TY - CONF A1 - Kern, Simon A1 - Meyer, Klas A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Online low-field NMR spectroscopy in modular plants for chemical production N2 - Die Online-Reaktionsverfolgung ist der Schlüssel zur chemischen Prozesskontrolle. Heute werden in diesem Bereich hauptsächlich Methoden der optischen Spektroskopie eingesetzt. Durch aktuelle Entwicklungen im Bereich kompakter Niederfeld-NMR-Spektrometer auf Basis von Permanentmagnetsystemen ist erstmals auch die Integration unmittelbar in einer industriellen Produktionsumgebung möglich. Diese Geräte sind robuste und relativ preiswerte Analysatoren, welche die Vorteile eines wartungsfreundlichen Betriebs ohne Notwendigkeit von kryogenen Flüssigkeiten, sowie eine einfache Handhabung vereinen. Aktuell auf dem Markt verfügbare Geräte sind jedoch ausschließlich auf den Einsatz im Laborbetrieb ausgerichtet. Für die Kopplung als Online-Methode im Prozesseinsatz ist die Entwicklung geeigneter Durchflusszellen notwendig. Diese ermöglichen idealerweise ein gutes Signal-Rausch-Verhältnis, eine ausreichende Robustheit und müssen die Anforderungen an die Integration in industrielle Anlagen erfüllen (z.B. Explosionsschutz, Temperierung). Intensivierte kontinuierliche Prozesse stehen im Fokus der aktuellen Forschung. Im Vergleich zu etablierten Batch-Verfahren besteht in modularen chemischen Anlagen die Möglichkeit durch kurze Umrüstzeiten zwischen Kampagnen effektiv auf die Marktentwicklung zu reagieren. Bei kontinuierlicher Prozessführung sind Online-Sensoren und eine zuverlässige und schnelle Regelung der Produktqualität essentiell. Andernfalls besteht ein großes Risiko, große Mengen nicht-spezifikationskonformer Produkte zu erhalten. Dies wird im Rahmen des Forschungsprojekts CONSENS (Integrated Control and Sensing) der Europäischen Union durch die Entwicklung und Integration intelligenter Sensormodule zur Prozessüberwachung und -steuerung in modularen Anlagenkonzepten thematisiert. Das vorgestellte NMR-Analysatormodul mit der Baugröße von 57 x 57 x 85 cm basiert auf einem kompakten 43,5-MHz-NMR-Spektrometer. Dieses ist zusammen mit einem Akquisitionsrechner und einer programmierbaren Steuerung für die automatisierte Daten-aufbereitung (Phasing, Baseline-Korrektur) und Auswertung in ein explosionsgeschütztes Gehäuse integriert. Für die automatisierte Datenanalyse kommt die Methode des Indirect Hard Modelings (IHM) zum Einsatz. Die entwickelten IHM-Modelle werden mittels Online-Hochfeld-NMR-Spektroskopie als Referenzverfahren in einem Versuchsaufbau zur Überwachung kontinuierlicher Reaktionen auf Basis eines mit Spritzenpumpen betriebenen 1/8" Rohrreaktors validiert. N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and relatively inexpensive analysers, which feature advantages like low cost, low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, sufficient robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. Intensified continuous processes are in focus of current research. Flexible (modular) chemical plants can produce different products using the same equipment with short down-times between campaigns and quick introduction of new products to the market. In continuous flow processes online sensor data and tight closed-loop control of the product quality are mandatory. If these are not available, there is a huge risk of producing large amounts of out-of-spec (OOS) products. This is addressed in the European Union’s Research Project CONSENS (Integrated Control and Sensing [3]) by development and integration of smart sensor modules for process monitoring and control within such modular plant setups. The presented NMR module is provided in an explosion proof housing of 57 x 57 x 85 cm module size and involves a compact 43.5 MHz NMR spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction) and evaluation. Indirect Hard Modeling (IHM) was selected for data analysis of the low-field NMR spectra. A set-up for monitoring continuous reactions in a thermostated 1/8” tubular reactor using automated syringe pumps was used to validate the IHM models by using high-field NMR spectroscopy as analytical reference method. T2 - Praktische Probleme der Kernresonanzspektroskopie CY - Erlangen, Germany DA - 16.01.2017 KW - Online NMR spectroscopy KW - Automated data evaluation KW - NMR sensor KW - Process control PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-389819 AN - OPUS4-38981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Low field NMR spectroscopy for sustainable and flexible production of high quality chemical products N2 - The main development goal of process industries is to advance the continuous production of high-value products that meet high quality demands in flexible intensified continuous plants by introducing novel online sensing equipment and closed-loop control (CONSENS – integrated control and sensing- is funded from the European Union’s Horizon 2020 research and innovation programme). Therefore, we present the field integration of a benchtop NMR instrument into a modular production environment, focussing on suitable equipment for operation in hazardous areas with risk of explosive atmospheres. We investigated a pharmaceutical reaction step in order to describe challenges for the experimental design, the evaluation of complex NMR spectra and demonstrate automated data analysis tools. T2 - 5th Panic - Practical Applications of NMR in Industry Conferece CY - Hilton Head Island, SC 29928, USA DA - 20.02.2017 KW - Online NMR spectroscopy KW - Automated data evaluation KW - Process control PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-392333 AN - OPUS4-39233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Kern, Simon A1 - Gräßer, Patrick A1 - Maiwald, Michael T1 - Process monitoring of an intensified continuous production unit with compact NMR spectroscopy N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and relatively inexpensive analyzers, which feature advantages like low cost, low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, sufficient robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. Recently, promising benchtop NMR instruments with acceptable performance came to market and process integrated sensors developed on basis of such laboratory instruments are on their way. Intensified continuous processes are in focus of current research. Compared to traditional batch processes, these are giving admittance to new and difficult to produce compounds, leading to better product uniformity, and dras-tically reducing the consumption of raw materials and energy. Flexible (modular) chemical plants can produce different products using the same equipment with short down-times between campaigns, and quick introduction of new products to the market. Typically, such plants have smaller scale than big size facilities for production of basic chemicals but are still capable to produce kilograms to tons of specialty products each day. Such flexible (modular) plants can be provided in the size of 20 ft freight containers and represent a promising approach by their ability of easy transfer to production sites as well as the possibility of increasing production capacity by a simple numbering-up-approach. However, full automation is a prerequisite to realize such benefits of intensified continuous production. In continu-ous flow processes steady automated measurements and tight closed-loop control of the product quality are mandatory. If these are not available, there is a huge risk of producing large amounts of out-of-spec (OOS) prod-ucts. This is addressed in the European Union’s Research Project CONSENS (Integrated Control and Sensing) by development and integration of smart sensor modules for process monitoring and control within such modular plant setups. T2 - 12. Kolloquium des Arbeitskreises Prozessanalytik CY - Berlin, Germany DA - 28.11.2016 KW - Low field NMR spectroscopy KW - Modular production units KW - Online NMR spectroscopy PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-385628 AN - OPUS4-38562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Kern, Simon A1 - Gräßer, Patrick A1 - Maiwald, Michael T1 - Process monitoring of an intensified continuous production unit with compact NMR spectroscopy N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and inexpensive analysers, which feature advantages like low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. Intensified continuous processes are in focus of current research. Flexible (modular) chemical plants can produce different products using the same equipment with short down-times between campaigns and quick introduction of new products to the market. In continuous flow processes online sensor data and tight closed-loop control of the product quality are mandatory. Otherwise there is a huge risk of producing large amounts of out-of-spec (OOS) products. This is addressed in the European Union’s Research Project CONSENS by development and integration of smart sensor modules for process monitoring and control within such modular plant setups. The presented NMR module is provided in an explosion proof housing with a module size of 57 x 57 x 85 cm and involves a compact 43.5 MHz NMR spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction) and evaluation. Indirect Hard Modeling (IHM) was selected for data analysis of the low-field NMR spectra. A set-up for monitoring continuous reactions in a thermostated 1/8” tubular reactor using automated syringe pumps was used to validate the IHM models by using high-field NMR spectroscopy as analytical reference method. T2 - Workshop for Process Industry - Tackling the Future of Plant Operation CY - Frankfurt am Main, Germany DA - 25.01.2017 KW - Online NMR spectroscopy KW - Process analytical technology KW - Prozessanalytik KW - Process control KW - CONSENS PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-391386 AN - OPUS4-39138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Meyer, Klas A1 - Wander, Lukas A1 - Gräßer, Patrick T1 - Design and validation of a compact NMR analyser N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and inexpensive analysers, which feature advantages like low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. Intensified continuous processes are in focus of current research. Flexible (modular) chemical plants can produce different products using the same equipment with short down-times between campaigns and quick introduction of new products to the market. In continuous flow processes online sensor data and tight closed-loop control of the product quality are mandatory. Otherwise there is a huge risk of producing large amounts of out-of-spec (OOS) products. This is addressed in the European Union’s Research Project CONSENS by development and integration of smart sensor modules for process monitoring and control within such modular plant setups. The presented NMR module is provided in an explosion proof housing with a module size of 57 x 57 x 85 cm and involves a compact 43.5 MHz NMR spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction) and evaluation. Indirect Hard Modeling (IHM) was selected for data analysis of the low-field NMR spectra. A set-up for monitoring continuous reactions in a thermostated 1/8” tubular reactor using automated syringe pumps was used to validate the IHM models by using high-field NMR spectroscopy as analytical reference method. T2 - ANAKON 2017 CY - Tübingen, Germany DA - 03.04.2017 KW - Online NMR spectroscopy KW - Low-Field NMR spectroscopy KW - Modular production plants KW - Process analytical technology PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-396960 AN - OPUS4-39696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wander, Lukas A1 - Kern, Simon A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Maiwald, Michael T1 - Assessment and validation of various flow cell designs for quantitative online NMR spectroscopy N2 - Compact nuclear magnetic resonance (NMR) instruments make NMR spectroscopy and relaxometry accessible in industrial and harsh environments for reaction and process control. Robust field integration of NMR systems have to face explosion protection or integration into process control systems with short set-up times. This paves the way for industrial automation in real process environments. The design of failsafe, temperature and pressure resistant flow through cells along with their NMR-specific requirements is an essential cornerstone to enter industrial production plants and fulfill explosion safety requirements. NMR-specific requirements aim at full quantitative pre-magnetization and acquisition with maximum sensitivity while reducing sample transfer times and dwell-times. All parameters are individually dependent on the applied NMR instrument. Luckily, an increasing number of applications are reported together with an increasing variety of commercial equipment. However, these contributions have to be reviewed thoroughly. The performance of sample flow cells commonly used in online analytics and especially for low-field NMR spectroscopy was experimentally and theoretically investigated by 1H-NMR experiments and numerical simulations. Here, we demonstrate and discuss an automated test method to determine the critical parameters of flow through cells for quantitative online NMR spectroscopy. The setup is based on randomized setpoints of flow rates in order to reduce temperature related effects. Five flow cells and tubings were assessed and compared for high-field as well as low-field NMR spectrometers. T2 - Small Molecule NMR Conference (SMASH) CY - Baveno, Italy DA - 17.09.2017 KW - Online NMR spectroscopy KW - Reaction monitoring KW - Flow cell KW - Process control KW - SMASH PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-419485 UR - http://www.smashnmr.org/conference/program AN - OPUS4-41948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Meyer, Klas A1 - Wander, Lukas A1 - Gräßer, Patrick A1 - Maiwald, Michael T1 - Process monitoring of an intensified continuous production unit with compact NMR spectroscopy N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and inexpensive analysers, which feature advantages like low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. Intensified continuous processes are in focus of current research. Flexible (modular) chemical plants can produce different products using the same equipment with short down-times between campaigns and quick introduction of new products to the market. In continuous flow processes online sensor data and tight closed-loop control of the product quality are mandatory. Otherwise there is a huge risk of producing large amounts of out-of-spec (OOS) products. This is addressed in the European Union’s Research Project CONSENS by development and integration of smart sensor modules for process monitoring and control within such modular plant setups. The presented NMR module is provided in an explosion proof housing with a module size of 57 x 57 x 85 cm and involves a compact 43.5 MHz NMR spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction) and evaluation. Indirect Hard Modeling (IHM) was selected for data analysis of the low-field NMR spectra. A set-up for monitoring continuous reactions in a thermostated 1/8” tubular reactor using automated syringe pumps was used to validate the IHM models by using high-field NMR spectroscopy as analytical reference method. T2 - Quantitative NMR Methods for Reaction and Process Monitoring (NMRPM) CY - Kaiserslautern, Germany DA - 19.01.2017 KW - Online NMR spectroscopy PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-390117 AN - OPUS4-39011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Reading between the lines – Automated data analysis for low field NMR spectra N2 - For reaction monitoring and process control using NMR instruments, in particular, after acquisition of the FID the data needs to be corrected in real-time for common effects using fast interfaces and automated methods. When it comes to NMR data evaluation under industrial process conditions, the shape of signals can change drastically due to nonlinear effects. Additionally, the multiplet structure becomes more dominant because of the comparably low-field strengths which results in overlapping of multiple signals. However, the structural and quantitative information is still present but needs to be extracted by applying predictive models. We present a range of approaches for the automated spectra analysis moving from statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modeling). By using the benefits of traditional qNMR experiments data analysis models can meet the demands of the PAT community (Process Analytical Technology) regarding low calibration effort/calibration free methods, fast adaptions for new reactants, or derivatives and robust automation schemes. T2 - Small Molecule NMR Conference (SMASH) CY - Baveno, Italy DA - 17.09.2017 KW - Online NMR spectroscopy KW - Data analysis KW - Chemometrics KW - Indirect hard modeling KW - Spectral modeling KW - Line prediction KW - CONSENS KW - SMASH PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-419498 UR - http://www.smashnmr.org/conference/program AN - OPUS4-41949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Gräßer, Patrick A1 - Zientek, Nicolai A1 - Maiwald, Michael A1 - Paul, Andrea A1 - Kern, Simon T1 - Field integration of benchtop NMR instruments for online monitoring and process control of a modular industrial reaction step N2 - Online monitoring and process control requires fast and noninvasive analytical methods, which are able to monitor the concentration of reactants in multicomponent mixtures with parts-per-million resolution. Online NMR spectroscopy can meet these demands when flow probes are directly coupled to reactors, since this method features a high linearity between absolute signal area and sample concentration, which makes it an absolute analytical comparison method being independent on the matrix. Due to improved magnet design and field shimming strategies portable and robust instruments have been introduced to the market by several manufacturers during the last few years. First studies with this technology showed promising results to monitor chemical reaction in the laboratory. Within the project CONSENS, the continuous production of high-value products in small production scale is advanced by introducing benchtop NMR spectroscopy. CONSENS is a research and innovation project on integrated control and sensing for sustainable operation of flexible intensified processes. This poster will present the first steps of the process integration of a benchtop NMR instrument for a lithiation process and outlines further fields of activity and potential challenges. Hereby, the following issues are going to be addressed: explosion-proof housing for the spectrometer, automation of signal processing (data pretreatment, evaluation and communication to the control system), flow cells and measuring conditions. Furthermore, first online spectra of the lithiation reaction in batch mode were acquired in lab scale. The reaction was performed in a 25 mL glass reactor with thermal jackets for temperature control of the reaction mixture. The Li-HMDS was dosed stepwise by using a glass syringe. First spectra in the proton and fluorine domain were recorded online using a flowrate of 3.5 mL min–1 and a simple 5 mm polytetrafluoroethylene tube (PTFE) as a flow cell. T2 - 4th Practical Applications of NMR in Industry Conference (PANIC) CY - Houston, Texas, USA DA - 15.02.2016 KW - Reaction monitoring KW - Online NMR spectroscopy PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-354427 AN - OPUS4-35442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Zientek, Nicolai A1 - Meyer, Klas A1 - Kern, Simon T1 - Low field NMR spectroscopy for online monitoring N2 - Online NMR spectroscopy is an excellent tool to study complex reacting multicomponent mixtures and gain process insight and understanding. For online studies under process conditions, flow NMR probes can be used in a wide range of temperature and pressure. This paper compiles the most important aspects towards quantitative process NMR spectroscopy in complex multicomponent mixtures and provides examples. After NMR spectroscopy is introduced as an online method and for technical samples without sample preparation in deuterated solvents, influences of the residence time distribution, pre-magnetization, and cell design are discussed. NMR acquisition and processing parameters as well as data preparation methods are presented and the most practical data analysis strategies are introduced. T2 - Sonderkolloquium der INVITE-GmbH CY - Leverkusen, Germany DA - 07.09.2016 KW - Industrie 4.0 KW - CONSENS KW - Prozessanalytik KW - Online NMR spectroscopy PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-361417 AN - OPUS4-36141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -