectroscopy in chemical processes N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied, which are calibration intensive. NMR spectroscopy has a high potential for direct loop process control while exhibiting short set-up times. Compact NMR instruments make NMR spectroscopy accessible in industrial and harsh environments for advanced process monitoring and control. Within the European Union’s Research Project CONSENS (Integrated CONtrol and SENsing, www.consens-spire.eu) by development and integration of a smart NMR module for process monitoring was designed and delivers online spectra of various reactions. The presented NMR module is provided in an explosion proof housing of 57 x 57 x 85 cm module size and involves a compact spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction), and evaluation. For reaction monitoring and process control using NMR instruments after acquisition of the FID the data needs to be corrected in real-time for common effects using fast interfaces and automated methods. When it comes to NMR data evaluation under industrial process conditions, the shape of signals can change drastically due to nonlinear effects. Additionally, the multiplet structure becomes more dominant because of the comparably low-field strengths which results in overlapping of multiple signals. However, the structural and quantitative information is still present but needs to be extracted by applying predictive models. We present a range of approaches for the automated spectra analysis moving from statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modelling and Quantum Mechanical calculations). By using the benefits of traditional qNMR experiments data analysis models can meet the demands of the PAT community (Process Analytical Technology) regarding low calibration effort/calibration free methods, fast adaptions for new reactants, or derivatives and robust automation schemes. T2 - 13. Dresdner Sensor Symposium CY - Dresden, Germany DA - 04.12.2017 KW - Process Monitoring KW - Process sensors KW - Process analytical technology KW - Online NMR spectroscopy KW - Direct loop control KW - Numerical methods KW - Spectral modeling KW - Indirect hard modeling KW - CONSENS PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-432085 AN - OPUS4-43208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epple, Niklas A1 - Fontoura Barroso, Daniel A1 - Hau, Julia A1 - Niederleithinger, Ernst T1 - Monitoring Reinforced Concrete Structures with Coda Waves The Influence of Temperature on Ultrasound Velocity Changes calculated with Coda Wave Interferometry N2 - Monitoring of reinforced concrete structures to ensure their stability and increase their service-life is a crucial element of a modern infrastructural concept. With classical methods of non-destructive testing and inspection, repeated measurements under comparable conditions are difficult to conduct. Therefore, DFG research unit FOR 2825 CoDA researches the assessment of concrete damage using ultrasound coda wave interferometry and embedded sensors. Embedding the sensors into the monitoring target reduces human and non-human factors influencing repeatability. Using Coda Wave Interferometry (CWI), small velocity changes in the material can be detected by comparison of repeated measurements. The technique is sensitive to damaging changes like cracking as well as to reversible influences like material temperature. The understanding of these different influences on the signal is crucial for the analysis of long-term monitoring data to make an educated assessment of the structure and its integrity. With several laboratory experiments in a climate chamber and a long-term experiment recording an annual cycle in a large model on an outdoor test site in Horstwalde close to Berlin, we try to understand the influence of temperature on the CWI results. The results show that the velocity change calculated by CWI does closely follow the trend of concrete temperature. After one year of data recording with the large model being exposed to environmental variations only, the calculated velocity change resembles the annual temperature curve. The data shows a linear dependency between velocity and temperature change in a range of -0.03 percent per °K to -0.06 percent per °K - regardless of specimen size. An approach to remove temperature influence from the yearly cycle recorded in the large-scale experiment using this linear relation is unable to remove high-frequency variations - especially daily influences. Low-pass filtering the data can eliminate these variations while preserving permanent shifts caused by damages. Although we have shown that the influence of temperature on long term monitoring can be removed to a significant extent, there is still an influence of environmental changes remaining in the data. Possible nonlinear effects and influences not related to temperature need to be investigated in the future. T2 - DGG 81. Jahrestagung 2021 CY - Online meeting DA - 01.03.2021 KW - Ultrasound KW - Bridge Monitoring KW - Coda Wave Interferometry KW - Structural health monitoring PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522401 DO - https://doi.org/10.23689/fidgeo-3975 AN - OPUS4-52240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Kern, Simon A1 - Gräßer, Patrick A1 - Maiwald, Michael T1 - Process monitoring of an intensified continuous production unit with compact NMR spectroscopy N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and relatively inexpensive analyzers, which feature advantages like low cost, low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, sufficient robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. Recently, promising benchtop NMR instruments with acceptable performance came to market and process integrated sensors developed on basis of such laboratory instruments are on their way. Intensified continuous processes are in focus of current research. Compared to traditional batch processes, these are giving admittance to new and difficult to produce compounds, leading to better product uniformity, and dras-tically reducing the consumption of raw materials and energy. Flexible (modular) chemical plants can produce different products using the same equipment with short down-times between campaigns, and quick introduction of new products to the market. Typically, such plants have smaller scale than big size facilities for production of basic chemicals but are still capable to produce kilograms to tons of specialty products each day. Such flexible (modular) plants can be provided in the size of 20 ft freight containers and represent a promising approach by their ability of easy transfer to production sites as well as the possibility of increasing production capacity by a simple numbering-up-approach. However, full automation is a prerequisite to realize such benefits of intensified continuous production. In continu-ous flow processes steady automated measurements and tight closed-loop control of the product quality are mandatory. If these are not available, there is a huge risk of producing large amounts of out-of-spec (OOS) prod-ucts. This is addressed in the European Union’s Research Project CONSENS (Integrated Control and Sensing) by development and integration of smart sensor modules for process monitoring and control within such modular plant setups. T2 - 12. Kolloquium des Arbeitskreises Prozessanalytik CY - Berlin, Germany DA - 28.11.2016 KW - Low field NMR spectroscopy KW - Modular production units KW - Online NMR spectroscopy PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-385628 AN - OPUS4-38562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Kern, Simon A1 - Gräßer, Patrick A1 - Maiwald, Michael T1 - Process monitoring of an intensified continuous production unit with compact NMR spectroscopy N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and inexpensive analysers, which feature advantages like low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. Intensified continuous processes are in focus of current research. Flexible (modular) chemical plants can produce different products using the same equipment with short down-times between campaigns and quick introduction of new products to the market. In continuous flow processes online sensor data and tight closed-loop control of the product quality are mandatory. Otherwise there is a huge risk of producing large amounts of out-of-spec (OOS) products. This is addressed in the European Union’s Research Project CONSENS by development and integration of smart sensor modules for process monitoring and control within such modular plant setups. The presented NMR module is provided in an explosion proof housing with a module size of 57 x 57 x 85 cm and involves a compact 43.5 MHz NMR spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction) and evaluation. Indirect Hard Modeling (IHM) was selected for data analysis of the low-field NMR spectra. A set-up for monitoring continuous reactions in a thermostated 1/8” tubular reactor using automated syringe pumps was used to validate the IHM models by using high-field NMR spectroscopy as analytical reference method. T2 - Workshop for Process Industry - Tackling the Future of Plant Operation CY - Frankfurt am Main, Germany DA - 25.01.2017 KW - Online NMR spectroscopy KW - Process analytical technology KW - Prozessanalytik KW - Process control KW - CONSENS PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-391386 AN - OPUS4-39138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Meyer, Klas A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Maiwald, Michael T1 - Online NMR spectroscopy for process monitoring in intensified continuous production plants N2 - Die Überwachung chemischer Reaktionen ist der Schlüssel zur chemischen Prozesskontrolle. Die quantitative NMR-Spektroskopie besitzt ein hohes Potential für das kontinuierliche Prozessmonitoring. Sie arbeitet zerstörungsfrei mit geringen Probenmengen, kommt durch den direkten Nachweis der Kernspins ohne Kalibrierung aus und weist auch in Konzentrationsrandbereichen eine sehr hohe Linearität auf. Durch Innovationen im Bereich der Niederfeld-NMR-Spektroskopie sind seit kurzem kompakte Benchtop-Laborgeräte von einer wachsenden Zahl an Herstellern kommerziell erhältlich. Neben der Verwendung für Lehre und Forschung im Labor besteht ein potentieller Markt für prozesstaugliche Analysatoren auf Basis dieser Technologie. Für die Integration in eine industrielle Umgebung werden hohe Anforderungen an die Robustheit und Sicherheit entsprechender Systeme gestellt. Dies umfasst neben einem zuverlässigen, vollautomatisierten Betrieb vor allem die Konformität mit ATEX-Richtlinien für den Einsatz in den zumeist als explosionsgefährdet geltenden Produktionsbereichen [2]. Insbesondere im Fall kontinuierlicher Prozesse sind Online-Sensoren und eine unmittelbar rückwirkende Regelung (Closed-loop-control) im laufenden Betrieb zur Sicherstellung der Produktqualität zwingend erforderlich. Andernfalls besteht ein hohes Risiko, große Mengen von nicht spezifikationskonformen, sog. Out-of-Spec-Produkten (OOS) zu produzieren, die aufwändig aufbereitet oder schlimmstenfalls verworfen werden müssen. Im Rahmen des EU-Projekts CONSENS (Integrated Control and Sensing) wird ein prozesstauglicher Analysator für den Einsatz in modularen Produktionsanlagen auf Basis eines kommerziell erhältlichen Niederfeld-NMR-Spektrometers entwickelt. Zur Validierung und Verbesserung der Systemintegration dieses Moduls wird eine kontinuierlich betriebene Teilreaktion aus einem pharmazeutischen Produktionsprozess untersucht. Hierbei handelt es sich um die Kopplung der aromatischen Systeme Anilin und o-Fluornitrobenzol unter Verwendung eines Lithiumorganyls. Die hohe Reaktionsgeschwindigkeit dieses Prozessbeispiels erlaubt jedoch keine kinetischen Studien des Reaktionsverlaufs, sodass dies am technisch relevanten Beispiel der katalytischen Hydrierung von 2-Butin-1,4-diol oder weiteren pharmazeutischen Reaktionen demonstriert wird. Im Rahmen dieser Prozessanwendungen ist auch der direkte Vergleich mit etablierten spektroskopischen Verfahren wie UV/VIS-, NIR- und Raman-Spektroskopie geplant. N2 - Process analytical techniques are extremely useful tools for chemical production and manufacture and are of particular interest to the pharmaceutical, food and (petro-) chemical industries. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and relatively inexpensive analysers, which feature advantages like low cost, low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, sufficient robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. A major advantage of NMR spectroscopy is that the method features a high linearity between absolute signal area and sample concentration, which makes it an absolute analytical comparison method which is independent of the matrix. This is an important prerequisite for robust data evaluation strategies within a control concept and reduces the need for extensive maintenance of the evaluation model over the time of operation. Additionally, NMR spectroscopy provides orthogonal, but complimentary physical information to conventional, e.g., optical spectroscopy. It increases the accessible information for technical processes, where aromatic-to-aliphatic conversions or isomerisation’s occur and conventional methods fail due to only minor changes in functional groups. As a technically relevant example, the catalytic hydrogenation of 2-butyne-1,4-diol and further pharmaceutical reactions were studied using an online NMR sensor based on a commercially available low-field NMR spectrometer within the framework of the EU project CONSENS (Integrated Control and Sensing). T2 - 11. Interdisziplinäres Doktorandenseminar CY - Berlin, Germany DA - 12.03.2017 KW - Niederfeld-NMR-Spektroskopie KW - Zerstörungfreie Analytik KW - Online NMR Spektroskopie PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-394241 AN - OPUS4-39424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Meyer, Klas A1 - Wander, Lukas A1 - Gräßer, Patrick T1 - Design and validation of a compact NMR analyser N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and inexpensive analysers, which feature advantages like low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. Intensified continuous processes are in focus of current research. Flexible (modular) chemical plants can produce different products using the same equipment with short down-times between campaigns and quick introduction of new products to the market. In continuous flow processes online sensor data and tight closed-loop control of the product quality are mandatory. Otherwise there is a huge risk of producing large amounts of out-of-spec (OOS) products. This is addressed in the European Union’s Research Project CONSENS by development and integration of smart sensor modules for process monitoring and control within such modular plant setups. The presented NMR module is provided in an explosion proof housing with a module size of 57 x 57 x 85 cm and involves a compact 43.5 MHz NMR spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction) and evaluation. Indirect Hard Modeling (IHM) was selected for data analysis of the low-field NMR spectra. A set-up for monitoring continuous reactions in a thermostated 1/8” tubular reactor using automated syringe pumps was used to validate the IHM models by using high-field NMR spectroscopy as analytical reference method. T2 - ANAKON 2017 CY - Tübingen, Germany DA - 03.04.2017 KW - Online NMR spectroscopy KW - Low-Field NMR spectroscopy KW - Modular production plants KW - Process analytical technology PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-396960 AN - OPUS4-39696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -