TY - CONF A1 - Lecompagnon, Julien T1 - Detektion innenliegender Defekte mittels photothermischer Super-Resolution-Rekonstruktion und 2D-Beleuchtungsmustern N2 - Für die aktive Thermografie als zerstörungsfreie Prüfmethode galt lange Zeit die Faustformel, dass die Auflösung interner Defekte/Inhomogenitäten auf ein Verhältnis von Defekttiefe/Defektgröße ≤ 1 beschränkt ist. Die Ursache hierfür liegt in der diffusiven Natur der Wärmeleitung in Festkörpern. Sogenannte Super-Resolution-Ansätze erlauben seit Kurzem die Überwindung dieser physikalischen Grenze um ein Vielfaches. Damit ergibt sich die attraktive Möglichkeit die Thermografie von einem rein oberflächensensitiven Prüfverfahren hin zu einem Verfahren mit verbesserter Tiefenreichweite zu entwickeln. Wie weit diese Entwicklung getrieben werden kann, ist Gegenstand aktueller Forschung. Wir konnten bereits zeigen, dass diese klassische Einschränkung für ein- und zweidimensionale Defektgeometrien überwunden werden kann, indem das Prüfobjekt mit einzelnen Laserspots sequenziell strukturiert beleuchtet wird und damit anschließend aus den resultierenden Messdaten durch Anwendung photothermischer Super-ResolutionRekonstruktion eine Defektkarte berechnet werden kann, welche eine deutlich verbesserte Trennung einzelner naheliegender Defekte erlaubt. Dieses Verfahren profitiert dabei im Ergebnis stark von der Kombination von sequenzieller räumlich strukturierter Beleuchtung und modernen numerischen Optimierungsverfahren, was jedoch in Summe stark auf Kosten der experimentellen Komplexität geht. Dies führt im Gegensatz zur Anwendung von etablierten thermografischen Standardverfahren mit vollflächiger Beleuchtung zu langen Messzeiten, großen Datensätzen und langwieriger numerischer Auswertung. In dieser Arbeit berichten wir über die Anwendung vollflächig räumlichstrukturierter zweidimensionaler Beleuchtungsmuster, welche es durch den Einsatz modernster Laserprojektortechnik in Verbindung mit einem Hochleistungslaser überhaupt erst erlaubt, eine effiziente Umsetzung von photothermischer Super-ResolutionRekonstruktion auch für größere Prüfflächen zu erreichen. T2 - Thermographie-Kolloquium 2022 CY - Saarbrücken, Germany DA - 28.09.2022 KW - Thermografie KW - Super resolution KW - Eingeschlossene Defekte KW - ZfP KW - DLP KW - Projektor KW - DMD PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-565222 UR - https://www.dgzfp.de/Portals/thermo2022/BB178/Inhalt/13.pdf AN - OPUS4-56522 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien A1 - Ahmadi, Samim A1 - Hirsch, Philipp Daniel A1 - Ziegler, Mathias T1 - Thermografische Super Resolution mit 2D-strukturierter Erwärmung N2 - Thermografische Super Resolution ermöglicht die Auflösung von Defekten/Inhomogenitäten unterhalb des klassischen Limits, welches durch die Diffusionseigenschaften der thermischen Wellenausbreitung bestimmt wird. Basierend auf einer Kombination aus der Anwendung spezieller Abtaststrategien und einer anschließenden numerischen Optimierungsschritt bei der Datenauswertung hat sich die thermografische Super Resolution bereits bei der Detektion von 1D-Defekten gegenüber den Standard-Thermografieverfahren als überlegen erwiesen. In unserer Arbeit erweitern wir die Möglichkeiten der Methode zur effizienten Detektion und Auflösung von Defektquerschnitten mit einer vollständig 2D-strukturierten Erwärmung. Der experimentelle Ansatz basiert auf einer wiederholten räumlich strukturierten Erwärmung durch einen Hochleistungslaser. In einem zweiten Nachbearbeitungsschritt werden mehrere kohärente Messungen mittels mathematischer Optimierung und unter Ausnutzung der (Joint-) Sparsity der Defekte innerhalb des Prüfkörpers kombiniert. Als Ergebnis kann eine 2D-sparse Defekt-/ Inhomogenitätskarte erhalten werden. Da die Kombination von räumlich strukturierter Erwärmung und anschließender numerischer Kombination mehrerer kohärenter Messungen nicht nur die Auflösung verbessert, sondern auch die Messkomplexität drastisch erhöht, werden verschiedene Scanstrategien untersucht. Abschließend werden die erhaltenen Ergebnisse mit denen konventioneller thermografischer Prüfverfahren verglichen. T2 - DGZfP-Jahrestagung 2021 CY - Online meeting DA - 10.05.2021 KW - Thermography KW - Super-resolution KW - NDT KW - Inspection KW - Image resolution PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-526396 UR - https://jahrestagung.dgzfp.de/Programm#P45 AN - OPUS4-52639 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -