TY - JOUR A1 - Eifert, T. A1 - Eisen, K. A1 - Maiwald, Michael A1 - Herwig, C. T1 - Current and future requirements to industrial analytical infrastructure—part 2: smart sensors N2 - Complex processes meet and need Industry 4.0 capabilities. Shorter product cycles, flexible production needs, and direct assessment of product quality attributes and raw material attributes call for an increased need of new process analytical technologies (PAT) concepts. While individual PAT tools may be available since decades, we need holistic concepts to fulfill above industrial needs. In this series of two contributions, we want to present a combined view on the future of PAT (process analytical technology), which is projected in smart labs (Part 1) and smart sensors (Part 2). Part 2 of this feature article series describes the future functionality as well as the ingredients of a smart sensor aiming to eventually fuel full PAT functionality. The smart sensor consists of (i) chemical and process information in the physical twin by smart field devices, by measuring multiple components, and is fully connected in the IIoT 4.0 environment. In addition, (ii) it includes process intelligence in the digital twin, as to being able to generate knowledge from multi-sensor and multi-dimensional data. The cyber-physical system (CPS) combines both elements mentioned above and allows the smart sensor to be self-calibrating and self-optimizing. It maintains its operation autonomously. Furthermore, it allows—as central PAT enabler—a flexible but also target-oriented predictive control strategy and efficient process development and can compensate variations of the process and raw material attributes. Future cyber-physical production systems—like smart sensors—consist of the fusion of two main pillars, the physical and the digital twins. We discuss the individual elements of both pillars, such as connectivity, and chemical analytics on the one hand as well as hybrid models and knowledge workflows on the other. Finally, we discuss its integration needs in a CPS in order to allow is versatile deployment in efficient process development and advanced optimum predictive process control. KW - Smart sensors KW - Industry 4.0 KW - Digital twins KW - Process intelligence KW - Process analytical technology KW - Physical twin KW - Cyber-physical system PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503980 DO - https://doi.org/10.1007/s00216-020-02421-1 SN - 1618-2642 VL - 412 IS - 9 SP - 2037 EP - 2045 PB - Springer CY - Berlin Heidelberg AN - OPUS4-50398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eisen, K A1 - Eifert, T A1 - Herwig, C A1 - Maiwald, Michael T1 - Current and future requirements to industrial analytical infrastructure—part 1: process analytical laboratories N2 - The competitiveness of the chemical and pharmaceutical industry is based on ensuring the required product quality while making optimum use of plants, raw materials, and energy. In this context, effective process control using reliable chemical process analytics secures global competitiveness. The setup of those control strategies often originate in process development but need to be transferable along the whole product life cycle. In this series of two contributions, we want to present a combined view on the future of PAT (process analytical technology), which is projected in smart labs (part 1) and smart sensors (part 2). In laboratories and pilot plants, offline chemical analytical methods are frequently used, where inline methods are also used in production. Here, a transferability from process development to the process in operation would be desirable. This can be obtained by establishing PAT methods for production already during process development or scale-up. However, the current PAT (Bakeev 2005, Org Process Res 19:3–62; Simon et al. 2015, Org Process Res Dev 19:3–62) must become more flexible and smarter. This can be achieved by introducing digitalization-based knowledge management, so that knowledge from product development enables and accelerates the integration of PAT. Conversely, knowledge from the production process will also contribute to product and process development. This contribution describes the future role of the laboratory and develops requirements therefrom. In part 2, we examine the future functionality as well as the ingredients of a smart sensor aiming to eventually fuel full PAT functionality—also within process development or scale-up facilities (Eifert et al. 2020, Anal Bioanal Chem). KW - Smart test laboratories KW - Laboratory 4.0 KW - Sustainable Production KW - Industry 4.0 PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504020 DO - https://doi.org/10.1007/s00216-020-02420-2 SN - 1618-2642 VL - 412 IS - 9 SP - 2027 EP - 2035 PB - Springer CY - Berlin Heidelberg AN - OPUS4-50402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Khatib, A. H. A1 - Radbruch, H. A1 - Trog, S. A1 - Neumann, B. A1 - Paul, F. A1 - Koch, A. A1 - Linscheid, M. W. A1 - Jakubowski, Norbert A1 - Schellenberger, E. T1 - Gadolinium in human brain sections and colocalization with other elements N2 - Recent recommendations by the Food and Drug Administration1 and the European Medicines Agency2 are to limit the clinical use of linear gadolinium-based contrast agents (GBCAs) due to convincing evidence of deposition in tissues. Macrocyclic GBCA continued to be considered safe, provided that patients have normal renal function. To date, given the low sensitivity of conventional MRI, there has been a debate about the signal increase following the injections of a macrocyclic GBCA. KW - Gadolinium PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471309 DO - https://doi.org/10.1212/NXI.0000000000000515 SN - 2332-7812 VL - 6 IS - 1 SP - e515, 1 EP - 3 PB - American Academy of Neurology AN - OPUS4-47130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Bliesener, Lilly A1 - Weiss, Tilman A1 - Koch, Matthias T1 - Marker Substances in the Aroma of Truffles N2 - The aim of this study was to identify specific truffle marker substances within the truffle aroma. The aroma profile of different truffle species was analyzed using static headspace sampling with gas chromatography mass spectrometry analysis (SHS/GC-MS). Possible marker substances were identified, taking the additional literature into account. The selected marker substances were tested in an experiment with 19 truffle dogs. The hypothesis “If trained truffle dogs recognize the substances as supposed truffles in the context of an experiment, they can be regarded as specific” was made. As it would be nearly impossible to investigate every other possible emitter of the same compounds to determine their specificity, this hypothesis was a reasonable approximation. We were interested in the question of what it is the dogs actually search for on a chemical level and whether we can link their ability to find truffles to one or more specific marker substances. The results of the dog experiment are not as unambiguous as could have been expected based on the SHS/GC-MS measurements. Presumably, the truffle aroma is mainly characterized and perceived by dogs by dimethyl sulfide and dimethyl disulfide. However, as dogs are living beings and not analytical instruments, it seems unavoidable that one must live with some degree of uncertainty regarding these results. KW - Truffle KW - Volatile organic compounds; KW - Gas chromatography KW - Mass spectrometry KW - Canine olfactometry PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556116 DO - https://doi.org/10.3390/molecules27165169 SN - 1420-3049 VL - 27 IS - 16 SP - 1 EP - 19 PB - MDPI CY - Basel AN - OPUS4-55611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Falkenhagen, Jana A1 - Panne, Ulrich A1 - Hiller, W. A1 - Gruendling, T. A1 - Staal, B. A1 - Lang, C. A1 - Lamprou, A. T1 - Simultaneous characterization of poly(acrylic acid) andpolysaccharide polymers and copolymers N2 - Copolymer products that result from grafting acrylic acid and other hydrophilicmonomers onto polysaccharides have recently gained significant interest in researchand industry. Originating from renewable sources, these biodegradable, low toxicity,and polar copolymer products exhibit potential to replace polymers from fossil sourcesin several applications and industries. The methods usually employed to character-ize these copolymers are, however, quite limited, especially for the measurement ofbulk properties. With more sophisticated applications, for example, in pharmaceu-tics requiring a more detailed analysis of the chemical structure, we describe a newapproach for this kind of complex polymers. Our approach utilizes chromatographyin combination with several detection methods to separate and characterize reactionproducts of the copolymerization of acrylic acid and chemically hydrolyzed starch.These samples consisted of a mixture of homopolymer poly (acrylic acid), homopoly-mer hydrolyzed starch, and – in a lower amount – the formed copolymers. Several chro-matographic methods exist that are capable of characterizing either poly (acrylic acid)or hydrolyzed starch. In contrast, our approach offers simultaneous characterization ofboth polymers. The combination of LC and UV/RI offered insight into the compositionand copolymer content of the samples. Size exclusion chromatography experimentsrevealed the molar mass distribution of homopolymers and copolymers. FTIR inves-tigations confirmed the formation of copolymers while ESI-MS gave more details onthe end groups of hydrolyzed starches and poly (acrylic acids). Evidence of copolymerstructures was obtained through NMR measurements. Finally, two-dimensional chro-matography led to the separation of the copolymers from both homopolymers as wellas the additional separation of sodium clusters. The methods described in this work area powerful toolset to characterize copolymerization products of hydrolyzed starch andpoly(acrylic acid). Together, our approach successfully correlates the physicochemicalproperties of such complex mixtures with their actual composition. KW - 2D chromatography KW - LC-MS KW - SEC KW - Renewable copolymers KW - Grafting PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508873 DO - https://doi.org/10.1002/ansa.202000044 SP - 1 EP - 12 PB - Wiley-VCH Verlag-GmbH&Co. KGaA CY - Weinheim AN - OPUS4-50887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Koch, Matthias T1 - On-Site Detection of Volatile Organic Compounds (VOCs) N2 - Volatile organic compounds (VOCs) are of interest in many different fields. Among them are food and fragrance analysis, environmental and atmospheric research, industrial applications, security or medical and life science. In the past, the characterization of these compounds was mostly performed via sample collection and off-site analysis with gas chromatography coupled to mass spectrometry (GC-MS) as the gold standard. While powerful, this method also has several drawbacks such as being slow, expensive, and demanding on the user. For decades, intense research has been dedicated to find methods for fast VOC analysis on-site with time and spatial resolution. We present the working principles of the most important, utilized, and researched technologies for this purpose and highlight important publications from the last five years. In this overview, non-selective gas sensors, electronic noses, spectroscopic methods, miniaturized gas chromatography, ion mobility spectrometry and direct injection mass spectrometry are covered. The advantages and limitations of the different methods are compared. Finally, we give our outlook into the future progression of this field of research. KW - Volatile organic compounds KW - On-site detection KW - Mobile analytics KW - Sensors PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570885 DO - https://doi.org/10.3390/molecules28041598 VL - 28 IS - 4 SP - 1 EP - 19 PB - MDPI CY - Basel, Switzerland AN - OPUS4-57088 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Lisec, Jan A1 - Koch, Matthias T1 - Changes in Black Truffle (Tuber melanosporum) Aroma during Storage under Different Conditions N2 - The enticing aroma of truffles is a key factor for their culinary value. Although all truffle species tend to be pricy, the most intensely aromatic species are the most sought after. Research into the aroma of truffles encompasses various disciplines including chemistry, biology, and sensory science. This study focusses on the chemical composition of the aroma of black truffles (Tuber melanosporum) and the changes occurring under different storage conditions. For this, truffle samples were stored under different treatments, at different temperatures, and measured over a total storage time of 12 days. Measurements of the truffle aroma profiles were taken with SPME/GC–MS at regular intervals. To handle the ample data collected, a systematic approach utilizing multivariate data analysis techniques was taken. This approach led to a vast amount of data which we made publicly available for future exploration. Results reveal the complexity of aroma changes, with 695 compounds identified, highlighting the need for a comprehensive understanding. Principal component analyses offer initial insights into truffle composition, while individual compounds may serve as markers for age (formic acid, 1-methylpropyl ester), freshness (2-Methyl-1-propanal; 1-(methylthio)-propane), freezing (tetrahydrofuran), salt treatment (1-chloropentane), or heat exposure (4-hydroxy-3-methyl-2-butanone). This research suggests that heat treatment or salt contact significantly affects truffle aroma, while freezing and cutting have less pronounced effects in comparison. The enrichment of compounds showing significant changes during storage was investigated with a metabolomic pathway analysis. The involvement of some of the enriched compounds on the pyruvate/glycolysis and sulfur pathways was shown. KW - Mass Spectrometry KW - Metabolomics KW - Tuber melanosporum KW - Truffle Aroma PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601731 DO - https://doi.org/10.3390/jof10050354 VL - 10 IS - 5 SP - 1 EP - 22 PB - MDPI AN - OPUS4-60173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erler, A. A1 - Riebe, D. A1 - Beitz, T. A1 - Löhmannsröben, H.-G. A1 - Leenen, M. A1 - Pätzold, S. A1 - Ostermann, Markus A1 - Wójcik, M. T1 - Mobile Laser-Induced Breakdown Spectroscopy for Future Application in Precision Agriculture—A Case Study N2 - In precision agriculture, the estimation of soil parameters via sensors and the creation of nutrient maps are a prerequisite for farmers to take targeted measures such as spatially resolved fertilization. In this work, 68 soil samples uniformly distributed over a field near Bonn are investigated using laser-induced breakdown spectroscopy (LIBS). These investigations include the determination of the total contents of macro- and micronutrients as well as further soil parameters such as soil pH, soil organic matter (SOM) content, and soil texture. The applied LIBS instruments are a handheld and a platform spectrometer, which potentially allows for the single-point measurement and scanning of whole fields, respectively. Their results are compared with a high-resolution lab spectrometer. The prediction of soil parameters was based on multivariate methods. Different feature selection methods and regression methods like PLS, PCR, SVM, Lasso, and Gaussian processes were tested and compared. While good predictions were obtained for Ca, Mg, P, Mn, Cu, and silt content, excellent predictions were obtained for K, Fe, and clay content. The comparison of the three different spectrometers showed that although the lab spectrometer gives the best results, measurements with both field spectrometers also yield good results. This allows for a method transfer to the in-field measurements KW - LIBS KW - Precision agriculture KW - Soil KW - Multivariate methods KW - Feature selection PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580777 DO - https://doi.org/10.3390/s23167178 VL - 23 IS - 16 SP - 1 EP - 17 PB - MDPI AG CY - Basel, Schweiz AN - OPUS4-58077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Even, Morgane A1 - Juritsch, Elevtheria A1 - Richter, Matthias T1 - On the use of Carbograph 5TD as an adsorbent for sampling VVOCs: validation of an analytical method N2 - A standardised method for the analysis of very volatile organic compounds (VVOCs) in indoor air is still missing. This study evaluates the use of Carbograph 5TD as an adsorbent for 60 compounds (47 VVOCs + 13 VOCs) by comparing their recoveries with different spiking modes. The influence of the spiking of the tubes in dry nitrogen, humidified air or along the whole flushing duration mimicking real sampling was investigated. 49 substances (36 VVOCs from C1 to C6) had recoveries over 70% on the adsorbent in humidified air and were validated. The linearity of the calibration curves was verified for every spiking mode and the limits of detection (LOD) and quantification (LOQ) were determined. The LOQs were lower than the existing indoor air guideline values. The robustness of the method was considered by studying the influence of the sampling volume, the sampling flow rate, the humidity level and the storage of the tubes. In general, the most volatile or polar substances were the less robust ones. The combined measurement uncertainty was calculated and lies below 35% for a vast majority of the substances. An example of an emission chamber test using polyurethane foam is shown: Carbograph 5TD performs much better than Tenax® TA for VVOCs and emissions from n-butane were quantified with combined measurement uncertainty. KW - VVOC KW - Gas chromatography KW - Thermal desorption KW - Air sampling PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581113 DO - https://doi.org/10.1039/D3AY00677H VL - 15 IS - 31 SP - 3810 EP - 3821 AN - OPUS4-58111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Faßbender, Sebastian A1 - Rodiouchkina, K. A1 - Vanhaecke, F. A1 - Meermann, Björn T1 - Method development for on-line species-specific sulfur isotopic analysis by means of capillary electrophoresis/multicollector ICP-mass spectrometry N2 - In this work, a method for species-specific isotopic analysis of sulfur via capillary electrophoresis hyphenated on-line with multicollector ICP-MS (CE/MC-ICP-MS) was developed. Correction for the mass bias caused by instrumental mass discrimination was realized via external correction with multiple-injection sample-standard bracketing. By comparing the isotope ratio measurement results obtained using the newly developed on-line CE/MC-ICP-MS method with those obtained via traditional MC-ICP-MS measurement after analyte/matrix separation by anion exchange chromatography for isotopic reference materials and an in-house bracketing standard, the most suitable data evaluation method could be identified. The repeatability for the sulfate-δ34S value (calculated from 18 measurements of a standard conducted over seven measurement sessions) was 0.57‰ (2SD) and thereby only twice that obtained with off-line measurements (0.30‰, n = 68). As a proof of concept for analysis of samples with a real matrix, the determination of the sulfur isotopic composition of naturally present sulfate was performed for different river systems. The CE/MC-ICP-MS results thus obtained agreed with the corresponding off-line MC-ICP-MS results within the 2SD ranges, and the repeatability of consecutive δ34S measurements (n = 3) was between 0.3‰ and 1.3‰ (2SD). Finally, the isotopic analysis of two different S-species in a river water sample spiked with 2-pyridinesulfonic acid (PSA) was also accomplished. KW - River water sulfate KW - Environmental speciation KW - Sulfur isotopes KW - On-line CE/MC-ICP-MS KW - Multiple-injection sample-standard bracketing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509549 DO - https://doi.org/10.1007/s00216-020-02781-8 SN - 1618-2642 VL - 412 IS - 23 SP - 5637 EP - 5646 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-50954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Faßbender, Sebastian A1 - von der Au, Marcus A1 - Koenig, Maren A1 - Pelzer, J. A1 - Piechotta, Christian A1 - Vogl, Jochen A1 - Meermann, Björn T1 - Species-specific isotope dilution analysis of monomethylmercury in sediment using GC/ICP-ToF-MS and comparison with ICP-Q-MS and ICP-SF-MS N2 - A recently introduced inductively coupled plasma-time-of-flight-mass spectrometer (ICP-ToF-MS) shows enhanced sensitivity compared to previous developments and superior isotope ratio precision compared to other ToF and commonly used single-collector ICP-MS instruments. Following this fact, an improvement for isotope dilution ICP-MS using the new instrumentation has been reported. This study aimed at investigating whether this improvement also meets the requirements of species-specific isotope dilution using GC/ICP-MS, where short transient signals are recorded. The results of the analysis of monomethylmercury (MMHg) of a sediment reference material show that isotope ratio precision of ICP-MS instruments equipped with quadrupole, sector-field, and time-of-flight mass analyzers is similar within a broad range of peak signal-to-noise ratio when analyzing one isotopic system. The procedural limit of quantification (LOQ) for MMHg, expressed as mass fraction of Hg being present as MMHg, w(Hg)MMHg, was similar as well for all investigated instruments and ranged between 0.003 and 0.016 μg/kg. Due to the simultaneous detection capability, the ICP-ToF-MS might, however, be more favorable when several isotopic systems are analyzed within one measurement. In a case study, the GC/ICP-ToF-MS coupling was applied for analysis of MMHg in sediments of Finow Canal, a historic German canal heavily polluted with mercury. Mass fractions between 0.180 and 41 μg/kg (w(Hg)MMHg) for MMHg, and 0.056 and 126 mg/kg (w(Hg)total) for total mercury were found in sediment samples taken from the canal upstream and downstream of a former chemical plant. KW - Methylmercury KW - Legacy pollution KW - Finow Canal KW - Isotope dilution KW - Mercury speciation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529967 DO - https://doi.org/10.1007/s00216-021-03497-z SN - 1618-2642 VL - 413 IS - 21 SP - 5279 EP - 5289 PB - Springer CY - Berlin AN - OPUS4-52996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fernandez-Menendez, L. J. A1 - Mendez-Lopez, C. A1 - Abad Andrade, Carlos Enrique A1 - Fandino, J. A1 - Gonzalez-Gago, C. A1 - Pisonero, J. A1 - Bordel, N. T1 - A critical evaluation of the chlorine quantification method based on molecular emission detection in LIBS N2 - The entire process involving the determination of Cl by molecular emission detection in Laser-Induced Breakdown Spectroscopy (LIBS) is thoroughly studied in this paper. This critical evaluation considers how spectra are normalized, how interferences from other molecular species signals are removed, and how signal integration is applied. Moreover, a data treatment protocol is proposed to achieve reliable and accurate Cl determination from the CaCl molecular spectral signal, not requiring the use of more complex numerical approaches. Calcium chloride dihydrate (CaCl2⋅2H2O) and high purity anhydrite samples (CaSO4) are used to optimize the acquisition conditions and data treatment of CaCl emission signal. Using the developed protocol, calibration curves for Cl, covering the concentration range from 0 μg/g to 60,000 μg/g of Cl, are successfully achieved. Finally, the suitability of the proposed methodology for Cl determination is successfully applied in industrial gypsum waste samples, where the results obtained by LIBS are validated using high-resolution molecular absorption spectroscopy (HR-CS-MAS) and potentiometric titration. KW - Laser induced breakdown Spectrocopy (LIBS) KW - Molecular spectra KW - Chlorine determination KW - CaCl emission bands KW - Industrial gypsum PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544292 DO - https://doi.org/10.1016/j.sab.2022.106390 SN - 0584-8547 VL - 190 SP - 1 EP - 9 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-54429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fiedler, Saskia A1 - Frenzel, Florian A1 - Würth, Christian A1 - Tavernaro, Isabella A1 - Grüne, M. A1 - Schweizer, S. A1 - Engel, A. A1 - Resch-Genger, Ute T1 - Interlaboratory Comparison on Absolute Photoluminescence Quantum Yield Measurements of Solid Light Converting Phosphors with Three Commercial Integrating Sphere Setups N2 - Scattering luminescent materials dispersed in liquid and solid matrices and luminescent powders are increasingly relevant for fundamental research and industry. Examples are luminescent nano- and microparticles and phosphors of different compositions in various matrices or incorporated into ceramics with applications in energy conversion, solid-state lighting, medical diagnostics, and security barcoding. The key parameter to characterize the performance of these materials is the photoluminescence/fluorescence quantum yield (Φf), i.e., the number of emitted photons per number of absorbed photons. To identify and quantify the sources of uncertainty of absolute measurements of Φf of scattering samples, the first interlaboratory comparison (ILC) of three laboratories from academia and industry was performed by following identical measurement protocols. Thereby, two types ofcommercial stand-alone integrating sphere setups with different illumination and detection geometries were utilized for measuring the Φf of transparent and scattering dye solutions and solid phosphors, namely, YAG:Ce optoceramics of varying surface roughness, used as converter materials for blue light emitting diodes. Special emphasis was dedicated to the influence of the measurement geometry, the optical properties of the blank utilized to determine the number of photons of the incident excitation light absorbed by the sample, and the sample-specific surface roughness. While the Φf values of the liquid samples matched between instruments, Φf measurements of the optoceramics with different blanks revealed substantial differences. The ILC results underline the importance of the measurement geometry, sample position, and blank for reliable Φf data of scattering the YAG:Ce optoceramics, with the blank’s optical properties accounting for uncertainties exceeding 20%. KW - Nano KW - Fluorescence KW - Reference material KW - Luminescence KW - Quantitative spectroscopy KW - Particle KW - Quantum yield KW - Quality assurance KW - Phosphor KW - Converter material KW - Lifetime KW - Interlaboratory comparison KW - Method KW - Uncertainty PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600945 DO - https://doi.org/10.1021/acs.analchem.4c00372 SN - 0003-2700 SP - 6730 EP - 6737 PB - ACS Publications AN - OPUS4-60094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Filimonova, S. M. A1 - Melnikov, E. S. A1 - Kaufmann, Jan Ole A1 - Shchepochkina, O. Y. A1 - Eremin, S. A. A1 - Gravel, I. V. A1 - Raysyan, Anna T1 - Exploring the anti‐α‐amylase activity of flavonoid aglycones in fabaceae plant extracts: a combined MALDI‐TOF‐MS and LC–MS/MS approach N2 - A combination of TLC-bioautography, MALDI-TOF-MS and LC–MS/MS methods was used to identify flavonoids with anti-α-amylase activity in extracts of Lathyrus pratensis L. (herb), L. polyphillus L. (fruits), Thermopsis lanceolata R. Br. (herb) and S. japonica L. (buds). After the TLC-autobiography assay, substances with anti-amylase activity were identified by MALDI-TOF-MS followed by confirmation of the result by LC–MS/MS. Results of the study revealed that the flavonoids apigenin, luteolin, formononetin, genistein and kaempferol display marked anti-α-amylase activity. Formononetin showed the largest activity. Compared with LC–MS/MS, MALDI-TOF-MS is a quick and convenient method; results can be obtained within minutes; and only minor sample amounts are required which allows us to analyse mixtures of substances without preliminary separation. However, the inability to distinguish between isomers is the main limitation of the method. KW - Enzyme KW - MALDI-TOF-MS KW - LC-MS/MS KW - Massenspektrometrie PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-577128 DO - https://doi.org/https://doi.org/10.1111/ijfs.16491 SN - 0950-5423 VL - 58 IS - 7 SP - 3902 EP - 3911 PB - Wiley & Sons CY - Hoboken, NJ, USA AN - OPUS4-57712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Janina A1 - Kaufmann, Jan Ole A1 - Weller, Michael G. T1 - Simple Determination of Affinity Constants of Antibodies by Competitive Immunoassays N2 - The affinity constant, also known as the equilibrium constant, binding constant, equilibrium association constant, or the reciprocal value, the equilibrium dissociation constant (Kd), can be considered as one of the most important characteristics for any antibody–antigen pair. Many methods based on different technologies have been proposed and used to determine this value. However, since a very large number of publications and commercial datasheets do not include this information, significant obstacles in performing such measurements seem to exist. In other cases where such data are reported, the results have often proved to be unreliable. This situation may indicate that most of the technologies available today require a high level of expertise and effort that does not seem to be available in many laboratories. In this paper, we present a simple approach based on standard immunoassay technology that is easy and quick to perform. It relies on the effect that the molar IC50 approaches the Kd value in the case of infinitely small concentrations of the reagents. A two-dimensional dilution of the reagents leads to an asymptotic convergence to Kd. The approach has some similarity to the well-known checkerboard titration used for the optimization of immunoassays. A well-known antibody against the FLAG peptide, clone M2, was used as a model system and the results were compared with other methods. This approach could be used in any case where a competitive assay is available or can be developed. The determination of an affinity constant should belong to the crucial parameters in any quality control of antibody-related products and assays and should be mandatory in papers using immunochemical protocols. N2 - Die Affinitätskonstante, auch bekannt als Gleichgewichtskonstante, Bindungskonstante, Gleichgewichtsassoziationskonstante oder der reziproke Wert, die Gleichgewichtsdissoziationskonstante (Kd), kann als eine der wichtigsten Eigenschaften für jedes Antikörper-Antigen-Paar angesehen werden. Zur Bestimmung dieses Wertes wurden zahlreiche Methoden auf der Grundlage verschiedener Technologien vorgeschlagen und verwendet. Da jedoch eine sehr große Anzahl von Veröffentlichungen und kommerziellen Datenblätter diese Information nicht enthalten, scheint es erhebliche Hindernisse bei der Durchführung solcher Messungen zu geben. In anderen Fällen, in denen solche Daten angegeben werden, haben sich die Ergebnisse häufig als unzuverlässig erwiesen. Diese Situation könnte darauf hindeuten, dass die meisten der heute verfügbaren Technologien ein hohes Maß an Fachwissen und Aufwand erfordern, das in vielen Labors nicht vorhanden zu sein scheint. In diesem Beitrag stellen wir einen einfachen Ansatz vor, der auf der Standard-Immunoassay-Technologie basiert und einfach und schnell durchführbar ist. Er beruht auf dem Effekt, dass sich der molare IC50 bei unendlich kleinen Reagenz-Konzentrationen dem Kd-Wert annähert. Eine zweidimensionale Verdünnung der Reagenzien führt zu einer asymptotischen Konvergenz zu Kd. Der Ansatz hat eine gewisse Ähnlichkeit mit der bekannten Checkerboard-Titration, die zur Optimierung von Immunoassays verwendet wird. Ein bekannter Antikörper gegen das FLAG-Peptid, Klon M2, wurde als Modellsystem verwendet, und die Ergebnisse wurden mit anderen Methoden verglichen. Dieser Ansatz kann überall dort angewendet werden, wo ein kompetitiver Assay verfügbar ist oder entwickelt werden kann. Die Bestimmung einer Affinitätskonstante sollte zu den entscheidenden Parametern bei der Qualitätskontrolle von Antikörperprodukten und -assays gehören und in Arbeiten, die immunchemische Protokolle verwenden, obligatorisch sein. KW - ELISA KW - Competitive immunoassay KW - IC50 KW - Test midpoint KW - Point of inflection KW - Equilibrium constant KW - Dissociation constant KW - Binding strength KW - Antibody antigen complex KW - Bio-interaction KW - SPR KW - Surface-plasmon resonance KW - FLAG peptide KW - Clone M2 KW - Antibody quality PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605607 DO - https://doi.org/10.3390/mps7030049 SN - 2409-9279 VL - 7 IS - 3 SP - 1 EP - 11 PB - MDPI CY - Basel AN - OPUS4-60560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fricke, F. A1 - Brandalero, M. A1 - Liehr, Sascha A1 - Kern, Simon A1 - Meyer, Klas A1 - Kowarik, Stefan A1 - Hierzegger, R. A1 - Westerdick, S. A1 - Maiwald, Michael A1 - Hübner, M. T1 - Artificial Intelligence for Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy Using a Novel Data Augmentation Method N2 - Mass Spectrometry (MS) and Nuclear Magnetic Resonance Spectroscopy (NMR) are valuable analytical and quality control methods for most industrial chemical processes as they provide information on the concentrations of individual compounds and by-products. These processes are traditionally carried out manually and by a specialist, which takes a substantial amount of time and prevents their utilization for real-time closed-loop process control. This paper presents recent advances from two projects that use Artificial Neural Networks (ANNs) to address the challenges of automation and performance-efficient realizations of MS and NMR. In the first part, a complete toolchain has been realized to develop simulated spectra and train ANNs to identify compounds in MS. In the second part, a limited number of experimental NMR spectra have been augmented by simulated spectra, to train an ANN with better prediction performance and speed than state-of-the-art analysis. These results suggest that, in the context of the digital transformation of the process industry, we are now on the threshold of a strongly simplified use of MS and MRS and the accompanying data evaluation by machine-supported procedures, and can utilize both methods much wider for reaction and process monitoring or quality control. KW - Industry 4.0 KW - Cyber-Physical Systems KW - Artificial Neural Networks KW - Mass Spectrometry KW - Nuclear Magnetic Resonance Spectroscopy KW - Modular Production PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539412 UR - https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9638378 DO - https://doi.org/10.1109/TETC.2021.3131371 SN - 2168-6750 VL - 10 IS - 1 SP - 87 EP - 98 PB - IEEE AN - OPUS4-53941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fröhlich-Nowoisky, J. A1 - Bothen, N. A1 - Backes, A. T. A1 - Weller, Michael G. A1 - Pöschl, U. T1 - Oligomerization and tyrosine nitration enhance the allergenic potential of the birch and grass pollen allergens Bet v 1 and Phl p 5 N2 - Protein modifications such as oligomerization and tyrosine nitration alter the immune response to allergens and may contribute to the increasing prevalence of allergic diseases. In this mini-review, we summarize and discuss relevant findings for the major birch and grass pollen allergens Bet v 1 and Phl p 5 modified with tetranitromethane (laboratory studies), peroxynitrite (physiological processes), and ozone and nitrogen dioxide environmental conditions). We focus on tyrosine nitration and the formation of protein dimers and higher oligomers via dityrosine cross-linking and the immunological effects studied. N2 - Proteinmodifikationen wie Oligomerisierung und Tyrosinnitrierung verändern die Immunantwort auf Allergene und tragen möglicherweise zur zunehmenden Prävalenz allergischer Erkrankungen bei. In diesem Mini-Review fassen wir relevante Befunde zu den wichtigsten Birken- und Gräserpollenallergenen Bet v 1 und Phl p 5 zusammen, die mit Tetranitromethan (Laborstudien), Peroxynitrit (physiologische Prozesse) und Ozon und Stickstoffdioxid (Umweltbedingungen). Wir konzentrieren uns auf die Tyrosin-Nitrierung und die Bildung von Proteindimeren und höheren Oligomeren durch Dityrosin-Vernetzung und deren immunologischen Auswirkungen. KW - Allergy KW - Nitration KW - Protein oligomers KW - Air pollution KW - Ozone KW - Nitrogen oxides KW - Tyrosine KW - Nitrotyrosine KW - Dityrosine KW - Dityrosine crosslinking KW - Protein degradation KW - Neoepitopes KW - Neoallergen KW - IgE KW - Immunoglobulin E PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-591453 DO - https://doi.org/10.3389/falgy.2023.1303943 VL - 4 SP - 1 EP - 8 PB - Frontiers Media CY - Switzerland AN - OPUS4-59145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Garrido, E. A1 - Hernández-Sigüenza, G. A1 - Climent, Estela A1 - Marcos, M. D. A1 - Rurack, Knut A1 - Gaviña, P. A1 - Parra, M. A1 - Sancenón, F. A1 - Martí-Centelles, V. A1 - Martínez-Máñez, R. T1 - Strip-based lateral flow-type indicator displacement assay for γ-hydroxybutyric acid (GHB) detection in beverages N2 - The use of gamma-hydroxybutyric acid (GHB) in drug-facilitated sexual assault has increased due to its availability and high solubility in aqueous solutions and alcoholic beverages, necessitating the development of rapid methods for GHB detection. In this respect, portable testing methods for use in the field, based on lateral flow assays (LFAs) and capable of detecting trace concentrations of target analytes, are particularly attractive and hold enormous potential for the detection of illicit drugs. Using this strategy, here we report a rapid, low cost, easy-to-handle strip-based LFA for GHB analysis employing a smartphone for fluorescence readout. At molecular signalling level, the ensemble is based on a Cu2+ complex with a tetradentate ligand and the fluorescent dye coumarin 343, which indicate GHB through an indicator displacement assay (IDA) in aqueous solution. When incorporated in a LFA-based strip test this system shows a detection limit as low as 0.03 μM for GHB in MES buffer solution and is able to detect GHB at concentrations of 0.1 μM in soft drinks and alcoholic beverages in only 1 min. KW - Indicator displacement assay KW - Gamma-hydroxybutyric acid KW - Lateral flow assay KW - Test strip KW - Fluorescent dyes KW - Smartphone readout PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564631 DO - https://doi.org/10.1016/j.snb.2022.133043 SN - 0925-4005 VL - 377 SP - 1 EP - 7 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-56463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gehrenkemper, Lennart A1 - Rühl, Isabel A1 - Westphalen, Tanja A1 - Simon, Fabian A1 - von der Au, Marcus A1 - Cossmer, Antje A1 - Meermann, Björn T1 - Investigating the uptake and fate of per- and polyfluoroalkylated substances (PFAS) in bean plants (Phaseolus vulgaris): comparison between target MS and sum parameter analysis via HR-CS-GFMAS N2 - AbstractIn this study, we present a screening method based on molecular absorption spectrometry to study PFAS uptake and fate in plants. To evaluate the suitability of this method we analyzed plant extracts with molecular absorption spectrometry (MAS) as well as liquid chromatography–tandem mass spectrometry (LC–MS/MS) for mass balance studies (w(F)). French bean plants (Phaseolus vulgaris) were grown on soil spiked using eight PFAS substances that vary in chain length and functional group composition. Specifically, these include three short-chained (C4–C5), five long-chained (C7–C10) carboxylic acids, one sulfonic acid and one sulfonic amide moieties. To investigate substance-specific PFAS uptake systematically, PFAS were spiked as single substance spike. Additionally, we studied one mixture of the investigated substances in equal proportions regarding w(F) and four PFAS mixtures of unknown composition. After 6 weeks, the plants were separated into four compartments. We analyzed the four compartments as well as the soil for extractable organically bound fluorine (EOF) by high resolution-continuum source-graphite furnace-molecular absorption spectrometry (HR-CS-GFMAS) as well as for sum of ten target-PFAS by LC–MS/MS. All three short-chained PFAS perfluorobutanoic acid (PFBA), perfluorobutanoic sulfonic acid (PFBS) and perfluoropentanoic acid (PFPeA) were determined in high concentrations mainly in the fruits of the investigated plants while long-chained PFAS perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA) were mainly determined in roots. PFBS was determined in remarkably high concentrations in leaves compartment by both quantification methods. Overall, comprehensive results of single substance spikes were in good agreement for both methods except for a few cases. Hence, two phenomena were identified: for mixed PFAS spikes of unknown composition huge differences between EOF and sum of target PFAS were observed with systematically higher EOF values. Overall, both methods indicate comparable results with MS being more reliable for known PFAS contamination and MAS being more valuable to identify PFAS exposure of unknown composition. Graphical Abstract KW - Pollution PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589394 DO - https://doi.org/10.1186/s12302-023-00811-7 VL - 35 IS - 104 SP - 1 EP - 13 PB - Springer Science and Business Media LLC AN - OPUS4-58939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gehrenkemper, Lennart A1 - Simon, Fabian A1 - Roesch, Philipp A1 - Fischer, E. A1 - von der Au, Marcus A1 - Pfeifer, Jens A1 - Cossmer, Antje A1 - Wittwer, Philipp A1 - Vogel, Christian A1 - Simon, Franz-Georg A1 - Meermann, Björn T1 - Determination of organically bound fluorine sum parameters in river water samples - Comparison of combustion ion chromatography (CIC) and high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) N2 - In this study, we compare combustion ion chromatography (CIC) and high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) with respect to their applicability for determining organically Bound fluorine sum parameters. Extractable (EOF) and adsorbable (AOF) organically bound fluorine as well as total fluorine (TF) were measured in samples fromriver Spree in Berlin, Germany, to reveal the advantages and disadvantages of the two techniques used as well as the two established fluorine sum Parameters AOF and EOF. TF concentrations determined via HR-CS-GFMAS and CIC were comparable between 148 and 270 μg/L. On average, AOF concentrations were higher than EOF concentrations, with AOF making up 0.14–0.81% of TF (determined using CIC) and EOF 0.04–0.28% of TF (determined using HR-CSGFMAS). The results obtained by the two independent methods were in good agreement. It turned out that HR-CS-GFMAS is a more sensitive and precise method for fluorine analysis compared to CIC. EOF and AOF are comparable tools in Risk evaluation for the emerging pollutants per- and polyfluorinated alkyl substances; however, EOF is much faster to conduct. KW - High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) KW - Combustion ion chromatography (CIC) KW - Per- and polyfluorinated alkyl substances (PFASs) KW - Adsorbable organically bound fluorine (AOF) KW - Extractable organically bound fluorine (EOF) KW - Surface waters PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515351 DO - https://doi.org/10.1007/s00216-020-03010-y SN - 1618-2650 VL - 413 IS - 28 SP - 103 EP - 115 PB - Springer CY - Berlin AN - OPUS4-51535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geißler, Daniel A1 - Nirmalananthan-Budau, Nithiya A1 - Scholtz, Lena A1 - Tavernaro, Isabella A1 - Resch-Genger, Ute T1 - Analyzing the surface of functional nanomaterials — how to quantify the total and derivatizable number of functional groups and ligands N2 - Functional nanomaterials (NM) of different size, shape, chemical composition, and surface chemistry are of increasing relevance for many key technologies of the twenty-first century. This includes polymer and silica or silica-coated nanoparticles (NP) with covalently bound surface groups, semiconductor quantum dots (QD), metal and metal oxide NP, and lanthanide-based NP with coordinatively or electrostatically bound ligands, as well as surface-coated nanostructures like micellar encapsulated NP. The surface chemistry can significantly affect the physicochemical properties of NM, their charge, their processability and performance, as well as their impact on human health and the environment. Thus, analytical methods for the characterization of NM surface chemistry regarding chemical identification, quantification, and accessibility of functional groups (FG) and surface ligands bearing such FG are of increasing importance for quality control of NM synthesis up to nanosafety. Here, we provide an overview of analytical methods for FG analysis and quantification with special emphasis on bioanalytically relevant FG broadly utilized for the covalent attachment of biomolecules like proteins, peptides, and oligonucleotides and address methodand material-related challenges and limitations. Analytical techniques reviewed include electrochemical titration methods, optical assays, nuclear magnetic resonance and vibrational spectroscopy, as well as X-ray based and thermal analysis methods, covering the last 5–10 years. Criteria for method classification and evaluation include the need for a signal-generating label, provision of either the total or derivatizable number of FG, need for expensive instrumentation, and suitability for process and production control during NM synthesis and functionalization. KW - Functional group quantification KW - Surface ligand KW - Nanomaterial KW - Optical detection KW - Electrochemical titration KW - Nanosafety (Safe-by-design) PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533597 DO - https://doi.org/10.1007/s00604-021-04960-5 VL - 188 IS - 10 SP - 1 EP - 28 PB - Springer Nature AN - OPUS4-53359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geißler, Daniel A1 - Wegmann, Marc A1 - Jochum, T. A1 - Somma, V. A1 - Sowa, M. A1 - Scholz, J. A1 - Fröhlich, E. A1 - Hoffmann, Katrin A1 - Niehaus, J. A1 - Roggenbuck, D. A1 - Resch-Genger, Ute T1 - An automatable platform for genotoxicity testing of nanomaterials based on the fluorometric γ-H2AX assay reveals no genotoxicity of properly surface-shielded cadmium-based quantum dots N2 - The large number of nanomaterial-based applications emerging in the materials and life sciences and the foreseeable increasing use of these materials require methods that evaluate and characterize the toxic potential of these nanomaterials to keep safety risks to people and environment as low as possible. As nanomaterial toxicity is influenced by a variety of parameters like size, shape, chemical composition, and surface chemistry, high throughput screening (HTS) platforms are recommended for assessing cytotoxicity. Such platforms are not yet available for genotoxicity testing. Here, we present first results obtained for application-relevant nanomaterials using an automatable genotoxicity platform that relies on the quantification of the phosphorylated histone H2AX (γ-H2AX) for detecting DNA double strand breaks (DSBs) and the automated microscope system AKLIDES® for measuring integral fluorescence intensities at different excitation wavelengths. This platform is used to test the genotoxic potential of 30 nm-sized citrate-stabilized gold nanoparticles (Au-NPs) as well as micellar encapsulated iron oxide nanoparticles (FeOx-NPs) and different cadmium (Cd)-based semiconductor quantum dots (QDs), thereby also searching for positive and negative controls as reference materials. In addition, the influence of the QD shell composition on the genotoxic potential of these Cd-based QDs was studied, using CdSe cores as well as CdSe/CdS core/shell and CdSe/CdS/ZnS core/shell/shell QDs. Our results clearly revealed the genotoxicity of the Au-NPs and its absence in the FeOx-NPs. The genotoxicity of the Cd-QDs correlates with the shielding of their Cd-containing core, with the core/shell/shell architecture preventing genotoxicity risks. The fact that none of these nanomaterials showed cytotoxicity at the chosen particle concentrations in a conventional cell viability assay underlines the importance of genotoxicity studies to assess the hazardous potential of nanomaterials. KW - Nanomaterial KW - Genotoxicity testing KW - γ-H2AX assay KW - Quantum dot PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486318 DO - https://doi.org/10.1039/C9NR01021A SN - 2040-3372 SN - 2040-3364 VL - 11 IS - 28 SP - 13458 EP - 13468 PB - The Royal Society of Chemistry AN - OPUS4-48631 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geißler, Daniel A1 - Wegner, Karl David A1 - Fischer, C. A1 - Resch-Genger, Ute T1 - Exploring Simple Particle-Based Signal Amplification Strategies in a Heterogeneous Sandwich Immunoassay with Optical Detection N2 - Heterogeneous sandwich immunoassays are widely used for biomarker detection in bioanalysis and medical diagnostics. The high analyte sensitivity of the current “gold standard” enzyme-linked immunosorbent assay (ELISA) originates from the signal-generating enzymatic amplification step, yielding a high number of optically detectable reporter molecules. For future point-of-care testing (POCT) and point-of-need applications, there is an increasing interest in more simple detection strategies that circumvent time-consuming and temperature-dependent enzymatic reactions. A common concept to aim for detection limits comparable to those of enzymatic amplification reactions is the usage of polymer nanoparticles (NP) stained with a large number of chromophores. We explored different simple NP-based signal amplification strategies for heterogeneous sandwich immunoassays that rely on an extraction-triggered release step of different types of optically detectable reporters. Therefore, streptavidinfunctionalized polystyrene particles (PSP) are utilized as carriers for (i) the fluorescent dye coumarin 153 (C153) and (ii) hemin (hem) molecules catalyzing the luminol reaction enabling chemiluminescence (CL) detection. Additionally, (iii) NP labeling with hemin-based microperoxidase MP11 was assessed. For each amplification approach, the PSP was first systematically optimized regarding size, loading concentration, and surface chemistry. Then, for an immunoassay for the inflammation marker C- eactive protein (CRP), the analyte sensitivity achievable with optimized PSP ystems was compared with the established ELISA concept for photometric and CL detection. Careful optimization led to a limit of detection (LOD) of 0.1 ng/mL for MP11-labeled PSP and CL detection, performing similarly well to a photometric ELISA (0.13 ng/mL), which demonstrates the huge potential of our novel assay concept. KW - Nanoparticle KW - Fluorescence KW - Immunoassay KW - Quality assurance KW - Antibody KW - Polymer KW - Dye KW - Signal enhancement KW - CRP KW - Biosensing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597853 DO - https://doi.org/10.1021/acs.analchem.3c03691 SN - 1520-6882 VL - 96 IS - 13 SP - 5078 EP - 5085 PB - American Chemical Society CY - Columbus, Ohio AN - OPUS4-59785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gharaati, S. A1 - Wang, Cui A1 - Förster, C. A1 - Weigert, Florian A1 - Resch-Genger, Ute A1 - Heinze, K. T1 - Triplet–Triplet Annihilation Upconversion in a MOF with AcceptorFilled Channels N2 - In summary, we report a highly modular solid TTA-UC system comprising of a crystalline, thermally stable PCN222(Pd) MOF with CA-coated MOF channels and with a DPA annihilator embedded in a solution-like environment in the MOF channels. This solid material displays blue upconverted delayed emission with a luminescence lifetime of 373 us, a threshold value of 329 mW*cm-2 and a triplet–triplet energy transfer efficiency of 82%. This optical application adds another facet to the versatile chemistry of PCN-222 MOFs. The design concept is also applicable to other TTA-UC pairs and enables tuning of the UCL color, for example, by replacing DPA with other dyes as exemplarily shown for 2,5,8,11-tetra-tert-butyl-perylene, that yields UCL at 450 nm. Current work aims to reduce the oxygen sensitivity and to increase the retention of the trapped annihilators in organic environments, for example, by tuning the chain length of the carboxylic acid and by coating the MOF surface. In addition, the TTA-UC efficiency will be further enhanced by reducing the reabsorption of the UC emission caused by Pd(TCPP) and by optimizing the sensitizer/annihilator interface. KW - Porphyrin KW - Method KW - MOF KW - Fluorescence KW - Dye KW - Sensor KW - Oxygen sensitive KW - Single molecule KW - DPA KW - Lifetime KW - Upconverstion KW - Quantum yield KW - Triplet-triplet annihilation KW - Sensitization KW - Energy transfer KW - NMR PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-500580 DO - https://doi.org/10.1002/chem.201904945 VL - 26 IS - 5 SP - 1003 EP - 1007 PB - Wiley-VCH Verlag CY - Weinheim AN - OPUS4-50058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Golusda, L. A1 - Kühl, A. A. A1 - Lehmann, M. A1 - Dahlke, K. A1 - Mueller, S. A1 - Boehm-Sturm, P. A1 - Saatz, Jessica A1 - Traub, Heike A1 - Schnorr, J. A1 - Freise, C. A1 - Taupitz, M. A1 - Biskup, K. A1 - Blanchard, V. A1 - Klein, O. A1 - Sack, I. A1 - Siegmund, B. A1 - Paclik, D. T1 - Visualization of inflammation in experimental colitis by magnetic resonance imaging using very small superparamagnetic iron oxide particles N2 - Inflammatory bowel diseases (IBD) comprise mainly ulcerative colitis (UC) and Crohn´s disease (CD). Both forms present with a chronic inflammation of the (gastro) intestinal tract, which induces excessive changes in the composition of the associated extracellular matrix (ECM). In UC, the inflammation is limited to the colon, whereas it can occur throughout the entire gastrointestinal tract in CD. Tools for early diagnosis of IBD are still very limited and highly invasive and measures for standardized evaluation of structural changes are scarce. To investigate an efficient non-invasive way of diagnosing intestinal inflammation and early changes of the ECM, very small superparamagnetic iron oxide nanoparticles (VSOPs) in magnetic resonance imaging (MRI) were applied in two mouse models of experimental colitis: the dextran sulfate sodium (DSS)-induced colitis and the transfer model of colitis. For further validation of ECM changes and inflammation, tissue sections were analyzed by immunohistochemistry. For in depth ex-vivo investigation of VSOPs localization within the tissue, Europium-doped VSOPs served to visualize the contrast agent by imaging mass cytometry (IMC). VSOPs accumulation in the inflamed colon wall of DSS-induced colitis mice was visualized in T2* weighted MRI scans. Components of the ECM, especially the hyaluronic acid content, were found to influence VSOPs binding. Using IMC, colocalization of VSOPs with macrophages and endothelial cells in colon tissue was shown. In contrast to the DSS model, colonic inflammation could not be visualized with VSOP-enhanced MRI in transfer colitis. VSOPs present a potential contrast agent for contrast-enhanced MRI to detect intestinal inflammation in mice at an early stage and in a less invasive manner depending on hyaluronic acid content. KW - Inflammation KW - Imaging KW - Immunohistochemistry KW - MRI KW - Nanoparticle KW - Extracellular matrix KW - Laser ablation KW - ICP-MS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555395 DO - https://doi.org/10.3389/fphys.2022.862212 SN - 1664-042X VL - 13 IS - July 2022 SP - 1 EP - 15 PB - Frontiers Research Foundation CY - Lausanne AN - OPUS4-55539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Völker, Tobias T1 - Intrinsic Performance of Monte Carlo Calibration-Free Algorithm for Laser-Induced Breakdown Spectroscopy N2 - The performance of the Monte Carlo (MC) algorithm for calibration-free LIBS was studied on the example of a simulated spectrum that mimics a metallurgical slag sample. The underlying model is that of a uniform, isothermal, and stationary plasma in local thermodynamical equilibrium. Based on the model, the algorithm generates from hundreds of thousands to several millions of simultaneous configurations of plasma parameters and the corresponding number of spectra. The parameters are temperature, plasma size, and concentrations of species. They are iterated until a cost function, which indicates a difference between synthetic and simulated slag spectra, reaches its minimum. After finding the minimum, the concentrations of species are read from the model and compared to the certified values. The algorithm is parallelized on a graphical processing unit (GPU) to reduce computational time. The minimization of the cost function takes several minutes on the GPU NVIDIA Tesla K40 card and depends on the number of elements to be iterated. The intrinsic accuracy of the MC calibration-free method is found to be around 1% for the eight elements tested. For a real experimental spectrum, however, the efficiency may turn out to be worse due to the idealistic nature of the model, as well as incorrectly chosen experimental conditions. Factors influencing the performance of the method are discussed. KW - Laser induced breakdown spectroscopy KW - Calibration-free analysis KW - Monte Carlo algorithm PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-558016 DO - https://doi.org/10.3390/s22197149 VL - 22 IS - 19 SP - 7149 PB - MDPI AN - OPUS4-55801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gotor, Raúl A1 - Bell, Jérémy A1 - Rurack, Knut T1 - Tailored fluorescent solvatochromic test strips for quantitative on-site detection of gasoline fuel adulteration N2 - Gasoline adulteration is a frequent problem world-wide, because of the chance of quick, maximized profits. However, addition of cheaper ethanol or hydrocarbons like kerosene does not only result in economic damage but also poses problems for vehicles and the environment. To enable law enforcement forces, customers or enterprises to uncover such a fraudulent activity directly upon suspicion and without the need to organize for sampling and laboratory analysis, we developed a simple strip-based chemical test. Key to the favorable performance was the dedicated materials tailoring, which led to test strips that consisted of a cellulose support coated with silica, passivated with hexamethyldisilazane and functionalized covalently with a molecular probe. The probe fluoresces brightly across a broad solvent polarity range, enabling reliable quantitative measurements and data analysis with a conventional smartphone. The assays showed high reproducibility and accuracy, allowing not only for the detection of gasoline adulteration but also for the on-site monitoring of the quality of commercial E10 gasoline. KW - Gasoline KW - Adulteration KW - Test strips KW - Benzin KW - Teststreifen KW - Fluorescence KW - Cellulose KW - Zellulose KW - Fluoreszenz PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479231 UR - https://pubs.rsc.org/en/content/articlelanding/2019/tc/c8tc04818e DO - https://doi.org/10.1039/C8TC04818E SN - 2050-7526 VL - 7 IS - 8 SP - 2250 EP - 2256 PB - Royal Society of Chemistry CY - London, UK AN - OPUS4-47923 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gottu Mukkula, A. R. A1 - Kern, Simon A1 - Salge, M. A1 - Holtkamp, M. A1 - Guhl, Svetlana A1 - Fleischer, C. A1 - Meyer, Klas A1 - Remelhe, M. A1 - Maiwald, Michael A1 - Engell, S. T1 - An Application of Modifier Adaptation with Quadratic Approximation on a Pilot Scale Plant in Industrial Environment N2 - The goal of this work is to identify the optimal operating input for a lithiation reaction that is performed in a highly innovative pilot scale continuous flow chemical plant in an industrial environment, taking into account the process and safety constraints. The main challenge is to identify the optimum operation in the absence of information about the reaction mechanism and the reaction kinetics. We employ an iterative real-time optimization scheme called modifier adaptation with quadratic approximation (MAWQA) to identify the plant optimum in the presence of plant-model mismatch and measurement noise. A novel NMR PAT-sensor is used to measure the concentration of the reactants and of the product at the reactor outlet. The experiment results demonstrate the capabilities of the iterative optimization using the MAWQA algorithm in driving a complex real plant to an economically optimal operating point in the presence of plant-model mismatch and of process and measurement uncertainties. KW - Process Analytical Technology KW - Online NMR Spectroscopy KW - Process Industry KW - Iterative real-time optimization KW - Modifier adaptation KW - Plant-model mismatch KW - Reactor control KW - CONSENS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524531 DO - https://doi.org/10.1016/j.ifacol.2020.12.685 SN - 1522-2640 VL - 53 IS - 2 SP - 11773 EP - 11779 PB - Elsevier CY - Amsterdam AN - OPUS4-52453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grauel, Bettina A1 - Würth, Christian A1 - Homann, C. A1 - Krukewitt, Lisa A1 - Andresen, Elina A1 - Roik, Janina A1 - Recknagel, Sebastian A1 - Haase, M. A1 - Resch-Genger, Ute T1 - Volume and surface effects on two-photonic and three-photonic processes in dry co-doped upconversion nanocrystals N2 - Despite considerable advances in synthesizing high-quality core/shell upconversion (UC) nanocrystals (NC; UCNC) and UCNC photophysics, the application of near-infrared (NIR)-excitable lanthanide-doped UCNC in the life and material sciences is still hampered by the relatively low upconversion luminescence (UCL) of UCNC of small size or thin protecting shell. To obtain deeper insights into energy transfer and surface quenching processes involving Yb3+ and Er3+ ions, we examined energy loss processes in differently sized solid core NaYF4 nanocrystals doped with either Yb3+ (YbNC; 20% Yb3+) or Er3+ (ErNC; 2% Er3+) and co-doped with Yb3+ and Er3+ (YbErNC; 20% Yb3+ and 2% Er3+) without a surface protection shell and coated with a thin and a thick NaYF4 shell in comparison to single and co-doped bulk materials. Luminescence studies at 375 nm excitation demonstrate backenergy transfer (BET) from the 4G11/2 state of Er3+ to the 2F5/2 state of Yb3+, through which the red Er3+ 4F9/2 state is efficiently populated. Excitation power density (P)-dependent steady state and time-resolved photoluminescence measurements at different excitation and emission wavelengths enable to separate surface-related and volume-related effects for two-photonic and threephotonic processes involved in UCL and indicate a different influence of surface passivation on the green and red Er3+ emission. The intensity and lifetime of the latter respond particularly to an increase in volume of the active UCNC core. We provide a threedimensional random walk model to describe these effects that can be used in the future to predict the UCL behavior of UCNC. KW - Nano KW - Nanomaterial KW - Upconversion KW - Nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Pphotophysics KW - Lifetime KW - Sensor KW - Excitation KW - Power density KW - Single particle KW - Brightness KW - NIR KW - Mechanism KW - Modeling KW - Simulation KW - Energy transfer PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535317 DO - https://doi.org/10.1007/s12274-021-3727-y SN - 1998-0124 VL - 15 IS - 3 SP - 2362 EP - 2373 PB - Springer AN - OPUS4-53531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gregório, Bruno J.R. A1 - Ramos, Inês I. A1 - Marques, Sara S. A1 - Barreiros, Luísa A1 - Magalhães, Luís M. A1 - Schneider, Rudolf A1 - Segundo, Marcela A. T1 - Microcarrier-based fluorescent yeast estrogen screen assay for fast determination of endocrine disrupting compounds N2 - The presence of endocrine-disrupting compounds (EDCs) in water poses a significant threat to human and animal health, as recognized by regulatory agencies throughout the world. The Yeast Estrogen Screen (YES) assay is an excellent method to evaluate the presence of these compounds in water due to its simplicity and capacity to assess the bioaccessible forms/fractions of these compounds. In the presence of a compound with estrogenic activity, Saccharomyces cerevisiae cells, containing a lacZ reporter gene encoding the enzyme β-galactosidase, are induced, the enzyme is synthesised, and released to the extracellular medium. In this work, a YES-based approach encompassing the use of a lacZ reporter gene modified strain of S. cerevisiae, microcarriers as solid support, and a fluorescent substrate, fluorescein di-β-D-galactopyranoside, is proposed, allowing for the assessment of EDCs’ presence after only 2 h of incubation. The proposed method provided an EC50 of 0.17 ± 0.03 nM and an LLOQ of 0.03 nM, expressed as 17β-estradiol. The assessment of different EDCs provided EC50 values between 0.16 and 1.2 × 103 nM. After application to wastewaters, similar results were obtained for EDCs screening, much faster, compared to the conventional 45 h spectrophotometric procedure using a commercial kit, showing potential for onsite high-throughput screening of environmental contamination. KW - Biosensoren KW - YES assay KW - Endokrine Disruptoren PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602315 DO - https://doi.org/10.1016/j.talanta.2024.125665 VL - 271 SP - 1 EP - 7 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-60231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Groschke, Matthias A1 - Becker, Roland T1 - Comparison of carrier gases for the separation and quantification of mineral oil hydrocarbon (MOH) fractions using online coupled high performance liquid chromatography-gas chromatography-flame ionisation detection N2 - On-line coupled high performance liquid chromatography-gas chromatography-flame ionisation detection (HPLC-GC-FID) was used to compare the effect of hydrogen, helium and nitrogen as carrier gases on the chromatographic characteristics for the quantification of mineral oil hydrocarbon (MOH) traces in food related matrices. After optimisation of chromatographic parameters nitrogen carrier gas exhibited characteristics equivalent to hydrogen and helium regarding requirements set by current guidelines and standardisation such as linear range, quantification limit and carry over. Though nitrogen expectedly led to greater peak widths, all required separations of standard compounds were sufficient and humps of saturated mineral oil hydrocarbons (MOSH) and aromatic mineral oil hydrocarbons (MOAH) were appropriate to enable quantitation similar to situations where hydrogen or helium had been used. Slightly increased peak widths of individual hump components did not affect shapes and widths of the MOSH and MOAH humps were not significantly affected by the use of nitrogen as carrier gas. Notably, nitrogen carrier gas led to less solvent peak tailing and smaller baseline offset. Overall, nitrogen may be regarded as viable alternative to hydrogen or helium and may even extend the range of quantifiable compounds to highly volatile hydrocarbon eluting directly after the solvent peak. KW - Mineral oil hydrocarobons KW - Food KW - Liquid chromatography KW - Gas chromatography KW - MOSH/MOAH PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601450 DO - https://doi.org/10.1016/j.chroma.2024.464946 SN - 0021-9673 VL - 1726 SP - 1 EP - 7 PB - Elsevier CY - New York, NY AN - OPUS4-60145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gugin, Nikita A1 - Villajos Collado, José Antonio A1 - Feldmann, Ines A1 - Emmerling, Franziska T1 - Mix and wait – a relaxed way for synthesizing ZIF-8 N2 - Herein we report the synthesis of a zeolitic imidazolate framework (ZIF-8) by an easy “mix and wait” procedure. In a closed vial, without any interference, the mixture of 2-methylimidazole and basic zinc carbonate assembles into the crystalline product with approx. 90% conversion after 70 h. The reaction exhibits sigmoidal kinetics due to the self-generated water which accelerates the reaction. KW - In-situ analysis KW - Mechanochemistry KW - MOF KW - Synthesis KW - ZIF-8 PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546841 DO - https://doi.org/10.1039/D2RA00740A VL - 12 SP - 8940 EP - 8944 PB - Royal Society of Chemistry AN - OPUS4-54684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hachenberger, Y. U. A1 - Rosenkranz, D. A1 - Kriegel, Fabian L. A1 - Krause, B. A1 - Matschaß, René A1 - Reichardt, P. A1 - Tentschert, J. A1 - Laux, P. A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Luch, A. T1 - Tackling Complex Analytical Tasks: An ISO/TS-Based Validation Approach for Hydrodynamic Chromatography Single Particle Inductively Coupled Plasma Mass Spectrometry N2 - Nano-carrier systems such as liposomes have promising biomedical applications. Nevertheless, characterization of these complex samples is a challenging analytical task. In this study a coupled hydrodynamic chromatography-single particle-inductively coupled plasma mass spectrometry (HDC-spICP-MS) approach was validated based on the technical specification (TS) 19590:2017 of the international organization for standardization (ISO). The TS has been adapted to the hyphenated setup. The quality criteria (QC), e.g., linearity of the calibration, transport efficiency, were investigated. Furthermore, a cross calibration of the particle size was performed with values from dynamic light scattering (DLS) and transmission electron microscopy (TEM). Due to an additional Y-piece, an online-calibration routine was implemented. This approach allows the calibration of the ICP-MS during the dead time of the chromatography run, to reduce the required time and enhance the robustness of the results. The optimized method was tested with different gold nanoparticle (Au-NP) mixtures to investigate the characterization properties of HDC separations for samples with increasing complexity. Additionally, the technique was successfully applied to simultaneously determine both the hydrodynamic radius and the Au-NP content in liposomes. With the established hyphenated setup, it was possible to distinguish between different subpopulations with various NP loads and different hydrodynamic diameters inside the liposome carriers. KW - Single particle ICP-MS KW - Nanoparticle characterization KW - Nano-carrier KW - Iposomes KW - Hydrodynamic chromatography (HDC) KW - Validation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506609 DO - https://doi.org/10.3390/ma13061447 VL - 13 IS - 6 SP - 1 EP - 14 CY - Basel, Switzerland AN - OPUS4-50660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haeckel, A. A1 - Ascher, Lena A1 - Beindorff, N. A1 - Prasad, S. A1 - Garczynska, K. A1 - Guo, J. A1 - Schellenberger, E. T1 - Long‑circulating XTEN864‑annexin A5 fusion protein for phosphatidylserine‑related therapeutic applications N2 - Annexin A5 (anxA5) is a marker for apoptosis, but has also therapeutic potential in cardiovascular diseases, cancer, and, due to apoptotic mimicry, against dangerous viruses, which is limited by the short blood circulation. An 864-amino-acid XTEN polypeptide was fused to anxA5. XTEN864-anxA5 was expressed in Escherichia coli and purified using XTEN as tag. XTEN864-anxA5 was coupled with DTPA and indium-111. After intravenous or subcutaneous injection of 111In-XTEN864-anxA5, mouse blood samples were collected for blood half-life determination and organ samples for biodistribution using a gamma counter. XTEN864-anxA5 was labeled with 6S-IDCC to confirm binding to apoptotic cells using flow cytometry. To demonstrate targeting of atherosclerotic plaques, XTEN864-anxA5 was labeled with MeCAT(Ho) and administered intravenously to atherosclerotic ApoE−/−mice. MeCAT(Ho)-XTEN864-anxA5 was detected together with MeCAT(Tm)-MAC-2 macrophage antibodies by imaging mass cytometry (CyTOF) of aortic root sections. The ability of anxA5 to bind apoptotic cells was not affected by XTEN864. The blood half-life of XTEN864-anxA5 was 13 h in mice after IV injection, markedly longer than the 7-min half-life of anxA5. 96 h after injection, highest amounts of XTEN864-anxA5 were found in liver, spleen, and kidney. XTEN864-anxA5 was found to target the adventitia adjacent to atherosclerotic plaques. XTEN864-anxA5 is a long-circulating fusion protein that can be efficiently produced in E. coli and potentially circulates in humans for several days, making it a promising therapeutic drug. KW - Programmed cell death KW - LA/ICP-MS Imaging KW - Medicinal application PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533811 DO - https://doi.org/10.1007/s10495-021-01686-w VL - 26 IS - 9-10 SP - 534 EP - 547 PB - Springer AN - OPUS4-53381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haferkamp, Sebastian A1 - Paul, Andrea A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - Unexpected polymorphism during a catalyzed mechanochemical Knoevenagel condensation N2 - The transformation of a base-catalyzed, mechano-assisted Knoevenagel condensation of mono-fluorinated benzaldehyde derivatives (p-, m-, o-benzaldehyde) with malonodinitrile was investigated in situ and in real time. Upon milling, the para-substituted product was found to crystallize initially into two different polymorphic forms, depending on the quantity of catalyst used. For low catalyst concentrations, a mechanically metastable phase (monoclinic) was initially formed, converting to the mechanically stable phase (triclinic) upon further grinding. Instead, higher catalyst concentrations crystallize directly as the triclinic product. Inclusion of catalyst in the final product, as evidenced by mass spectrometric analysis, suggests this complex polymorphic pathway may be due to seeding effects. Multivariate analysis for the in situ Raman spectra supports this complex formation pathway, and offers a new approach to monitoring multi-phase reactions during ball milling. KW - Ball milling KW - C-C coupling KW - In situ KW - Mechanochemistry KW - Multivariate data analysis PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-481872 DO - https://doi.org/10.3762/bjoc.15.110 SN - 1860-5397 VL - 15 SP - 1141 EP - 1148 PB - Beilstein Insitut CY - Frankfurt am Main AN - OPUS4-48187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heck, Christian A1 - Kanehira, Y. A1 - Kneipp, Janina A1 - Bald, Ilko T1 - Amorphous Carbon Generation as a Photocatalytic Reaction on DNA-Assembled Gold and Silver Nanostructures N2 - Background signals from in situ-formed amorphous carbon, despite not being fully understood, are known to be a common issue in few-molecule surface-enhanced Raman scattering (SERS). Here, discrete gold and silver nanoparticle aggregates assembled by DNA origami were used to study the conditions for the formation of amorphous carbon during SERS measurements. Gold and silver dimers were exposed to laser light of varied power densities and wavelengths. Amorphous carbon prevalently formed on silver aggregates and at high power densities. Time-resolved measurements enabled us to follow the formation of amorphous carbon. Silver nanolenses consisting of three differently-sized silver nanoparticles were used to follow the generation of amorphous carbon at the single-nanostructure level. This allowed observation of the many sharp peaks that constitute the broad amorphous carbon signal found in ensemble measurements. In conclusion, we highlight strategies to prevent amorphous carbon formation, especially for DNA-assembled SERS substrates. KW - Amorphous carbon KW - DNA origami KW - SERS KW - Nanoparticle dimers KW - Nanolenses PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486484 DO - https://doi.org/10.3390/molecules24122324 SN - 1420-3049 VL - 24 IS - 12 SP - Article Number: 2324-1 EP - 10 PB - MDPI AN - OPUS4-48648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hendriks, L. A1 - Brunjes, R. A1 - Taskula, S. A1 - Kocic, J. A1 - Hattendorf, B. A1 - Bland, G. A1 - Lowry, G. A1 - Bolea-Fernandez, E. A1 - Vanhaecke, F. A1 - Wang, J. A1 - Baalousha, M. A1 - von der Au, Marcus A1 - Meermann, Björn A1 - Holbrook, T. A1 - Wagner, S. A1 - Harycki, S. A1 - Gundlach-Graham, A. A1 - von der Kammer, F. T1 - Results of an interlaboratory comparison for characterization of Pt nanoparticles using single-particle ICP-TOFMS N2 - This study describes an interlaboratory comparison (ILC) among nine (9) laboratories to evaluate and validate the standard operation procedure (SOP) for single-particle (sp) ICP-TOFMS developed within the context of the Horizon 2020 project ACEnano. The ILC was based on the characterization of two different Pt nanoparticle (NP) suspensions in terms of particle mass, particle number concentration, and isotopic composition. The two Pt NP suspensions were measured using icpTOF instruments (TOFWERK AG, Switzerland). Two Pt NP samples were characterized and mass equivalent spherical sizes (MESSs) of 40.4 ± 7 nm and 58.8 ± 8 nm were obtained, respectively. MESSs showed <16% relative standard deviation (RSD) among all participating labs and <4% RSD after exclusion of the two outliers. A good agreement was achieved between the different participating laboratories regarding particle mass, but the particle number concentration results were more scattered, with <53% RSD among all laboratories, which is consistent with results from previous ILC studies conducted using ICP-MS instrumentation equipped with a sequential mass spectrometer. Additionally, the capabilities of sp-ICP-TOFMS to determine masses on a particle basis are discussed with respect to the potential for particle density determination. Finally, because quasi-simultaneous multi-isotope and multielement determinations are a strength of ICP-TOFMS instrumentation, the precision and trueness of isotope ratio determinations were assessed. The average of 1000 measured particles yielded a precision of below ±1% for intensity ratios of the most abundant Pt isotopes, i.e. 194Pt and 195Pt, while the accuracy of isotope ratios with the lower abundant isotopes was limited by counting statistics. KW - ILC KW - spICP-MS KW - PtNP KW - Nanopartikel PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580353 DO - https://doi.org/10.1039/d3nr00435j SN - 2040-3364 VL - 15 IS - 26 SP - 11268 EP - 11279 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hernandez-Castillo, A. O. A1 - Bischoff, J. A1 - Lee, J. H. A1 - Langenhan, Jennifer A1 - Karra, M. A1 - Meijer, G. A1 - Eibenberger-Arias, S. T1 - High-resolution UV spectroscopy of 1-indanol N2 - We report on rotationally resolved laser induced fluorescence (LIF) and vibrationally resolved resonanceenhanced multiphoton ionization (REMPI) spectroscopy of the chiral molecule 1-indanol. Spectra of the S1 ’ S0 electronic transition are recorded in a jet-cooled, pulsed molecular beam. Using two timedelayed pulsed lasers, the lifetimes of the S1 state of the two most stable conformers, referred to as eq1 and ax2, have been determined. The S1 ’ S0 origin bands of these conformers as well as the Transition to a vibrationally excited level in the S1 state of eq1 are recorded with full rotational resolution (25 MHz observed linewidth) by measuring the LIF intensity following excitation with a tuneable, narrowband cw laser. On selected rotationally resolved electronic transitions, Lamb-dips are measured to confirm the Lorentzian lifetime-contribution to the observed lineshapes. The rotationally resolved S1 ’ S0 origin band of a neon-complex of eq1 is measured via LIF as well. The fit of the rotationally resolved LIF spectra of the origin bands to those of an asymmetric rotor yields a standard deviation of about 6 MHz. The resulting spectroscopic parameters are tabulated and compared to the outcome of ab initio calculations. For both conformers as well as for the Ne-eq1 complex, the geometric structures in the S0 and S1 states are discussed. For all systems, the transition dipole moment is mainly along the a-axis, the contributions along the b- and c-axes being about one order of magnitude smaller. KW - REMPI KW - LIF KW - 1-indanol PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525056 DO - https://doi.org/10.1039/d0cp06170k VL - 23 IS - 12 SP - 7048 EP - 7056 PB - Royal Society of Chemistry AN - OPUS4-52505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herter, Sven-Oliver A1 - Koch, Matthias A1 - Haase, Hajo T1 - First Synthesis of Ergotamine-13CD3 and Ergotaminine-13CD3 from Unlabeled Ergotamine N2 - Ergot alkaloids (EAs) formed by Claviceps fungi are one of the most common food contaminants worldwide, affecting cereals such as rye, wheat, and barley. To accurately determine the level of contamination and to monitor EAs maximum levels set by the European Union, the six most common EAs (so-called priority EAs) and their corresponding epimers are quantified using high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). The quantification of EAs in complex food matrices without appropriate internal tandards is challenging but currently carried out in the standard method EN 7425:2021 due to their commercial unavailability. To address the need for isotopically labeled EAs, we focus on two semi-synthetic approaches for the synthesis of these reference standards. Therefore, we investigate the feasibility of the N6-demethylation of native ergotamine to yield norergotamine, which can subsequently be remethylated with an isotopically labeled methylating reagent, such as iodomethane (13CD3-I), to yield isotopically labeled ergotamine and its C8-epimer ergotaminine. Testing the isotopically labeled ergotamine/-inine against native ergotamine/-inine with HPLC coupled to high-resolution HR-MS/MS proved the structure of ergotamine-13CD3 and ergotaminine-13CD3. Thus, for the first time, we can describe their synthesis from unlabeled, native ergotamine. Furthermore, this approach is promising as a universal way to synthesize other isotopically labeled EAs. KW - Reference Material KW - HPLC-MS/MS KW - Mycotoxins KW - Standards KW - Organic Synthesis KW - Isotope PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600167 DO - https://doi.org/10.3390/toxins16040199 VL - 16 IS - 4 SP - 1 EP - 12 PB - MDPI AN - OPUS4-60016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hildebrandt, L. A1 - von der Au, Marcus A1 - Zimmermann, T. A1 - Reese, A. A1 - Ludwig, J. A1 - Pröfrock, D. T1 - A metrologically traceable protocol for the quantification of trace metals in different types of microplastic N2 - The presence of microplastic (MP) particles in aquatic environments raised concern About possible enrichment of organic and inorganic pollutants due to their specific surface and chemical properties. In particular the role of metals within this context is still poorly understood. Therefore, the aim of this work was to develop a fully validated acid digestion protocol for metal analysis in different polymers, which is a prerequisite to study such interactions. The proposed digestion protocol was validated using six different certified reference materials in the microplastic size range consisting of polyethylene, polypropylene, acrylonitrile butadiene styrene and polyvinyl chloride. As ICP-MS/MS enabled time-efficient, sensitive and robust analysis of 56 metals in one measurement, the method was suitable to provide mass fractions for a multitude of other elements beside the certified ones (As, Cd, Cr, Hg, Pb, Sb, Sn and Zn). Three different microwaves, different acid mixtures as well as different temperatures in combination with different hold times were tested for optimization purposes. With the exception of Cr in acrylonitrile butadiene styrene, recovery rates obtained using the optimized protocol for all six certified reference materials fell within a range from 95.9% ± 2.7% to 112% ± 7%. Subsequent optimization further enhanced both precision and recoveries ranging from 103% ± 5% to 107 ± 4% (U; k = 2 (n = 3)) for all certified metals (incl. Cr) in acrylonitrile butadiene styrene. The results clearly show the analytical challenges that come along with metal analysis in chemically resistant plastics. Addressing specific analysis Tools for different sorption scenarios and processes as well as the underlying kinetics was beyond this study’s scope. However, the future application of the two recommended thoroughly validated total acid digestion protocols as a first step in the direction of harmonization of metal analysis in/on MP will enhance the significance and comparability of the generated data. It will contribute to a better understanding of the role of MP as vector for trace metals in the environment. KW - Microplatic KW - Digestion KW - Analytical Chemistry PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510727 DO - https://doi.org/10.1371/journal.pone.0236120 VL - 15 IS - 7 SP - e0236120 AN - OPUS4-51072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, A. A1 - Lischeid, G. A1 - Koch, Matthias A1 - Lentzsch, P. A1 - Sommerfeld, Thomas A1 - Müller, M.H. T1 - Co-Cultivation of Fusarium, Alternaria, and Pseudomonas on Wheat-Ears Affects Microbial Growth and Mycotoxin Production N2 - Mycotoxigenic fungal pathogens Fusarium and Alternaria are a leading cause of loss in cereal production. On wheat-ears, they are confronted by bacterial antagonists such as pseudomonads. Studies on these groups’ interactions often neglect the infection process’s temporal aspects and the associated priority effects. In the present study, the focus was on how the first colonizer affects the subsequent ones. In a climate chamber experiment, wheat-ears were successively inoculated with two different strains (Alternaria enuissima At625, Fusarium graminearum Fg23, or Pseudomonas simiae Ps9). Over three weeks, microbial abundances and mycotoxin concentrations were analyzed and visualized via Self Organizing Maps with Sammon Mapping (SOM-SM). All three strains revealed different characteristics and strategies to deal with co-inoculation: Fg23, as the first colonizer, suppressed the establishment of At625 and Ps9. Nevertheless, primary inoculation of At625 reduced all of the Fusarium toxins and stopped Ps9 from establishing. Ps9 showed priority effects in delaying and blocking the production of the fungal mycotoxins. The SOM-SM analysis visualized the competitive strengths: Fg23 ranked first, At625 second, Ps9 third. Our findings of species-specific priority effects in a natural environment and the role of the mycotoxins involved are relevant for developing biocontrol strategies. KW - Antagonists KW - Microbe interactions KW - Mycotoxins KW - Priority effect KW - SOM-SM PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521554 DO - https://doi.org/10.3390/microorganisms9020443 VL - 9 IS - 2 SP - 443 PB - MDPI AN - OPUS4-52155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Katrin A1 - Nirmalananthan-Budau, Nithiya A1 - Resch-Genger, Ute T1 - Fluorescence calibration standards made from broadband emitters encapsulated in polymer beads for fluorescence microscopy and flow cytometry N2 - We present here the design and characterization of a set of spectral calibration beads. These calibration beads are intended for the determination and regular control of the spectral characteristics of fluorescence microscopes and other fluorescence measuring devices for the readout of bead-based assays. This set consists of micrometer-sized polymer beads loaded with dyes from the liquid Calibration Kit Spectral Fluorescence Standards developed and certified by BAM for the wavelength-dependent Determination of the spectral responsivity of fluorescencemeasuring devices like spectrofluorometers. To cover the wavelength Region from 400 to 800 nm, two new near-infrared emissive dyes were included, which were spectroscopically characterized in solution and encapsulated in the beads. The resulting set of beads presents the first step towards a new platform of spectral calibration beads for the determination of the spectral characteristics of fluorescence instruments like fluorescence microscopes, FCM setups, and microtiter plate readers, thereby meeting the increasing demand for reliable and comparable fluorescence data especially in strongly regulated areas, e.g., medical diagnostics. This will eventually provide the basis for standardized calibration procedures for imaging systems as an alternative to microchannel slides containing dye solutions previously reported by us. KW - Fluorescence standard KW - Fluorescence KW - Dye KW - Microscopy KW - Bead KW - Particle KW - NIR KW - calibration KW - Quality assurance KW - Traceability PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508117 DO - https://doi.org/10.1007/s00216-020-02664-y SN - 1618-2642 VL - 412 IS - 24 SP - 6499 EP - 6507 PB - Springer AN - OPUS4-50811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Horf, M. A1 - Gebbers, R. A1 - Vogel, S. A1 - Ostermann, Markus A1 - Piepel, M.-F. A1 - Olfs, H.-W. T1 - Determination of Nutrients in Liquid Manures and Biogas Digestates by Portable Energy-Dispersive X-ray Fluorescence Spectrometry N2 - Knowing the exact nutrient composition of organic fertilizers is a prerequisite for their appropriate application to improve yield and to avoid environmental pollution by over-fertilization. Traditional standard chemical analysis is cost and time-consuming and thus it is unsuitable for a rapid analysis before manure application. As a possible alternative, a handheld X-ray fluorescence (XRF) spectrometer was tested to enable a fast, simultaneous, and on-site analysis of several elements. A set of 62 liquid pig and cattle manures as well as biogas digestates were collected, intensively homogenized and analysed for the macro plant nutrients phosphorus, potassium, magnesium, calcium, and sulphur as well as the micro nutrients manganese, iron, copper, and zinc using the standard lab procedure. The effect of four different sample preparation steps (original, dried, filtered, and dried filter residues) on XRF measurement accuracy was examined. Therefore, XRF results were correlated with values of the reference analysis. The best R2 s for each element ranged from 0.64 to 0.92. Comparing the four preparation steps, XRF results for dried samples showed good correlations (0.64 and 0.86) for all elements. XRF measurements using dried filter residues showed also good correlations with R2 s between 0.65 and 0.91 except for P, Mg, and Ca. In contrast, correlation Analysis for liquid samples (original and filtered) resulted in lower R2 s from 0.02 to 0.68, except for K (0.83 and 0.87, respectively). Based on these results, it can be concluded that handheld XRF is a promising measuring system for element analysis in manures and digestates. KW - XRF KW - Animal slurry KW - Fertilizer KW - Soil KW - Precision farming PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527622 DO - https://doi.org/10.3390/s21113892 VL - 21 IS - 11 SP - 3892 PB - MDPI CY - Basel, Switzerland AN - OPUS4-52762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, J. A1 - Tarábek, J. A1 - Kulkarni, R. A1 - Wang, Cui A1 - Dračínský, M. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Resch-Genger, Ute A1 - Bojdys, M. J. T1 - A π-conjugated, covalent phosphinine framework N2 - Structural modularity of polymer frameworks is a key advantage of covalent organic polymers, however, only C, N, O, Si and S have found their way into their building blocks so far. Here, we expand the toolbox available to polymer and materials chemists by one additional nonmetal, phosphorus. Starting with a building block that contains a λ⁵‐phosphinine (C₅P) moiety, we evaluate a number of polymerisation protocols, finally obtaining a π‐conjugated, covalent phosphinine‐based framework (CPF‐1) via Suzuki‐Miyaura coupling. CPF‐1 is a weakly porous polymer glass (72.4 m2 g‐1 N2 BET at 77 K) with green fluorescence (λmax 546 nm) and extremely high thermal stability. The polymer catalyzes hydrogen evolution from water under UV and visible light irradiation without the need for additional co‐catalyst at a rate of 33.3 μmol h‐¹ g‐¹. Our results demonstrate for the first time the incorporation of the phosphinine motif into a complex polymer framework. Phosphinine‐based frameworks show promising electronic and optical properties that might spark future interest in their applications in light‐emitting devices and heterogeneous catalysis. KW - Phosphinine KW - Fully aromatic frameworks KW - Suzuki-Miyaura coupling KW - Polymers KW - Fluorescence KW - Small-angle scattering PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-485330 DO - https://doi.org/10.1002/chem.201900281 SP - 2 EP - 10 PB - Wiley VCH-Verlag CY - Weinheim AN - OPUS4-48533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hudson, A.D. A1 - Jamieson, O. A1 - Crapnell, R.D. A1 - Rurack, Knut A1 - Soares, T.C.C. A1 - Mecozzi, F. A1 - Laude, A. A1 - Gruber, J. A1 - Novakovic, K. A1 - Peeters, M. T1 - Dual detection of nafcillin using a molecularly imprinted polymer-based platform coupled to thermal and fluorescence read-out N2 - Reported here is the production of molecularly imprinted polymer (MIP) films, integrating a fluorescent moiety that serves as both an element for template interaction and signalling, for the thermal and optical detection of the beta-lactam antibiotic nafcillin. Fluorescein methacrylate (FluMa) was synthesized and introduced during the molecular imprinting process as the sole monomer and in a 1 : 1 mixture with methacrylic acid (MAA), allowing to draw first conclusions on the MIP formation potential of such a rather large and rigid monomer. At first, MIP microparticles containing FluMa were prepared by free radical polymerisation. Optical batch rebinding experiments revealed that FluMa can act as a functional monomer for selective detection of nafcillin; however, the addition of MAA as co-monomer significantly improved performance. Subsequently, thin MIP films containing FluMa were deposited onto functionalised glass slides and the influence of porogen, drying time, and monomer composition was studied. These MIP-functionalised glass electrodes were mounted into a customised 3D-printed flow cell, where changes in the liquid were either evaluated with a thermal device or using fluorescence bright field microscopy. Thermal analysis demonstrated that multiple MIP layers enhanced sensor specificity, with detection in the environmentally relevant range. The fluorescence bright field microscope investigations validated these results, showing an increase in the fluorescence intensity upon exposure of the MIP-functionalised glass slides to nafcillin solutions. These are promising results for developing a portable sensor device that can be deployed for antibiotics outside of a dedicated laboratory environment, especially if sensor design and fluorophore architecture are optimised. KW - Molecularly Imprinted Polymers KW - Fluorescence KW - Antibiotics KW - Heat-transfer Measurements KW - Thin films PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540044 DO - https://doi.org/10.1039/D1MA00192B VL - 2 IS - 15 SP - 5105 EP - 5115 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-54004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Climent Terol, Estela A1 - Gojani, Ardian A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - Generalized Analysis Approach of the Profile Roughness by Electron Microscopy with the Example of Hierarchically Grown Polystyrene–Iron Oxide–Silica Core–Shell–Shell Particles N2 - The roughness as a property of core–shell (CS) microparticles plays a key role in their functionality. Quantitative evaluation of the roughness of CS microparticles is, however, a challenging task with approaches using electron microscopy images being scarce and showing pronounced differences in terms of methodology and results. This work presents a generalized method for the reliable roughness determination of nonplanar specimens such as CS particles from electron microscopic images, the method being robust and reproducible with a high accuracy. It involves a self-written software package (Python) that analyzes the recorded images, extracts corresponding data, and calculates the roughness based on the deviation of the identified contour. Images of single particles are taken by a dual mode scanning electron microscopy (SEM) setup which permits imaging of the same field-of-view of the sample with high resolution and surface sensitive in SE InLens mode as well as in transmission mode (TSEM). Herein, a new type of polystyrene core–iron oxide shell–silica shell particles is developed to serve as a set of lower micrometer-sized study objects with different surface roughness; the analysis of their images by the semiautomatic workflow is demonstrating that the particles’ profile roughness can be quantitatively obtained. KW - Core–shell particles KW - Image analysis KW - Nanoparticles KW - Roughness KW - SEM KW - transmission mode PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542576 DO - https://doi.org/10.1002/adem.202101344 SP - 1 EP - 9 PB - Wiley-VCH AN - OPUS4-54257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Inostroza, Manuel A1 - Fernandez, Bárbara A1 - Aguilera, Felipe A1 - Layana, Susana A1 - Walter, Thomas R. A1 - Zimmer, Martin A1 - Rodríguez-Díaz, Augusto A1 - Oelze, Marcus T1 - Physical and chemical characteristics of active sulfur flows observed at Lastarria volcano (northern Chile) in January 2019 N2 - Molten sulfur is found in various subaerial volcanoes. However, limited records of the pools and flows of molten sulfur have been reported: therefore, questions remain regarding the physicochemical processes behind this phenomenon. A suite of new sulfur flows, some of which active, was identified at the Lastarria volcano (northern Chile) and studied using satellite imagery, in situ probing, and temperature and video recording. This finding provides a unique opportunity to better understand the emplacement mechanisms and mineral and chemical compositions of molten sulfur, in addition to gaining insight into its origin. Molten sulfur presented temperatures of 124–158°C, with the most prolonged sulfur flow reaching 12 m from the source. Photogrammetric tools permitted the identification of levees and channel structures, with an estimated average flow speed of 0.069 m/s. Field measurements yielded a total volume of 1.45 ± 0.29 m3 of sulfur (equivalent to ∼2.07 tons) mobilized during the January 2019 event for at least 408 min. Solidified sulfur was composed of native sulfur with minor galena and arsenic- and iodine-bearing minerals. Trace element analysis indicated substantial enrichment of Bi, Sb, Sn, Cd, as well as a very high concentration of As (&gt;40.000 ppm). The January 2019 molten sulfur manifestations in Lastarria appear to be more enriched in As compared to the worldwide known volcanoes with molten sulfur records, such as the Shiretoko-Iozan and Poás volcanoes. Furthermore, their rheological properties suggest that the “time of activity” in events such as this could be underestimated as flows in Lastarria have moved significantly slower than previously thought. The origin of molten sulfur is ascribed to the favorable S-rich chemistry of fumarolic gases and changes in host rock permeability (fracture opening). Molten sulfur in Lastarria correlates with a peak in activity characterized by high emissions of SO2 and other acid species, such as HF and HCl, in addition to ground deformation. Consequently, molten sulfur was framed within a period of volcanic unrest in Lastarria, triggered by changes in the magmatic-hydrothermal system. The appearance of molten sulfur is related to physicochemical perturbations inside the volcanic system and is perhaps a precursor of eruptive activity, as observed in the Poás and Turrialba volcanoes. KW - General Earth and Planetary Sciences PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-590331 DO - https://doi.org/10.3389/feart.2023.1197363 VL - 11 SP - 1 EP - 18 PB - Frontiers Media SA AN - OPUS4-59033 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaeger, Carsten A1 - Lisec, Jan T1 - Towards Unbiased Evaluation of Ionization Performance in LC-HRMS Metabolomics Method Development N2 - As metabolomics increasingly finds its way from basic science into applied and regulatory environments, analytical demands on nontargeted mass spectrometric detection methods continue to rise. In addition to improved chemical comprehensiveness, current developments aim at enhanced robustness and repeatability to allow long-term, inter-study, and meta-analyses. Comprehensive metabolomics relies on electrospray ionization (ESI) as the most versatile ionization technique, and recent liquid chromatography-high resolution mass spectrometry (LC-HRMS) instrumentation continues to overcome technical limitations that have hindered the adoption of ESI for applications in the past. Still, developing and standardizing nontargeted ESI methods and instrumental setups remains costly in terms of time and required chemicals, as large panels of metabolite standards are needed to reflect biochemical diversity. In this paper, we investigated in how far a nontargeted pilot experiment, consisting only of a few measurements of a test sample dilution series and comprehensive statistical analysis, can replace conventional targeted evaluation procedures. To examine this potential, two instrumental ESI ion source setups were compared, reflecting a common scenario in practical method development. Two types of feature evaluations were performed, (a) summary statistics solely involving feature intensity values, and (b) analyses additionally including chemical interpretation. Results were compared in detail to a targeted evaluation of a large metabolite standard panel. We reflect on the advantages and shortcomings of both strategies in the context of current harmonization initiatives in the metabolomics field. KW - Mass Spectrometry KW - Non-targeted analysis KW - Method development PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548065 DO - https://doi.org/10.3390/metabo12050426 VL - 12 IS - 5 SP - 1 EP - 13 PB - MDPI AN - OPUS4-54806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaeger, Carsten A1 - Ritter, D. A1 - Goeritzer, M. A1 - Thiele, A. A1 - Blumrich, A. A1 - Beyhoff, N. A1 - Luettges, K. A1 - Smeir, E. A1 - Kasch, J. A1 - Grune, J. A1 - Müller, O. A1 - Klopfleisch, R. A1 - Foryst-Ludwig, A. A1 - Kintscher, U. T1 - Liver X Receptor Agonist AZ876 Induces Beneficial Endogenous Cardiac Lipid Reprogramming and Protects Against Isoproterenol-Induced Cardiac Damage N2 - Background - It is known that dietary intake of polyunsaturated fatty acids may improve cardiac function. However, relatively high daily doses are required to achieve sufficient cardiac concentrations of beneficial omega‐3 fatty acids. The liver X receptor (LXR) is a nuclear hormone receptor and a crucial regulator of lipid homeostasis in mammals. LXR activation has been shown to endogenously reprogram cellular lipid profiles toward increased polyunsaturated fatty acids levels. Here we studied whether LXR lipid reprogramming occurs in cardiac tissue and exerts cardioprotective actions. Methods and Results - Male 129SV mice were treated with the LXR agonist AZ876 (20 µmol/kg per day) for 11 days. From day 6, the mice were injected with the nonselective β‐agonist isoproterenol for 4 consecutive days to induce diastolic dysfunction and subendocardial fibrosis while maintaining systolic function. Treatment with isoproterenol led to a marked impairment of global longitudinal strain and the E/e' ratio of transmitral flow to mitral annular velocity, which were both significantly improved by the LXR agonist. Histological examination showed a significant reduction in isoproterenol‐induced subendocardial fibrosis by AZ876. Analysis of the cardiac lipid composition by liquid chromatography‐high resolution mass spectrometry revealed a significant increase in cardiac polyunsaturated fatty acids levels and a significant reduction in saturated fatty acids by AZ876. Conclusions - The present study provides evidence that the LXR agonist AZ876 prevents subendocardial damage, improves global longitudinal strain and E/e' in a mouse model of isoproterenol‐induced cardiac damage, accompanied by an upregulation of cardiac polyunsaturated fatty acids levels. Cardiac LXR activation and beneficial endogenous cardiac lipid reprogramming may provide a new therapeutic strategy in cardiac disease with diastolic dysfunction. KW - Heart failure KW - Lipids KW - Liver X receptor KW - Diastolic dysfunction KW - Nuclear receptor PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529352 DO - https://doi.org/10.1161/JAHA.120.019473 VL - 10 IS - 14 SP - e019473 AN - OPUS4-52935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jiang, Shan A1 - Wang, T. A1 - Behren, S. A1 - Westerlind, U. A1 - Gawlitza, Kornelia A1 - Persson, J. L. A1 - Rurack, Knut T1 - Sialyl-Tn Antigen-Imprinted Dual Fluorescent Core–Shell Nanoparticles for Ratiometric Sialyl-Tn Antigen Detection and Dual-Color Labeling of Cancer Cells N2 - Sialyl-Tn (STn or sialyl-Thomsen-nouveau) is a carbohydrate antigen expressed by more than 80% of human carcinomas. We here report a strategy for ratiometric STn detection and dual-color cancer cell labeling, particularly, by molecularly imprinted polymers (MIPs). Imprinting was based on spectroscopic studies of a urea-containing green-fluorescent monomer 1 and STn-Thr-Na (sodium salt of Neu5Acα2-6GalNAcα-O-Thr). A few-nanometer-thin green-fluorescent polymer shell, in which STn-Thr-Na was imprinted with 1, other comonomers, and a cross-linker, was synthesized from the surface of red-emissive carbon nanodot (R-CND)-doped silica nanoparticles, resulting in dual fluorescent STn-MIPs. Dual-color labeling of cancer cells was achieved since both red and green emissions were detected in two separate channels of the microscope and an improved accuracy was obtained in comparison with single-signal MIPs. The flow cytometric cell analysis showed that the binding of STn-MIPs was significantly higher (p < 0.001) than that of non-imprinted polymer (NIP) control particles within the same cell line, allowing to distinguish populations. Based on the modularity of the luminescent core–fluorescent MIP shell architecture, the concept can be transferred in a straightforward manner to other target analytes. KW - Cancer KW - Core−shell particles KW - Dual-color labeling glycan KW - Molecular imprinting PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563106 DO - https://doi.org/10.1021/acsanm.2c03252 SP - 1 EP - 14 PB - ACS Publications AN - OPUS4-56310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -