TY - RPRT A1 - Antoni, S. A1 - Kunath, K. A1 - Lüth, Peter A1 - Simon, K. A1 - Uhlig, S. T1 - Evaluation of the interlaboratory test on the method UN O.2 / EC A.21 'Test for oxidizing liquids' 2009 - 2010 N2 - For the classification of chemicals, special standardized test procedures have been developed and are used world-wide. Safe handling and use of these chemicals depend on the correct classification which therefore must be based on the precise and correct execution of the tests and their evaluation. In this context interlaboratory tests (round robin tests, interlaboratory comparisons / intercomparisons) are a crucial element of a laboratory's quality system. Participation in interlaboratory tests is explicitly recommended by the standard ISO/IEC 17025. The present document reports on the results of the interlaboratory test 2009/2010 on the test methods UN O.2 “Test for oxidizing liquids” [1] / EC A.21 “Oxidizing Properties (Liquids)” [2] which was organized by the Center for Quality Assurance for Testing of Dangerous Goods and Hazardous Substances. The test methods UN O.2 and EC A.21 are applied to characterize the oxidizing properties of liquid chemical substances or mixtures. To differentiate between chemicals with hazardous / dangerous oxidizing properties and chemicals which are not classified as hazardous / dangerous, the substance’s oxidizing properties are compared to those of a standard reference substance. Since the methods (UN O.2 / EC A.21) were developed and came into force in the early nineties a systematic review concerning the practical application of the test method has not been carried out. KW - Oxidiser KW - Oxidierend KW - Gefahrgut KW - Dangerous goods KW - UN O.2 KW - Prüfmethode KW - Test method PY - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-250904 SN - 978-3-9814634-0-8 SP - 1 EP - 95 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin ET - Final report AN - OPUS4-25090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Antoni, S. A1 - Kunath, K. A1 - Lüth, Peter A1 - Schlage, R. A1 - Simon, K. A1 - Uhlig, S. A1 - Wildner, W. A1 - Zimmermann, C. T1 - Evaluation of the interlaboratory test on the method UN test O.1 'Test for oxidizing solids' with sodium perborate monohydrate 2005 / 06 N2 - The classification of solid oxidizers according to the GHS (Globally Harmonized System of Classifica-tion and Labelling of Chemicals) and according to regulations on the transport of dangerous goods (based on the UN Recommendations/Model Regulations and implemented in all carrier domains as transport by road, railway, sea, air) is performed on the basis of the results of the UN test O.1 (―Test for oxidizing solids‖ described in chapter 34.4.1 in the Recommendations on the Transport of Danger-ous Goods, Manual of Tests and Criteria, Fifth revised edition, United Nations, New York and Geneva, 2009). This test was introduced into the UN Test Manual in 1995 as a replacement for a similar test from 1986. Even though the O.1 test is much better than the previous one there are still many prob-lems with this test. For this reason the IGUS-EOS working group (international group of experts on the explosion risks of unstable substances – working group: energetic and oxidizing substances) installed an ad-hoc working group in 2002 assigned with the task of proposing solutions for the existing prob-lems. The adequacy of such proposals has to be proven preferably by interlaboratory comparison (interlaboratory test) before they are presented to the UN Sub Committee for adoption into the UN Test Manual. The present report is the evaluation of an interlaboratory test which was designed by the Ad-hoc working group in order to find out whether the current method of comparing combustion times of test mixtures with those of reference mixtures is suitable in principle and whether some approaches for improvement of the method can be identified. KW - Oxidiser KW - Oxidierend KW - Gefahrgut KW - Dangerous goods KW - UN O.1 KW - Prüfmethode KW - Test method PY - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-250919 UR - http://www.bam.de/de/service/publikationen/publikationen_medien/un_test_for_oxidizing_solids_final_report_on_interlab_test.pdf SN - 978-3-9814281-2-4 SP - 1 EP - 65 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin ET - Final report AN - OPUS4-25091 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Kunath, K. A1 - Lüth, Peter A1 - Uhlig, S. T1 - Interlaboratory test on the method UN test N.5 / EC A.12 'Substances which, in contact with water, emit flammable gases' 2007 N2 - For the classification of chemicals, special standardized test procedures have been developed and are used world-wide. Safe handling and use of these chemicals depend on the correct classification which therefore must be based on the precise and correct execution of the tests and their evaluation. In this context interlaboratory tests (round robin tests, interlaboratory comparisons / intercomparisons) are a crucial element of a laboratory's quality system. Participation in interlaboratory tests is explicitly recommended by the standard ISO/IEC 17025. The present document reports on the results of the interlaboratory test 2007 on the method UN Test N.5 “Test method for substances which in contact with water emit flammable gases” [1] / EC A.12 “Flammability (contact with water)” [2] which was organized by the Center for Quality Assurance for Testing of Dangerous Goods and Hazardous Substances. In dependence on the chemical structure and/or the physical form and state (e.g. particle size) substances or mixtures may be able to react with water (even water damp / air humidity) under normal ambient temperature conditions. Sometimes this reaction can be violent and/or with significant generation of heat. Especially if gases are evolved this reaction may become dangerous. In addition, it is important to know whether a substance emits flammable gases due to contact with water because special precautions are necessary especially with regard to explosion protection. The methods UN Test N.5 and EC A.12 are applied to characterize chemical substances or mixtures which in contact with water emit flammable gases. To differentiate between chemicals with these properties and chemicals which are not classified as hazardous / dangerous, the substance’s gas evolution rate is determined and compared to the classification criteria(s) in the last step of the test method. In the methods UN Test N.5 / EC A.12 no special laboratory apparatus / measuring technique to determine gas evolving flow is required. However, practical experience shows that the testing procedure for substances and mixtures which in contact with water emit flammable gases is sensitive to a number of influencing factors. Since the methods (UN N.5 / EC A.12) were developed and came into force in the early nineties a systematic review concerning the practical application of the test method has not been carried out. KW - Flammability KW - Entzündbar KW - Gefahrgut KW - Dangerous goods KW - UN N.5 KW - EC A.12 KW - Prüfmethode KW - Test method PY - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-250944 SN - 978-3-9814634-1-5 SP - 1 EP - 35 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-25094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Frost, K. A1 - Lüth, Peter A1 - Schmidt, Martin A1 - Simon, K. A1 - Uhlig, St. T1 - Evaluation of the interlaboratory test 2015-2016 on the method DIN EN 15188:2007 “Determination of the spontaneous ignition behaviour of dust accumulations” N2 - For the classification, safe handling and use of the chemicals, special standardized testing procedures have been developed and are used worldwide. Safety experts must be able to fully rely on the precise execution of the respective laboratory tests and assessments. In this context, interlaboratory tests are a crucial element of a laboratory's quality system. Participation in interlaboratory tests is explicitly recommended by the standard ISO/IEC 17025. The present document reports the results of the interlaboratory test 2015-2016, which was performed on the test method DIN EN 15188:2007 “Determination of the spontaneous ignition behaviour of dust accumulations”. It was organized by BAM in the frame of the co-operation project CEQAT-DGHS Centre for Quality Assurance for Testing of Dangerous Goods and Hazardous Substances. The test method DIN EN 15188:2007 is applied to characterize the self-ignition behaviour of combustible dusts. The experimental basis for describing the self-ignition behaviour of a given dust is the determination of the self-ignition temperatures (TSI) of differently-sized volumes of the dust sample by isoperibolic hot storage experiments (storage at constant oven temperatures) in commercially available ovens. The results measured this way reflect the dependence of the self-ignition temperatures on the volume of a dust accumulation. The interlaboratory test 2015-2016 on the method DIN EN 15188:2007 is the latest in a systematic stepwise built up series of method validation interlaboratory tests and internal laboratory investigations. The aim of this interlaboratory test was to determine measurement uncertainties of the modified method DIN EN 15188 for different substances, covering a sufficiently wide range of self-ignition behaviours in the scope of the DIN EN 15188 of the four basket test to extrapolate to storage volumes up to 1000 m³ and the single basket test for a basket volume of 1000 cm³. The precision of the four basket test and the single basket of the modified method DIN EN 15188 can be assessed as acceptable for the four sample materials investigated in the current interlaboratory test 2015-2016. It was possible to derive a functional equation for the measurement uncertainty U depending on the storage volume V. The measurement uncertainty cannot be ignored and must be considered, if TSI results should be used in practice. KW - Gefahrgut KW - Gefahrstoff KW - Ringversuch KW - Prüfmethode KW - Validierung KW - Qualitätssicherung KW - Messunsicherheit KW - Dangerous goods KW - Hazardous substances KW - Round robin test KW - Interlaboratory comparison KW - Test method KW - Validation KW - Measurement uncertainty PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-387343 SN - 978-3-9818270-0-2 SP - 1 EP - 106 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-38734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Brandes, E. A1 - Colson, B. A1 - Frost, K. A1 - Lüth, Peter A1 - Simon, K. A1 - Stolz, T. A1 - Uhlig, S. T1 - Evaluation of the interlaboratory test 2015 – 2016 on the method UN Test L.2 “Sustained combustibility test” / EN ISO 9038:2013 “Determination of sustained combustibility of liquids" N2 - The test methods UN Test L.2 / EN ISO 9038:2013 DIN EN 15188:2007 are applied to characterize the sustained combustibility of liquids i.e. the behaviour of a material under specified test conditions, whereby its vapour can be ignited by an ignition source and sufficient flammable vapour is produced to continue burning for at least 15 s after the source of ignition has been removed. The aims of this interlaboratory test (IT) are the verification and/or the improvement (if necessary) of the verification data (reference material) in Annex B of EN ISO 9038:2013, the assessment of influencing (disturbing) factors (laboratory specific factors, which possibly may have an influence on the test result) and the assessment of the performance of the participating laboratories. It could be demonstrated that the reference materials n-Dodecane, n-Decane and n-Undecane as mentioned in the standard are suitable and the verification shall continue to be valid. Sustained combustibility tests are influenced by several factors like the presence of a draught shield, the experience of the laboratory assistant, verification of the apparatus, calibration of the metering device. Based on the interlaboratory test, the gained experience and the actual results, well-founded measures / actions can be recommended to improve execution of the method. The IT was organized by PTB, BAM and QuoData GmbH in the framework of the co-operation project CEQAT-DGHS Centre for Quality Assurance for Testing of Dangerous Goods and Hazardous Substances. KW - Dangerous goods KW - Hazardous substances KW - Test method KW - Quality assurance KW - Interlaboratory comparison KW - Round robin test KW - Validation KW - Sustained combustibility KW - Reference material KW - Gefahrgut KW - Gefahrstoff KW - Prüfmethode KW - Qualitätssicherung KW - Ringversuch KW - Validierung KW - Selbstunterhaltende Verbrennung KW - Referenzmaterial PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-410270 SN - 978-3-9818270-3-3 SP - 1 EP - 103 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-41027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -