TY - CONF A1 - Ahmadi, Samim A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Burgholzer, Peter A1 - Jung, Peter A1 - Caire, Giuseppe A1 - Ziegler, Mathias T1 - Neue Verfahren der thermografischen Super Resolution mit strukturierter 1D-Lasererwärmung N2 - Die thermografische ZfP basiert auf der Wechselwirkung von thermischen Wellen mit Inhomogenitäten. Die Ausbreitung von thermischen Wellen von der Wärmequelle zur Inhomogenität und zur Detektionsoberfläche entsprechend der thermischen Diffusionsgleichung führt dazu, dass zwei eng beieinander liegende Defekte fälschlicherweise als ein Defekt im gemessenen Thermogramm erkannt werden können. Um diese räumliche Auflösungsgrenze zu durchbrechen, also eine Super Resolution zu realisieren, kann die Kombination von räumlich strukturierter Erwärmung und numerischen Verfahren des Compressed Sensings verwendet werden. Für unsere Arbeiten benutzen wir Hochleistungs-Laser im Kilowatt-Bereich um die Probe entweder hochaufgelöst entlang einer Linie (1D) abzurastern oder strukturiert zu erwärmen. Die Verbesserung des räumlichen Auflösungsvermögens zur Defekterkennung hängt dann im klassischen Sinne direkt von der Anzahl der Messungen ab. Mithilfe des Compressed Sensings und Vorkenntnissen über das System ist es jedoch möglich die Anzahl der Messungen zu reduzieren und trotzdem Super Resolution zu erzielen. Wie viele Messungen notwendig sind und wie groß der Auflösungsgewinn gegenüber der konventionellen thermografischen Prüfung mit flächiger Erwärmung ist, hängt von einer Reihe von Messparametern, der Messstrategie, Probeneigenschaften und den verwendeten Rekonstruktionsalgorithmen ab. Unsere Studien befassen sich mit dem Einfluss der experimentellen Parameter, wie z.B. der Pulslänge der Laserbeleuchtung und der Größe des Laserspots. Weiterhin haben wir uns mit der Wahl der Parameter in der Rekonstruktion auseinandergesetzt, die einen Einfluss auf das im Compressed Sensing zugrundeliegende Minimierungsproblem haben. Für jeden getesteten Parametersatz wurde eine Rekonstruktionsqualität berechnet. Schließlich wurden die Defektrekonstruktionen basierend auf den Parameternsätzen verglichen, sodass eine Parameterwahl für hohe Rekonstruktionsqualitäten mit thermografischer Super Resolution empfohlen werden kann. T2 - DGZfP-Jahrestagung 2021 CY - Online meeting DA - 10.05.2021 KW - Super resolution KW - Thermografie KW - Strukturiert KW - Photothermisch PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527820 AN - OPUS4-52782 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Krankenhagen, Rainer A1 - Eisenkrein-Kreksch, H. T1 - Thermografische Schichtdickenbestimmung von Oberflächenschutzsystemen für Beton N2 - Im Bauwesen werden häufig Polymerbeschichtungen auf Beton eingesetzt um zum einen ein bestimmtes Aussehen zu schaffen und zum anderen das Bauteil vor Alterung, Verschleiß und Schädigung zu schützen. Für die Erfüllung aller genannten Ziele ist das Erreichen einer vom Hersteller festgelegten Sollschichtdicke essentiell. Daher wird die Dicke der Beschichtung nach erfolgtem Schichtauftrag überprüft. Für den in diesem Zusammenhang anspruchsvollen mineralischen Untergrund Beton stehen bislang allerdings nur zerstörende Prüfverfahren zur Verfügung. Aus diesem Grund wurden im Rahmen des Projektes IRKUTSK in Kollaboration mit der IBOS GmbH ein auf aktiver Thermografie basierendes Verfahren sowie ein Gerät für den vor-Ort-Einsatz entwickelt, mit dessen Hilfe eine zerstörungsfreie Schichtdickenbestimmung möglich ist. Das Poster erläutert das Messverfahren und die Umsetzung in der Praxis. Es werden Messergebnisse sowie der Vergleich mit zerstörend ermittelten Schichtdicken gezeigt. Hierbei konnte eine sehr gute Übereinstimmung nachgewiesen werden. Die notwendigen Erweiterungen des zugrundeliegenden Modells in Bezug auf die einzelnen Parameter werden erläutert und diskutiert. Die hier vorgestellte Arbeit ist Teil des ZIM-Projektes IRKUTSK mit dem Förderkennzeichen KF2201089AT4 und ist gefördert durch das Bundesministerium für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages. T2 - Bauwerksdiagnose 2018 CY - Berlin, Germany DA - 15.02.2018 KW - Thermografie KW - Schichtdickenbestimmung KW - Oberflächenschutzsysteme KW - Beton KW - ZfP PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-442291 UR - https://www.ndt.net/search/docs.php3?id=22642 AN - OPUS4-44229 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien T1 - Detektion innenliegender Defekte mittels photothermischer Super-Resolution-Rekonstruktion und 2D-Beleuchtungsmustern N2 - Für die aktive Thermografie als zerstörungsfreie Prüfmethode galt lange Zeit die Faustformel, dass die Auflösung interner Defekte/Inhomogenitäten auf ein Verhältnis von Defekttiefe/Defektgröße ≤ 1 beschränkt ist. Die Ursache hierfür liegt in der diffusiven Natur der Wärmeleitung in Festkörpern. Sogenannte Super-Resolution-Ansätze erlauben seit Kurzem die Überwindung dieser physikalischen Grenze um ein Vielfaches. Damit ergibt sich die attraktive Möglichkeit die Thermografie von einem rein oberflächensensitiven Prüfverfahren hin zu einem Verfahren mit verbesserter Tiefenreichweite zu entwickeln. Wie weit diese Entwicklung getrieben werden kann, ist Gegenstand aktueller Forschung. Wir konnten bereits zeigen, dass diese klassische Einschränkung für ein- und zweidimensionale Defektgeometrien überwunden werden kann, indem das Prüfobjekt mit einzelnen Laserspots sequenziell strukturiert beleuchtet wird und damit anschließend aus den resultierenden Messdaten durch Anwendung photothermischer Super-ResolutionRekonstruktion eine Defektkarte berechnet werden kann, welche eine deutlich verbesserte Trennung einzelner naheliegender Defekte erlaubt. Dieses Verfahren profitiert dabei im Ergebnis stark von der Kombination von sequenzieller räumlich strukturierter Beleuchtung und modernen numerischen Optimierungsverfahren, was jedoch in Summe stark auf Kosten der experimentellen Komplexität geht. Dies führt im Gegensatz zur Anwendung von etablierten thermografischen Standardverfahren mit vollflächiger Beleuchtung zu langen Messzeiten, großen Datensätzen und langwieriger numerischer Auswertung. In dieser Arbeit berichten wir über die Anwendung vollflächig räumlichstrukturierter zweidimensionaler Beleuchtungsmuster, welche es durch den Einsatz modernster Laserprojektortechnik in Verbindung mit einem Hochleistungslaser überhaupt erst erlaubt, eine effiziente Umsetzung von photothermischer Super-ResolutionRekonstruktion auch für größere Prüfflächen zu erreichen. T2 - Thermographie-Kolloquium 2022 CY - Saarbrücken, Germany DA - 28.09.2022 KW - Thermografie KW - Super resolution KW - Eingeschlossene Defekte KW - ZfP KW - DLP KW - Projektor KW - DMD PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565222 UR - https://www.dgzfp.de/Portals/thermo2022/BB178/Inhalt/13.pdf AN - OPUS4-56522 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -