TY - RPRT A1 - Schröder, Volkmar A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Tashqin, T. T1 - Sicherheitstechnische Eigenschaften von Erdgas-Wasserstoff-Gemischen N2 - Bei der Power-to-Gas-Technologie wird überschüssiger Strom aus erneuerbaren Energien durch Elektroly-se von Wasser in Wasserstoff umgewandelt. Dieser Wasserstoff kann als „chemischer Energiespeicher“ dienen und rückverstromt werden oder aber in das Erdgasnetz eingespeist werden. Die BAM hat die Aus-wirkungen von Wasserstoffzusätzen zum Erdgas im Hinblick auf den Explosionsschutz untersucht und sicherheitstechnische Kenngrößen für Erdgas-Wasserstoff-Gemische bestimmt. Untersucht wurden die Explosionsgrenzen, die Sauerstoffgrenzkonzentrationen, die maximalen Explosi-onsdrücke, die KG-Werte und die Normspaltweiten. Für die Messungen sind zwei Modellgase eingesetzt worden, reines Methan und ein Modell-Erdgas mit Anteilen höherer Kohlenwasserstoffe. Sie repräsentie-ren die Bandbreite der in Deutschland eingesetzten Erdgase. Die Untersuchungen ergaben, dass bei einem Zusatz von bis zu 10 Mol-% Wasserstoff keine der untersuchten Kenngrößen relevant beeinflusst wird. Die Gemische haben nur geringfügig erweiterte Explosionsbereiche und bleiben, wie die reinen Erdgase, in der Explosionsgruppe IIA. Auch die maximalen Explosionsdrücke und die zeitlichen Druckanstiege bei den Gasexplosionen werden nur wenig beeinflusst. Vergleichende Berechnungen zur Festlegung von explosionsgefährdeten Bereichen (Ex-Zonen) auf Basis von Gasausbreitungsberechnungen ergaben ebenfalls nur geringfüge Unterschiede im Rahmen der Fehler-toleranz für Erdgas und Erdgas-Wasserstoff-Gemische mit bis zu 10 Mol-% Wasserstoff. Die Berechnun-gen sind in der BAM nach einem Freistrahlmodell von Schatzmann und mit dem häufig bei Gasnetzbetrei-bern eingesetzten e.BEx-Tool® durchgeführt worden. Der Einsatz von Gaswarngeräten, die für reines Erdgas geeignet sind, ist für Erdgas-Wasserstoff-Gemische mit bis zu 10 Mol-% Wasserstoff grundsätzlich möglich, erfordert aber eine gesonderte Sicher-heitsbewertung und ggf. eine Nachkalibrierung. N2 - Power-to-Gas technology is used to convert excess power from renewable energies to hydrogen by means of water electrolysis. This hydrogen can serve as "chemical energy storage" and be converted back to elec-tricity or be fed into the natural gas grid. BAM has studied the addition of hydrogen to natural gas in view of explosion protection and has determined safety characteristics for natural gas-hydrogen mixtures. BAM investigated the explosion limits, the limiting oxygen concentrations, the maximum explosion pres-sures, KG values and the MESG. Two model gases have been investigated, pure methane and a model gas with portions of higher hydrocarbons. They represent the range of natural gases which are used in Germa-ny. The investigations have shown that none of the examined characteristics is affected significantly by the addition of up to 10 mol% hydrogen. The explosion ranges are increased only slightly and the mixtures remain in explosion group IIA; as is pure natural gas. Also the maximum explosion pressure and the rates of pressure rise of gas explosions are almost unaffected. Comparative calculations – on the basis of gas dispersion calculations – to determine hazardous areas (explosion zones) for pure natural gas and natural gas-hydrogen mixtures with up to 10 mol% hydrogen, also revealed only minor differences within the margin of error of the calculation methods. The calcula-tions were executed at BAM according to the free jet model from Schatzmann and with the e.BEx-Tool®, often applied by gas grid operators. In principle, gas detectors that are suitable for natural gas can be used for natural gas-hydrogen mixtures with a maximum of 10 mol% hydrogen. However, this requires a separate safety assessment and, if nec-essary, a recalibration. KW - Power-to-Gas KW - Erneuerbare Energien KW - Energiespeicherung KW - Wasserstofftechnologie KW - Explosionsschutz KW - Erdgas-Wasserstoff-Gemische PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-372977 SP - 1 EP - 36 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-37297 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Frost, K. A1 - Lüth, Peter A1 - Schmidt, Martin A1 - Simon, K. A1 - Uhlig, St. T1 - Evaluation of the interlaboratory test 2015-2016 on the method DIN EN 15188:2007 “Determination of the spontaneous ignition behaviour of dust accumulations” N2 - For the classification, safe handling and use of the chemicals, special standardized testing procedures have been developed and are used worldwide. Safety experts must be able to fully rely on the precise execution of the respective laboratory tests and assessments. In this context, interlaboratory tests are a crucial element of a laboratory's quality system. Participation in interlaboratory tests is explicitly recommended by the standard ISO/IEC 17025. The present document reports the results of the interlaboratory test 2015-2016, which was performed on the test method DIN EN 15188:2007 “Determination of the spontaneous ignition behaviour of dust accumulations”. It was organized by BAM in the frame of the co-operation project CEQAT-DGHS Centre for Quality Assurance for Testing of Dangerous Goods and Hazardous Substances. The test method DIN EN 15188:2007 is applied to characterize the self-ignition behaviour of combustible dusts. The experimental basis for describing the self-ignition behaviour of a given dust is the determination of the self-ignition temperatures (TSI) of differently-sized volumes of the dust sample by isoperibolic hot storage experiments (storage at constant oven temperatures) in commercially available ovens. The results measured this way reflect the dependence of the self-ignition temperatures on the volume of a dust accumulation. The interlaboratory test 2015-2016 on the method DIN EN 15188:2007 is the latest in a systematic stepwise built up series of method validation interlaboratory tests and internal laboratory investigations. The aim of this interlaboratory test was to determine measurement uncertainties of the modified method DIN EN 15188 for different substances, covering a sufficiently wide range of self-ignition behaviours in the scope of the DIN EN 15188 of the four basket test to extrapolate to storage volumes up to 1000 m³ and the single basket test for a basket volume of 1000 cm³. The precision of the four basket test and the single basket of the modified method DIN EN 15188 can be assessed as acceptable for the four sample materials investigated in the current interlaboratory test 2015-2016. It was possible to derive a functional equation for the measurement uncertainty U depending on the storage volume V. The measurement uncertainty cannot be ignored and must be considered, if TSI results should be used in practice. KW - Gefahrgut KW - Gefahrstoff KW - Ringversuch KW - Prüfmethode KW - Validierung KW - Qualitätssicherung KW - Messunsicherheit KW - Dangerous goods KW - Hazardous substances KW - Round robin test KW - Interlaboratory comparison KW - Test method KW - Validation KW - Measurement uncertainty PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-387343 SN - 978-3-9818270-0-2 SP - 1 EP - 106 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-38734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Holm, Olaf T1 - Aufschluss, Trennung und Recycling von ressourcenrelevanten Metallen aus Rückständen thermischer Prozesse mit innovativen Verfahren (ATR) N2 - Ziel des Vorhabens war die Steigerung der Rückgewinnung von Metallen aus Aschen und Schlacken, insbesondere aus Hausmüllverbrennungsaschen (HMVA), durch Aufschluss aus den mineralischen Verbunden. Durch das innovative Prallzerkleinerungsverfahren des Projektpartners TARTECH eco industries AG sollten Verunreinigungen an den Metallen vollständig abgeschlagen werden. Für die großtechnische Demonstration dieses Verfahrens wurden durch die Projektpartner Stadtreinigung Hamburg (SRH) und Berliner Stadtreinigung (BSR) unterschiedliche Chargen HMVA, insgesamt ca. 5.000 Mg, zur Verfügung gestellt. Das zerkleinerte und von Eisen- und Nichteisen-Metallen entfrachtete Material mit vorwiegend oxidisch gebundenen Metallen wurde für weitere Verfahren verwendet. Zur Rückgewinnung von Kupfer wurden an der Bundesanstalt für Materialforschung und –prüfung (BAM) Verfahren zur Flotation und Dichtesortierung und bei der Spicon GmbH Verfahren zur enzymatischen Extraktion erforscht. An der Ludwig-Maximilians Universität (LMU) wurde die hydrothermale Extraktion von Blei und Zink sowie deren Rückfällung untersucht. Mit Blick auf die weitgehende Verwertung separierter Stoffströme wurde zum Einen untersucht, ob die mineralische Fraktion nach einer derartigen Behandlung noch zur Verwertung bei der Deponiesanierung einsetzbar ist. Zum Anderen wurde eine aus HMVA gewonnene Aluminiumfraktionen (< 3 mm) beim Projektpartner Helmholtz-Zentrum für Material- und Küstenforschung GmbH (HZG) zur Synthese von Wasserstoffspeichermaterialien eingesetzt. Mit Blick auf einen möglichen Technologietransfer für das innovative Prallzerkleinerungsverfahren wurden seitens des Projektpartners Universität Duisburg-Essen (UDE) geeignete Schlacken aus der Stahl-, Edelstahl- und NE-Metallindustrie ermittelt. Zudem wurden beim Projektpartner Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT Reststoffe aus WEEE-Recyclingprozessen verbrannt und in Teilen der großtechnisch umgesetzten Anlage aufbereitet. Die Arbeiten im Rahmen des Verbundprojekts haben gezeigt, dass mit innovativen Technologien die Rückgewinnungsquoten von Nichteisenmetallen aus HMVA gegenüber Anlagen, die nach dem Stand der Technik arbeiten, deutlich erhöht werden können (Alpha-Linie). Vor allem die Metalle Aluminium, Kupfer sowie Legierungselemente aus Messing konnten vermehrt zurückgewonnen werden. Die Anreicherung von weiteren wertvollen Metallen in separierten Stoffströmen aus der Fraktion < 2 mm (Beta-Linie) wurde im Rahmen des Projektes nicht systematisch untersucht, wurde jedoch durch die Abnehmer der gewonnenen Konzentrate bestätigt. Der Anteil dieser Fraktion < 2 mm wird zwar bereits in der Alpha-Linie deutlich erhöht, eine Verwertung im Deponiebau auf der Deponie Schöneicher Plan ist jedoch weiterhin möglich. Die Ergebnisse der ökobilanziellen Betrachtungen zeigten, dass die Aufbereitung metallhaltiger HMVA grundsätzlich ökologische, soziale bzw. sozioökonomische Vorteile erbringt. Bereits die Aufbereitung von HMVA nach dem Stand der Technik ergibt demnach eine deutlich Gutschrift für die zurückgewonnenen Metalle, die unter Berücksichtigung der dabei erzeugten Emissionen im Saldo zu einer Einsparung führt. Die Bilanzierung der Versuche im Rahmen des Projektes unterstreichen, dass das Ausmaß der Entlastung für Umwelt und Gesellschaft vor allem von den Metallgehalten der behandelten HMVA abhängt. Dabei lassen sich die ökologischen Vorteile auf die Schonung primärer Rohstoffe zurückführen. Insbesondere die hochwertige Aufbereitung unbehandelter HMVA mit hohen Gehalten an Eisen, Kupfer und Aluminium ist mit ökologischen Vorteilen verbunden. Im Weiteren zeigten die Untersuchungen, dass die Erschließung des Rohstoffpotenzials von HMVA in der Korngrößenfraktion < 2 mm durch den verfahrenstechnischen Mehraufwand in Form der der Beta - Linie generell sinnvoll ist. KW - Recycling KW - Abfallbehandlung KW - Urban Mining KW - Stoffströme KW - Ökobilanz PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-388025 SP - 1 EP - 16 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-38802 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Zerbst, Uwe ED - Zerbst, Uwe T1 - Analytische bruchmechanische Ermittlung der Schwingfestigkeit von Schweißverbindungen (IBESS-A3) N2 - Ziel des DFG-AiF-Forschungsclusters IBESS war die Entwicklung einer Methodik zur bruchmechanischen Ermittlung von Wöhlerkurven in Schweißverbindungen. Dem vorliegenden Teilprojekt A3 kamen dabei zwei Aufgaben zu: die Entwicklung einer analytischen bruchmechanischen Methodik und die Koordinierung des insgesamt acht Partner umfassenden Clusters. Dieser Bericht fasst die Ergebnisse der erstgenannten Aufgabe zusammen. Die bruchmechanische Methode ist durch folgende Aspekte charakterisiert. (a) Sie beschreibt sowohl Kurz- als auch Langrisswachstum. Ersteres umfasst mechanisch und physikalisch kurze Risse. Mechanisch kurze Risse weisen Abmessungen in der Größenordnung der plastischen Zone auf, weshalb sie zwar bruchmechanisch, nicht jedoch auf der Basis des linear-elastischen K-Konzepts charakterisiert werden können. Im Projekt wurde entsprechend eine Methode zur Bestimmung eines „plastizitätskorrigierten“ zyklischen K-Faktors entwickelt, die auf dem zyklischen J-Integral beruht. Physikalisch kurz bedeutet, dass die Rissschließeffekte im Ausgangsstadium der Rissentwicklung zunächst noch nicht vorhanden sind, dann jedoch graduell aufgebaut werden, bis sie mit Erreichen des Langrissstadiums eine risstiefenunabhängig konstante Größe erreichen. Beschrieben wird dieser Effekt durch die Anwendung der sogenannten zyklischen R-Kurve, der Funktion des Schwellenwerts gegen Rissausbreitung von der Risstiefe. Mittels Rissarrestbetrachtungen des kurzen Risses werden (b) die Ausgangsrissgröße für die weitere Bruchmechanikanalyse und (c) die für N = 107 definierte Dauerfestigkeit der Bauteile bestimmt. Die Analyse erfolgt (d) statistisch, Schwankungen der lokalen Nahtgeometrie entlang des Nahtübergangs über ein Modell äquidistanter Abschnitte einbezogen werden. (e) Eigenspannungen werden sowohl im unbehandelten Schweißzustand als auch nach zyklischer Belastung berücksichtigt. Das Modell wird an insgesamt 33 Wöhlerkurven validiert, die an drei Schweißverbindungsformen (Stumpfstoß, Kreuzstoß, Längssteife) mit je zwei unterschiedlichen Ausführungen, zwei Werkstoffen (S355NL und S960QL), sowie im spannungsarmgeglühten und ungeglühten Zustand experimentell ermittelt wurden. KW - Bruchmechanik KW - Schweißverbindungen KW - Schwingfestigkeit PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-359891 SP - Römisch I EP - 182 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-35989 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Vogl, Jochen A1 - Becker, Dorit A1 - Koenig, Maren A1 - Yim, Y.-H. A1 - Lee, K.-S. A1 - Goenaga-Infante, H. A1 - Malinowskiy, D. A1 - Hill, S. A1 - Ren, T. A1 - Wang, J. A1 - Vocke, R. D. A1 - Murphy, K. A1 - Nonose, N. A1 - Rienitz, O. A1 - Noordmann, J. T1 - Certification Report for the Isotopic Reference Materials ERM-AE142 and ERM-EB400 N2 - Lead (Pb) isotope amount ratios are commonly used in applications ranging from archaeology and forensic sciences to terrestrial and extra-terrestrial geochemistry. Despite their utility and frequency of use, only three certified isotope amount ratio reference materials are currently available for Pb: NIST SRMs 981, 982 and 983. Because SRM 981 has a natural Pb isotopic composition, it is mainly used for correcting instrumental mass discrimination or fractionation. This means that, at present, there are no other certified isotope reference materials with natural Pb isotopic composition that could be used for validating or verifying an analytical procedure involving the measurement of Pb isotope amount ratios. To fill this gap, two new reference materials, both certified for their Pb isotopic composition, have been produced together with a complete uncertainty assessment. These new reference materials offer SI traceability and an independent means of validating or verifying analytical procedures used to produce Pb isotope amount ratio measurements. ERM-EB400 is a bronze material containing a nominal Pb mass fraction of 45 mg/kg. ERM-AE142 is a high purity solution of Pb with a nominal mass fraction of 100 mg/kg. Both materials have been specifically produced to assist analysts in verifying or validating their analytical procedures. Note that while one of these reference materials requires the chemical separation of Pb from its matrix (ERM-EB400), the other does not (ERM-AE142). Details on the certification of these isotope reference materials are provided in this report. KW - Lead isotopic composition KW - Isotope ratio KW - Reference material KW - Mass spectrometry PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-392060 SP - 1 EP - 16 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-39206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -