TY - CONF A1 - Wander, Lukas A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Reading Between the Lines – Automated Data Analysis for Low-Field NMR Spectra N2 - For reaction monitoring using NMR instruments, in particular, after acquisition of the FID the data needs to be corrected in real-time for common effects using automated methods. When it comes to NMR data evaluation under industrial process conditions, the shape of signals can change drastically due to nonlinear effects. However, the structural and quantitative information is still present but needs to be extracted by applying predictive models. Acquired raw spectra were processed with the following tools: · Phase correction using the Entropy minimization method · Baseline correction using a low-order Polynomial fit · Alignment (icoshift) Pure component models based on Pseudo-Voigt functions can be derived via peak fitting of measured pure components or by the use of spin calculations. T2 - Tackling the Future of Plant Operation - Jointly towards a Digital Process Industry CY - Barcelona, Spain DA - 13.12.2017 KW - Process Monitoring KW - Online NMR Spectroscopy KW - Indirect Hard Modeling KW - Spectral Modeling KW - Process Analytical Technology KW - CONSENS PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-434346 AN - OPUS4-43434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Wander, Lukas A1 - Meyer, Klas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Design and Validation of a Compact Online NMR Module N2 - The recent developments of inovative compact NMR spectrometers are therefore remarkable due to their possible application in process analytical technology (PAT) in an industrial environment without high maintenance requirements. spectroscopic methods, NMR spectroscopy offers some unique features for online reaction monitoring. However, those benefits have not been exploited for PAT applications so far. Within the CONSENS Project, the challenge to adapt a commercially available benchtop NMR spectrometer to the full requirements of an automated chemical production environment was tackled successfully. was provided in an explosion proof housing and involves a compact NMR spectrometer together with an automated data acquisition and evaluation unit, flow control, as well as data communication. T2 - Tackling the Future of Plant Operation - Jointly towards a Digital Process Industry CY - Barcelona, Spain DA - 13.12.2017 KW - Process Monitoring KW - Online NMR Spectroscopy KW - Indirect Hard Modeling KW - Explosion Safety KW - Field Integration KW - CONSENS KW - Process Analytical Technology KW - OPC UA PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-434351 AN - OPUS4-43435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -