TY - RPRT A1 - Kunath, K. A1 - Lüth, Peter A1 - Schmidt, Martin A1 - Simon, K. A1 - Uhlig, S. T1 - Evaluation of the interlaboratory test 2010-2011 on the method DIN EN15188:2007 'Determination of the spontaneous ignition behaviour of dust accumulations' N2 - For the classification and safe handling and use of the chemicals, special standardized testing proce-dures have been developed and are used world-wide. Safety experts must be able to fully rely on the precise execution of the respective laboratory tests and assessments. In this context interlaboratory tests (round robin tests, interlaboratory comparisons / intercomparisons) are a crucial element of a laboratory's quality system. Participation in interlaboratory tests is explicitly recommended by the standard ISO/IEC 17025. The present document reports on the results of the interlaboratory test 2010/2011 on the test method DIN EN 15188:2007 “Determination of the spontaneous ignition behaviour of dust accumulations” [1] which was organized by the Center for Quality Assurance for Testing of Dangerous Goods and Haz-ardous Substances. The test method DIN EN 15188:2007 is applied to characterize the self-ignition behaviour of combus-tible dusts. The experimental basis for describing the self-ignition behaviour of a given dust is the de-termination of the self-ignition temperatures (TSI) of differently-sized volumes of the dust sample by isoperibolic hot storage experiments (storage at constant oven temperatures) in commercially availa-ble ovens. The results thus measured reflect the dependence of self-ignition temperatures upon dust volume [1]. Several internal investigations and interlaboratory comparisons in the past have shown significant differences between the lab-specific results of hot storage tests. Figure 2-1 shows the Pseudo-Arrhenius plot of hot storage tests of eight different laboratories (Round Robin Test 2002, BAM). The dust under this investigation was Lycopodium powder (spores). The par-ticipants of this interlaboratory test used different laboratory ovens (size, ventilation) as well as differ-ent sample baskets (shape, mesh size, single- and double-walled). Figure 2-1 shows clearly that this test failed to produce reasonable reproducibility of the TSI between the different laboratories. As possible reasons for the deviations have been identified lab-specific dif-ferences, e.g.: - oven ventilation (enforced, natural convection), - oven size, - sample baskets, - radiation effects, - measuring precision (temperature difference between tests with ignition and no ignition), - minimum sample size. To reduce the differences between the labs it was necessary to ameliorate the testing method and to improve the execution of the method by the lab. From there, the installation of an inner chamber into the laboratory oven was suggested as experimental set-up in EN 15188:2007 to provide more repro-ducible test conditions. The aappropriateness of this set-up has not been verified yet. The current interlaboratory test 2010-2011 focuses on the use of a special mesh wire screen and spe-cial volumes of the sample baskets (cubes) to normalise/harmonise the test conditions in the different labs. In preparation for the interlaboratory test a joint program between Syngenta and BAM has been initiated in 2009. As a result of these investigations a modified set-up ( chapter 3) has been identi-fied to be probably more appropriate than the suggested set-up in DIN EN-15188:2007. Due to the time-consuming test procedure and to optimize the workflow for the laboratories this in-terlaboratory test should be performed stepwise as a multi-level test ( chapter 5.4) on one typical test sample. KW - Interlaboratory test KW - Self-ignition KW - Spontaneous ignition PY - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-282978 SN - 978-3-9815748-4-5 IS - Final Report SP - 1 EP - 113 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-28297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Antoni, S. A1 - Kunath, K. A1 - Lüth, Peter A1 - Simon, K. A1 - Uhlig, S. T1 - Evaluation of the interlaboratory test on the method UN O.2 / EC A.21 'Test for oxidizing liquids' 2009 - 2010 N2 - For the classification of chemicals, special standardized test procedures have been developed and are used world-wide. Safe handling and use of these chemicals depend on the correct classification which therefore must be based on the precise and correct execution of the tests and their evaluation. In this context interlaboratory tests (round robin tests, interlaboratory comparisons / intercomparisons) are a crucial element of a laboratory's quality system. Participation in interlaboratory tests is explicitly recommended by the standard ISO/IEC 17025. The present document reports on the results of the interlaboratory test 2009/2010 on the test methods UN O.2 “Test for oxidizing liquids” [1] / EC A.21 “Oxidizing Properties (Liquids)” [2] which was organized by the Center for Quality Assurance for Testing of Dangerous Goods and Hazardous Substances. The test methods UN O.2 and EC A.21 are applied to characterize the oxidizing properties of liquid chemical substances or mixtures. To differentiate between chemicals with hazardous / dangerous oxidizing properties and chemicals which are not classified as hazardous / dangerous, the substance’s oxidizing properties are compared to those of a standard reference substance. Since the methods (UN O.2 / EC A.21) were developed and came into force in the early nineties a systematic review concerning the practical application of the test method has not been carried out. KW - Oxidiser KW - Oxidierend KW - Gefahrgut KW - Dangerous goods KW - UN O.2 KW - Prüfmethode KW - Test method PY - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-250904 SN - 978-3-9814634-0-8 SP - 1 EP - 95 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin ET - Final report AN - OPUS4-25090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Antoni, S. A1 - Kunath, K. A1 - Lüth, Peter A1 - Schlage, R. A1 - Simon, K. A1 - Uhlig, S. A1 - Wildner, W. A1 - Zimmermann, C. T1 - Evaluation of the interlaboratory test on the method UN test O.1 'Test for oxidizing solids' with sodium perborate monohydrate 2005 / 06 N2 - The classification of solid oxidizers according to the GHS (Globally Harmonized System of Classifica-tion and Labelling of Chemicals) and according to regulations on the transport of dangerous goods (based on the UN Recommendations/Model Regulations and implemented in all carrier domains as transport by road, railway, sea, air) is performed on the basis of the results of the UN test O.1 (―Test for oxidizing solids‖ described in chapter 34.4.1 in the Recommendations on the Transport of Danger-ous Goods, Manual of Tests and Criteria, Fifth revised edition, United Nations, New York and Geneva, 2009). This test was introduced into the UN Test Manual in 1995 as a replacement for a similar test from 1986. Even though the O.1 test is much better than the previous one there are still many prob-lems with this test. For this reason the IGUS-EOS working group (international group of experts on the explosion risks of unstable substances – working group: energetic and oxidizing substances) installed an ad-hoc working group in 2002 assigned with the task of proposing solutions for the existing prob-lems. The adequacy of such proposals has to be proven preferably by interlaboratory comparison (interlaboratory test) before they are presented to the UN Sub Committee for adoption into the UN Test Manual. The present report is the evaluation of an interlaboratory test which was designed by the Ad-hoc working group in order to find out whether the current method of comparing combustion times of test mixtures with those of reference mixtures is suitable in principle and whether some approaches for improvement of the method can be identified. KW - Oxidiser KW - Oxidierend KW - Gefahrgut KW - Dangerous goods KW - UN O.1 KW - Prüfmethode KW - Test method PY - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-250919 UR - http://www.bam.de/de/service/publikationen/publikationen_medien/un_test_for_oxidizing_solids_final_report_on_interlab_test.pdf SN - 978-3-9814281-2-4 SP - 1 EP - 65 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin ET - Final report AN - OPUS4-25091 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Kunath, K. A1 - Lüth, Peter A1 - Uhlig, S. T1 - Interlaboratory test on the method UN test N.5 / EC A.12 'Substances which, in contact with water, emit flammable gases' 2007 N2 - For the classification of chemicals, special standardized test procedures have been developed and are used world-wide. Safe handling and use of these chemicals depend on the correct classification which therefore must be based on the precise and correct execution of the tests and their evaluation. In this context interlaboratory tests (round robin tests, interlaboratory comparisons / intercomparisons) are a crucial element of a laboratory's quality system. Participation in interlaboratory tests is explicitly recommended by the standard ISO/IEC 17025. The present document reports on the results of the interlaboratory test 2007 on the method UN Test N.5 “Test method for substances which in contact with water emit flammable gases” [1] / EC A.12 “Flammability (contact with water)” [2] which was organized by the Center for Quality Assurance for Testing of Dangerous Goods and Hazardous Substances. In dependence on the chemical structure and/or the physical form and state (e.g. particle size) substances or mixtures may be able to react with water (even water damp / air humidity) under normal ambient temperature conditions. Sometimes this reaction can be violent and/or with significant generation of heat. Especially if gases are evolved this reaction may become dangerous. In addition, it is important to know whether a substance emits flammable gases due to contact with water because special precautions are necessary especially with regard to explosion protection. The methods UN Test N.5 and EC A.12 are applied to characterize chemical substances or mixtures which in contact with water emit flammable gases. To differentiate between chemicals with these properties and chemicals which are not classified as hazardous / dangerous, the substance’s gas evolution rate is determined and compared to the classification criteria(s) in the last step of the test method. In the methods UN Test N.5 / EC A.12 no special laboratory apparatus / measuring technique to determine gas evolving flow is required. However, practical experience shows that the testing procedure for substances and mixtures which in contact with water emit flammable gases is sensitive to a number of influencing factors. Since the methods (UN N.5 / EC A.12) were developed and came into force in the early nineties a systematic review concerning the practical application of the test method has not been carried out. KW - Flammability KW - Entzündbar KW - Gefahrgut KW - Dangerous goods KW - UN N.5 KW - EC A.12 KW - Prüfmethode KW - Test method PY - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-250944 SN - 978-3-9814634-1-5 SP - 1 EP - 35 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-25094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Lüth, Peter A1 - Kurth, Lutz T1 - Ringversuch mit dem Fallhammer gemäß Abs. 1.6.2 Mechanische Empfindlichkeit (Schlag) der Methode A.14 Explosionsgefahr 2011 - Kurzbericht N2 - Ringversuche sind ein probates Mittel zur Bewertung der praktischen Anwendung einer Prüfmethode und der Leistungsfähigkeit von Prüflaboratorien. Bei der in diesem Ringversuch untersuchten Methode A.14 Explosionsgefahr handelt es sich um ein Prüfschema, um festzustellen, ob feste oder pastenförmige Stoffe bei Flammenzündung (thermische Empfindlichkeit) oder bei Einwirkung von Schlag oder Reibung (mechanische Empfindlichkeit) und ob Flüssigkeiten bei Flammenzündung oder bei Einwirkung von Schlag eine Explosionsgefahr im Sinne des nationalen und europäischen Chemikalienrechts (z.B. SprengG, REACH-VO, CLP-VO) darstellen. Der hier beschriebene Ringversuch behandelt die Prüfung mit dem Fallhammer gemäß Abs. 1.6.2 Mechanische Empfindlichkeit (Schlag) der Methode A.14 Explosionsgefahr. Angeregt wurde dieser Ringversuch von verschiedenen, nationalen Prüflaboratorien. Ein spezieller Auslöser war z.B. die Frage, ob vergleichbare Ergebnisse zwischen einer in einem Labor selbstgebauten Fallhammer-Apparatur und Geräten von kommerziellen Herstellern erzielt werden können. Es bestand die Frage nach einer entsprechenden Qualitätssicherung. Die praktischen Untersuchungen des hier vorgestellten Ringversuchs wurden im Zeitraum von September 2011 bis Januar 2012 durchgeführt. Die Auswertungsergebnisse und Schlussfolgerungen sind von der BAM auf einem Symposium mit Beteiligung der Ringversuchsteilnehmer vorgestellt und diskutiert worden. Der jetzt vorliegende Bericht berücksichtigt die Ergebnisse der Diskussion auf diesem Symposium. KW - Ringversuch KW - Fallhammer KW - Explosionsgefahr PY - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-288561 SN - 978-3-9815748-6-9 SP - 1 EP - 43 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-28856 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Lüth, Peter A1 - Brandes, E. A1 - Stolz, T. T1 - Interlaboratory test 2012-2013 on the method EN 14522:2005 "Determination of the auto ignition temperature of gases and vapours" / IEC 60079-20-1, part 7 "Method of test for auto-ignition temperature" N2 - For the classification, safe handling and use of chemicals, special standardised test methods have been developed and are used worldwide. Safety experts must be able to fully rely on the precise execution of the respective laboratory tests and assessments. In this context interlaboratory tests (round robin tests, interlaboratory comparisons / intercomparisons) are a crucial element of both the further development and improvement of the methods and of a laboratory's quality system. Participation in interlaboratory tests is explicitly recommended by the standard ISO/IEC 17025. This document reports on the results of the interlaboratory test 2012-2013 on the test method EN 14522:2005 “Determination of the auto ignition temperature of gases and vapours“ / IEC 60079-201, part 7 ”Method of test for auto-ignition temperature”. The auto ignition temperature is an important safety characteristic for explosion protection and prevention. It is the basis for classifying substances and explosion protected equipment into temperature classes. Because safety characteristic data are not a pure substance constant but a figure which denotes a special property of the substance, the determination methods are standardised. Currently EN 14522 and IEC 60079-20-1, part 7 are under revision with the aim to combine both to a standard accepted worldwide. An important part of the standard is the laboratory’s verification of their apparatus and procedure. To base this forthcoming standard on reliable and up-to-date verification data an interlaboratory test appears as the method of choice. The verification data given in the recent issues of the standards are based on comparison measurements which date back to a long time ago and did not include automated apparatuses. KW - Ringversuch KW - Auto ignition temperature KW - Zündtemperatur KW - Liquids KW - Flüssigkeiten PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-306867 SN - 978-3-9816380-0-4 SP - 1 EP - 89 PB - Bundesanstalt für Materialforschung und -prüfung (BAM), Physikalisch-Technische Bundesanstalt (PTB) CY - Berlin, Braunschweig ET - Final Report AN - OPUS4-30686 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Frost, K. A1 - Lüth, Peter A1 - Schmidt, Martin A1 - Simon, K. A1 - Uhlig, St. T1 - Evaluation of the interlaboratory test 2015-2016 on the method DIN EN 15188:2007 “Determination of the spontaneous ignition behaviour of dust accumulations” N2 - For the classification, safe handling and use of the chemicals, special standardized testing procedures have been developed and are used worldwide. Safety experts must be able to fully rely on the precise execution of the respective laboratory tests and assessments. In this context, interlaboratory tests are a crucial element of a laboratory's quality system. Participation in interlaboratory tests is explicitly recommended by the standard ISO/IEC 17025. The present document reports the results of the interlaboratory test 2015-2016, which was performed on the test method DIN EN 15188:2007 “Determination of the spontaneous ignition behaviour of dust accumulations”. It was organized by BAM in the frame of the co-operation project CEQAT-DGHS Centre for Quality Assurance for Testing of Dangerous Goods and Hazardous Substances. The test method DIN EN 15188:2007 is applied to characterize the self-ignition behaviour of combustible dusts. The experimental basis for describing the self-ignition behaviour of a given dust is the determination of the self-ignition temperatures (TSI) of differently-sized volumes of the dust sample by isoperibolic hot storage experiments (storage at constant oven temperatures) in commercially available ovens. The results measured this way reflect the dependence of the self-ignition temperatures on the volume of a dust accumulation. The interlaboratory test 2015-2016 on the method DIN EN 15188:2007 is the latest in a systematic stepwise built up series of method validation interlaboratory tests and internal laboratory investigations. The aim of this interlaboratory test was to determine measurement uncertainties of the modified method DIN EN 15188 for different substances, covering a sufficiently wide range of self-ignition behaviours in the scope of the DIN EN 15188 of the four basket test to extrapolate to storage volumes up to 1000 m³ and the single basket test for a basket volume of 1000 cm³. The precision of the four basket test and the single basket of the modified method DIN EN 15188 can be assessed as acceptable for the four sample materials investigated in the current interlaboratory test 2015-2016. It was possible to derive a functional equation for the measurement uncertainty U depending on the storage volume V. The measurement uncertainty cannot be ignored and must be considered, if TSI results should be used in practice. KW - Gefahrgut KW - Gefahrstoff KW - Ringversuch KW - Prüfmethode KW - Validierung KW - Qualitätssicherung KW - Messunsicherheit KW - Dangerous goods KW - Hazardous substances KW - Round robin test KW - Interlaboratory comparison KW - Test method KW - Validation KW - Measurement uncertainty PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-387343 SN - 978-3-9818270-0-2 SP - 1 EP - 106 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-38734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Brandes, E. A1 - Colson, B. A1 - Frost, K. A1 - Lüth, Peter A1 - Simon, K. A1 - Stolz, T. A1 - Uhlig, S. T1 - Evaluation of the interlaboratory test 2015 – 2016 on the method UN Test L.2 “Sustained combustibility test” / EN ISO 9038:2013 “Determination of sustained combustibility of liquids" N2 - The test methods UN Test L.2 / EN ISO 9038:2013 DIN EN 15188:2007 are applied to characterize the sustained combustibility of liquids i.e. the behaviour of a material under specified test conditions, whereby its vapour can be ignited by an ignition source and sufficient flammable vapour is produced to continue burning for at least 15 s after the source of ignition has been removed. The aims of this interlaboratory test (IT) are the verification and/or the improvement (if necessary) of the verification data (reference material) in Annex B of EN ISO 9038:2013, the assessment of influencing (disturbing) factors (laboratory specific factors, which possibly may have an influence on the test result) and the assessment of the performance of the participating laboratories. It could be demonstrated that the reference materials n-Dodecane, n-Decane and n-Undecane as mentioned in the standard are suitable and the verification shall continue to be valid. Sustained combustibility tests are influenced by several factors like the presence of a draught shield, the experience of the laboratory assistant, verification of the apparatus, calibration of the metering device. Based on the interlaboratory test, the gained experience and the actual results, well-founded measures / actions can be recommended to improve execution of the method. The IT was organized by PTB, BAM and QuoData GmbH in the framework of the co-operation project CEQAT-DGHS Centre for Quality Assurance for Testing of Dangerous Goods and Hazardous Substances. KW - Dangerous goods KW - Hazardous substances KW - Test method KW - Quality assurance KW - Interlaboratory comparison KW - Round robin test KW - Validation KW - Sustained combustibility KW - Reference material KW - Gefahrgut KW - Gefahrstoff KW - Prüfmethode KW - Qualitätssicherung KW - Ringversuch KW - Validierung KW - Selbstunterhaltende Verbrennung KW - Referenzmaterial PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-410270 SN - 978-3-9818270-3-3 SP - 1 EP - 103 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-41027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -