TY - CONF A1 - Osterloh, Kurt A1 - Wrobel, Norma A1 - Fratzscher, Daniel A1 - Jechow, Mirko A1 - Zscherpel, Uwe A1 - Ewert, Uwe T1 - Einstrahlgeometrie und Erkennbarkeit von Objekten in der Röntgenrückstreuradiographie N2 - Abweichend von der gängigen Vorgehensweise, mit einem Bleistiftstrahl die Lage eines Bildpunktes festzulegen und die rückgestreute Strahlung großflächig aufzunehmen, bietet die neu entwickelte Kamera Unabhängigkeit von Einstrahl- und Blickrichtung. Ausgestattet mit einer 'Optik' für hochenergetische Strahlung, wie die bereits beschriebene Schlitzblendenkamera, ist die variable Gestaltung von Einstrahl- und Blickrichtung möglich. Damit eröffnet sich die Chance, Strahlung absorbierende Details in einem Objekt sichtbar werden zu lassen, die sonst von einer streuenden Umgebung überstrahlt würden. Zudem wird gezeigt, wie sich das Erscheinungsbild von Objekten umgebungsbedingt im Rückstreubild ändern kann. T2 - DGZfP-Jahrestagung 2011 CY - Bremen, Deutschland DA - 30.05.2011 KW - Röntgenrückstreuradiographie KW - Schlitzblendenkamera KW - Varibale Einstrahlgeometrie PY - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-250627 SN - 978-3-940283-33-7 IS - DGZfP-BB 127 (Poster 20) SP - 1 EP - 5 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) AN - OPUS4-25062 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zscherpel, Uwe T1 - X-ray back scatter techniques for additive manufacturing N2 - X-ray back scatter imaging is rarely applied compared to classical X-ray projection imaging. 20 years ago the company Philips developed “COMSCAN”, a first application case in the aircraft industry, which allowed even a depth resolution using back scatter imaging. The company AS&E in Boston offers back scatter imaging solutions for the security market. Their principle is to scan the object with a highly collimated X-ray needle beam from one side only and detect the backscattered radiation by a large area detector side by side with the collimation wheel. A new prototype is investigated at BAM for application and optimization in non-destructive testing. As modern industrial application field in-situ testing in additive manufacturing is targeted. The accessibility of the printed part during the production process is very limited. This prevent the application of a two sided X-ray inspection or Computed Tomography, were an rotation of the object is required to acquire projections from 360 degrees. An important advantage for the X-ray back scatter technique are also the materials used in additive manufacturing (polymers, ceramics, light metals like Aluminum or Titanium). These materials with lower density and lower Z values give better scatter signals than metals with higher densities and Z values. The back scatter intensity decreases with increasing density and Z value of the material. But the requirements on spatial resolution and contrast sensitivity are more stringent for non-destructive testing of additive manufactured parts compared to the security area. In NDT sizes of indications smaller than 1 mm have to be detected clearly. The investigation of these limits on a stateof-the-art prototype for X-ray back scattering using rotating collimated X-ray needle beams is a part of the BAM project “ProMoAM”. The contribution shows first results of the optimization for NDT and the achieved application limits for several example cases. T2 - International symposium on digital industrial radiology and computed tomography DIR2019 CY - Fürth, Germany DA - 02.07.2019 KW - Radiographic testing KW - X-ray back scattering KW - Additive manufacturing PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-505317 UR - https://www.ndt.net/search/docs.php3?id=24760 AN - OPUS4-50531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -