TY - JOUR A1 - Roveda, Ilaria A1 - Mishurova, Tatiana A1 - Evans, Alexander A1 - Fitch, Andrew N. A1 - Haubrich, Jan A1 - Requena, Guillermo A1 - Bruno, Giovanni A1 - Serrano‐Munoz, Itziar T1 - Evolution of interphase stress over a crack propagation plane as a function of stress relief heat treatments in a PBF‐LB/M AlSi10Mg alloy N2 - AbstractIn this study, we compare the residual stress state in a laser powder bed fusion (PBF‐LB/M) AlSi10Mg alloy in the as‐built (AB) condition with that after two different heat treatments (265 °C for 1 h, HT1; and 300 °C for 2 h, HT2). The bulk residual stress (RS) is determined using synchrotron X‐ray diffraction (SXRD), and near‐surface profiles are determined using laboratory energy‐dispersive X‐ray diffraction (EDXRD). The EDXRD results do not reveal any notable difference between the conditions at a depth of 350 μm, suggesting that the machining process yields a comparable residual stress state in the near‐surface regions. On the other hand, the SXRD results show that HT1 is more effective in relieving the bulk RS. It is observed that HT1 reduces the RS state in both the aluminium matrix and the silicon network. In addtion, HT2 does not have a significant impact on relaxing the RS as‐built state of the matrix, although it does induce a reduction in the RS magnitudes of the Si phase. It is concluded that the heat treatment stress relieving is effective as long as the Si‐network is not disaggregated. KW - Interphase residual stress KW - Laboratory energy-dispersive X-ray diffraction (EDXRD) KW - PBFLB/M AlSi10Mg alloy KW - Stress-relief heat-treatments KW - Synchrotron X-ray diffraction (SXRD) PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597591 DO - https://doi.org/10.1111/str.12475 SP - 1 EP - 13 PB - John Wiley & Sons Ltd. AN - OPUS4-59759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cabo Rios, Alberto A1 - Mishurova, Tatiana A1 - Cordova, Laura A1 - Persson, Mats A1 - Bruno, Giovanni A1 - Olevsky, Eugene A1 - Hryha, Eduard T1 - Ex-situ characterization and simulation of density fluctuations evolution during sintering of binder jetted 316L N2 - Efficient density evolution during sintering of the as-printed component is vital to reach full densification and required properties of binder jet (BJT) components. However, due to the high porosity and brittle nature of the green compact, analysis of the microstructure development during sintering is very difficult, resulting in lack of understanding of the densification process. Density development from green state (57 ± 1.6 %) up to full density (99 ± 0.3 %) was characterized by high-resolution synchrotron X-Ray computed tomography (SXCT) on BJT 316L samples from ex-situ interrupted sintering tests. Periodicity of density fluctuations along the building direction was revealed for the first time and was related to the layer thickness of ~ 42 μm during printing that decreased down to ~ 33 μm during sintering. Sintering simulations, utilizing a continuum sintering model developed for BJT, allowed to replicate the density evolution during sintering with a mean error of 2 % and its fluctuation evolution from green (1.66 %) to sintered (0.56 %) state. Additionally, simulation of extreme particle size segregation (1 μm to 130 μm) suggested that non-optimized printing could lead to undesirable density fluctuation amplitude rapid increase (~10 %) during sintering. This might trigger the nucleation of defects (e.g., layer delamination, cracking, or excessive residual porosity) during the sintering process. KW - Additive manufacturing KW - Synchrotron X-ray CT KW - Binder Jetting KW - Sintering KW - FEM Simulation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594389 DO - https://doi.org/10.1016/j.matdes.2024.112690 SN - 0264-1275 VL - 238 SP - 1 EP - 18 PB - Elsevier AN - OPUS4-59438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Theiler, Géraldine A1 - Cano Murillo, Natalia A1 - Halder, Karabi A1 - Balasooriya, Winoj A1 - Hausberger, Andreas A1 - Kaiser, Andreas T1 - Effect of high-pressure hydrogen environment on the physical and mechanical properties of elastomers N2 - This study presents the influence of high-pressure hydrogen environment on the physical and mechanical properties of two types of cross-linked hydrogenated acrylonitrile butadiene rubbers. Based on the CSA/ANSI standard, static exposures in hydrogen experiments were performed up to 100 MPa at 120 °C. Characterization before and after exposure was conducted by means of density and hardness measurements, dynamic mechanical analysis (DMA), tensile tests, compression set, FT-IR and AFM analyses to assess effects after decompression. While the effect of high-pressure exposure is significant immediately after exposure, most of the physical and mechanical properties recover after 48 hours. FT-IR, AFM, SEM and compression set results indicate, however, permanent effects. KW - Hydrogen KW - Mechanical properties KW - Elastomers KW - High-pressure hydrogen environment PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597102 DO - https://doi.org/10.1016/j.ijhydene.2024.01.148 SN - 0360-3199 VL - 58 SP - 389 EP - 399 PB - Elsevier Ltd. AN - OPUS4-59710 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Asna Ashari, Parsa A1 - Blind, Knut T1 - The effects of hydrogen research and innovation on international hydrogen trade N2 - Climate change and the pressure to decarbonize, as well as energy security concerns, have drawn the attention of policymakers and the industry to hydrogen energy. To ad-vance the hydrogen economy at a global scale, research and innovation progress is of significant importance, among others. However, previous studies have provided only lim-ited quantitative evidence of the effects of research and innovation on the formation of a global hydrogen market. Instead, they postulate rather than empirically support this rela-tionship. Therefore, this study analyzes the effects of research and innovation measured by scientific publications, patents, and standards on bilateral hydrogen trade flows for 32 countries between 1995 and 2019 in a gravity model of trade, using regression analyses and Poisson Pseudo Maximum Likelihood (PPML) estimation. The main results of the PPML estimation show that research and innovation progress is indeed associated with increased trade, especially with patenting and (international) standardization enhancing hydrogen export volumes. As policy implications, we derive that increased public R&D funding can help increase the competitiveness of hydrogen energy and boost market growth, along with infrastructure support and harmonized standards and regulations. KW - Hydrogen supply KW - Global hydrogen market KW - Research and innovation KW - Push and pull effects KW - Hydrogen policies PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594875 DO - https://doi.org/10.1016/j.enpol.2023.113974 SN - 0301-4215 VL - 186 SP - 1 EP - 15 PB - Elsevier B.V. AN - OPUS4-59487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Zengquan A1 - Riechers, Birte A1 - Derlet, Peter M. A1 - Maaß, Robert T1 - Atomic cluster dynamics causes intermittent aging of metallic glasses N2 - In the past two decades, numerous relaxation or physical aging experiments of metallic glasses have revealed signatures of intermittent atomic-scale processes. Revealed via intensity cross-correlations from coherent scattering using X-ray photon correlation spectroscopy (XPCS), the observed abrupt changes in the time-domain of atomic motion does not fit the picture of gradual slowing down of relaxation times and their origin continues to remain unclear. Using a binary Lennard-Jones model glass subjected to microsecond-long isotherms, we show here that temporally and spatially heterogeneous atomic-cluster activity at different length-scales drive the emergence of highly non-monotonous intensity cross-correlations. The simulated XPCS experiments reveal a variety of time-dependent intensity-cross correlations that, depending on both the structural evolution and the 𝑞-space sampling, give detailed insights into the possible structural origins of intermittent aging measured with XPCS. KW - Metallic glasses KW - Aging KW - Molecular dynamics KW - XPCS PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595415 DO - https://doi.org/10.1016/j.actamat.2024.119730 SN - 1359-6454 VL - 267 SP - 1 EP - 9 PB - Elsevier B.V. CY - Amsterdam, Niederlande AN - OPUS4-59541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karapanagiotis, Christos A1 - Schukar, Marcus A1 - Krebber, Katerina T1 - Verteilte faseroptische Sensoren zur Zustandsüberwachung von Verbundwerkstoff-Druckbehältern T1 - Distributed fiber optic sensors for structural health monitoring of composite pressure vessels N2 - In diesem Beitrag geben wir einen umfassenden Überblick über unsere Forschung auf dem Gebiet der verteilten faseroptischen Sensorik für die strukturelle Zustandsüberwachung von Wasserstoffdruckbehältern aus Verbundwerkstoffen. Insbesondere zeigen wir, wie die Integration von faseroptischen Sensoren in Druckbehälter aus Verbundwerkstoffen die Sicherheit erhöht und gleichzeitig die Wartungskosten senkt. Die geringe Größe von Lichtwellenleitern ermöglicht ihre Integration in Verbundwerkstoffstrukturen während des Herstellungsprozesses, wodurch eine kontinuierliche Überwachung sowie eine präzise Erkennung und Lokalisierung von Strukturschäden während des Betriebs der Druckbehälter ermöglicht wird. Wir erörtern auch das Potenzial modernster Signalverarbeitungsmethoden und des maschinellen Lernens für die Weiterentwicklung der vorausschauenden Instandhaltung. Die von uns vorgestellten Anwendungen von faseroptischen Sensoren zeigen, dass sie einen wichtigen Beitrag zur Energiewende hin zu erneuerbaren Energien leisten können. KW - Verteilte faseroptische Sensoren KW - Verbundwerkstoffe KW - Wasserstoff-Druckbehälter KW - Strukturüberwachung KW - Maschinelles Lernen PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596290 DO - https://doi.org/10.1515/teme-2023-0170 SN - 0171-8096 SP - 1 EP - 12 AN - OPUS4-59629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emamverdi, Farnaz A1 - Huang, J. A1 - Mosane Razavi, Negar A1 - Bojdys, M. J. A1 - Forster, A. B. A1 - Budd, P. M. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Molecular Mobility and Gas Transport Properties of Mixed Matrix Membranes Based on PIM‑1 and a Phosphinine Containing Covalent Organic Framework N2 - Polymers with intrinsic microporosity (PIMs) are gaining attention as gas separation membranes. Nevertheless, they face limitations due to pronounced physical aging. In this study a covalent organic framework containing λ5-phosphinine moieties, CPSF-EtO were incorporated as a nanofiller (concentration range 0-10 wt%) into a PIM-1 matrix forming dense films with a thickness of ca. 100 μm. The aim of the investigation was to investigate possible enhancements of gas transport properties and mitigating effects on physical aging. The incorporation of the nanofiller occurred on aggregate level with domains up to 100 nm as observed by T-SEM and confirmed by X-ray scattering. Moreover, the X-ray data show that the structure of the microporous network of the PIM-1 matrix is changed by the nanofiller. As the molecular mobility is fundamental for gas transport as well as for physical aging, the study includes dielectric investigations of pure PIM-1 and PIM-1/CPSF-EtO mixed matrix membranes to establish a correlation between the molecular mobility and the gas transport properties. Using the time-lag method the gas permeability and the permselectivity were determined for N2, O2, CH4 and CO2 for samples with variation in filler content. A significant increase in the permeability of CH4 and CO2 (50 % increase compared to pure PIM-1) was observed for a concentration of 5 wt% of the nanofiller. Furthermore, the most pronounced change in the permselectivity was found for the gas pair CO2/N2 at a filler concentration of 7 wt%. KW - Polymers of Intrinsic Microporosity KW - Nanocomposites PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595031 DO - https://doi.org/10.1021/acs.macromol.3c02419 SN - 0024-9297 VL - 57 IS - 4 SP - 1829 EP - 1845 PB - ACS Publications AN - OPUS4-59503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne A1 - Thomas, Maximilian A1 - Kannengiesser, Thomas A1 - Gibmeier, Jens T1 - On the interpretation of Varestraint and Transvarestraint hot cracking test results N2 - The Varestraint test and its variant Transvarestraint are one of the most widely used techniques for evaluating a material solidification cracking sensitivity during welding. The result of such tests is a crack length which is proportional to the material’s cracking susceptibility. Nevertheless, the welding and load parameters can unintentionally influence the crack length, which in some cases can distort the material evaluation. An approach is described as to how these effects can be assessed with the aid of a digital crack analysis. The crack lengths are compared position-dependently with their possible propagation due to the weld pool movement during continuous loading. The index derived from this can be used by the operator to evaluate his test parameters. In addition, a comparison of the results of different Varestraint setups is made possible. Alongside experimental results, a numerical sensitivity analysis is presented on how individual welding and loading parameters can affect the crack lengths. KW - Varestraint test KW - Solidification cracking KW - Weldability PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595089 DO - https://doi.org/10.1007/s40194-024-01706-8 SN - 0043-2288 SP - 1 EP - 13 PB - Springer Science and Business Media LLC AN - OPUS4-59508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mansurova, Maria A1 - Johann, Sergej A1 - Kohlhoff, Harald A1 - Rurack, Knut A1 - Bartholmai, Matthias A1 - Bell, Jérémy T1 - On-Site Analytical Tool Based on Crude Oil Fluorescence and Chemometrics for the Rapid Determination of the Nature and Essential Properties of Oil Spills N2 - With the reduction of large oil spills because of stricter regulations and safety measures, the question of how to manage smaller oil spills arises. Few on-site analytical tools are available for first responders or other law enforcement personnel to rapidly test for crude oil in the early management of localized polluted areas. The approach reported here relies on well-described computer-assisted multivariate data analysis of the intrinsic fluorescence fingerprints of crude oils to build a multivariate model for the rapid classification of crude oils and the prediction of their properties. Thanks to a dedicated robust portable reader, the method allowed classification and accurate prediction of various properties of crude oil samples like density (according to API, the American Petroleum Institute and viscosity as well as composition parameters such as volume fractions of paraffins or aromatics. In this way, autonomous operation in on-site or in-the-field applications becomes possible based on the direct (undiluted and untreated) measurement of samples and a rapid, tablet-operated readout system to yield a robust and simple analytical test with superior performance. Testing in real-life scenarios allowed the successful classification and prediction of a number of oil spill samples as well as weathered samples that closely resemble samples collected by first responders. KW - Oil spills KW - Fluorescence KW - PCA KW - Petroleum KW - Rapid test KW - Portable PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595442 DO - https://doi.org/10.1021/acsestwater.3c00648 VL - 4 IS - 2 SP - 621 EP - 627 PB - American Chemical Society (ACS) AN - OPUS4-59544 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von Törne, Wipert Jannik A1 - Klyk-Seitz, Urszula-Anna A1 - Piechotta, Christian T1 - Developing a GC-EI-MS/MS method for quantifying warfarin and five hydroxylated metabolites generated by the Fenton reaction N2 - AbstractSince the 1950s, Warfarin has been used globally as both a prescription drug and a rodenticide. Research has shown that warfarin and other rodenticides are present in the environment and food chain. However, emerging contaminants are subject to degradation by biotic and abiotic processes and advanced oxidation processes. In some cases, detecting the parent compound may not be possible due to the formation of structurally changed species. This approach aims to identify hydroxylated transformation products of warfarin in a laboratory setting, even after the parent compound has undergone degradation. Therefore, the Fenton reaction is utilized to insert hydroxylation into the parent compound, warfarin, by hydroxyl and hydroperoxyl radicals generated by Fe2+/Fe3+ redox reaction with hydrogen peroxide. Using multiple reaction monitoring, a GC–MS/MS method, incorporating isotopically labeled reference compounds, is used to quantify the expected derivatized species. The analytes are derivatized using trimethyl-3-trifluoromethyl phenyl ammonium hydroxide, and the derivatization yield of warfarin is determined by using isotopically labeled reference compounds. The method has a linear working range of 30 to 1800 ng/mL, with detection limits ranging from 18.7 to 67.0 ng/mL. The analytes are enriched using a C18-SPE step, and the recovery for each compound is calculated. The Fenton reaction generates all preselected hydroxylated transformation products of warfarin. The method successfully identifies that 4′-Me-O-WAR forms preferentially under the specified experimental conditions. By further optimizing the SPE clean-up procedures, this GC–MS-based method will be suitable for detecting transformation products in more complex matrices, such as environmental water samples. Overall, this study provides a better understanding of warfarin’s degradation and offers a robust analytical tool for investigating its transformation products. KW - Health, Toxicology and Mutagenesis KW - Pollution KW - Environmental Chemistry KW - General Medicine PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595737 DO - https://doi.org/10.1007/s11356-024-32133-3 SN - 0944-1344 VL - 31 SP - 16986 EP - 16994 PB - Springer Science and Business Media LLC AN - OPUS4-59573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -