TY - CONF A1 - Barucker-Sturzenbecher, Meike A1 - Schmidt, Wolfram ED - Schmidt, Wolfram T1 - Learning from the future - How children of Mukuru fancy the city of tomorrow N2 - Sustainability means meeting the needs of today without compromising the needs of the next generations. How can we meet the needs of the next generations, if we do not even know what these needs are? If we do not listen to the next generation and learn from them? Do we even meet the needs of today for everyone on earth? T2 - ISEE Africa - Innovation, Science, Engineering, Education CY - Nairobi, Kenya DA - 30.01.2019 KW - Urban planning KW - Concrete KW - Mukuru KW - Africa KW - Sustainability PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-484832 UR - http://isee-africa.com/wp-content/uploads/2019/07/Innovation-Science-Engineering-Education_High-Quality.pdf SN - 978-3-9818564-2-2 SP - 194 EP - 197 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-48483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kruschwitz, Sabine A1 - Munsch, Sarah A1 - Telong, Melissa A1 - Schmidt, Wolfram A1 - Bintz, Thilo A1 - Fladt, Matthias A1 - Stelzner, Ludwig T1 - The NMR core analyzing TOMograph: A multi-functional tool for non-destructive testing of building materials N2 - NMR is becoming increasingly popular for the investigation of building materials as it is a non-invasive technology that does not require any sample preparation nor causes damage to the material. Depending on the specific application it can offer insights into properties like porosity and spatial saturation degree as well as pore structure. Moreover it enables the determination of moisture transport properties and the (re-)distribution of internal moisture into different reservoirs or chemical phases upon damage and curing. However, as yet most investigations were carried out using devices originally either designed for geophysical applications or the analysis of rather homogeneous small scale (< 10 mL) samples. This paper describes the capabilities of an NMR tomograph, which has been specifically optimized for the investigation of larger, heterogeneous building material samples (diameters of up to 72 mm, length of up to 700 mm) with a high flexibility due to interchangeable coils allowing for a high SNR and short echo times (50 - 80 m s). KW - Fire spalling KW - Moisture transport KW - Concrete KW - Cement hydration KW - Sensitivity KW - Supplementary cementitous materials KW - Frost salt attack PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573755 DO - https://doi.org/10.1016/j.mrl.2023.03.004 SN - 2097-0048 VL - 3 IS - 3 SP - 207 EP - 219 PB - Elsevier B.V. AN - OPUS4-57375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Henning, Ricky A1 - Sturm, Patrick A1 - Keßler, S. A1 - Gluth, Gregor ED - Lothenbach, B. ED - Wieland, E. ED - Altmaier, M. T1 - Influence of salt aggregate on the degradation of hybrid alkaline cement (HAC) concretes in magnesium chloride-rich saline solution simulating evaporite rock N2 - Concretes produced from salt aggregate and hybrid alkaline cements, an alkali-activated slag/fly ash blend, or a Portland cement were exposed to a magnesium chloride-rich saline solution ([Mg2+] = 3.6 m, [Cl−] = 8.3 m), representing a solution formed after contact of surface water with evaporite rock (rock salt) in a nuclear waste repository. The hydration and deterioration of the concretes were studied with X-ray diffraction, thermogravimetric analysis, pH mapping and permeability measurements. The results show that calcium silicate hydrate (C-S-H) or sodium-substituted calcium aluminium silicate hydrate (C-N-A-S-H) and Friedel's salt were the major reaction products in the concretes prior to exposure to the saline solution. During exposure to the saline solution, increasing amounts of C-S-H/C-N-A-S-H dissolved, and gypsum and a secondary AFm phase formed. The durability of the concretes improved with increasing amounts of Portland clinker in the cements, due to the associated differences in permeability and chemical resistance. Nevertheless, a massive increase of permeability occurred for all concretes, likely caused by crack formation due to the formation of gypsum from anhydrite in the salt aggregate. Thus, the behavior of the concretes differed from, and was more complex than, the behavior of plain cement pastes. T2 - Joint 6th International Workshop on Mechanisms and Modelling of Waste/Cement Interactions (JCCW 2023) CY - Prague, Czech Republic DA - 20.11.2023 KW - Nuclear waste repository KW - Evaporite rock KW - Magnesium chloride brine KW - Concrete KW - Hybrid alkaline cement PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599928 DO - https://doi.org/10.1016/j.apgeochem.2024.106027 SN - 0883-2927 SN - 1872-9134 VL - 168 SP - 1 EP - 14 PB - Elsevier AN - OPUS4-59992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, T. A1 - Bertola, N. A1 - Epple, Niklas A1 - Bruehwiler, E. A1 - Niederleithinger, Ernst T1 - Combined Passive and Active Ultrasonic Stress Wave Monitoring of Concrete Structures: An Overview of Data Analysis Techniques and Their Applications and Limitations N2 - Combined passive ultrasonic (US) stress wave [better known as acoustic emission (AE)] and active US stress wave monitoring has been shown to provide a more holistic picture of ongoing fracture processes, damage progression, as well as slowly occurring aging and degradation mechanisms in concrete structures. Traditionally, different data analysis techniques have been used to analyze the data generated from these two monitoring techniques. For passive US stress wave monitoring, waveform amplitudes, hit rates, source localization, and b-value analysis, among others, have been used to detect and locate cracking. On the other hand, amplitude tracking, magnitude squared coherence (MSC), and coda wave interferometry (CWI) are examples of analyses that have been employed for active US stress wave monitoring. In this paper, we explore some of these data analysis techniques and show where their respective applications and limitations might be. After providing an overview of the monitoring approach and the different data analysis techniques, results and observations from selected laboratory experiments are discussed. Finally, suggestions for further work are proposed. T2 - 11th European Workshop on Structural Health Monitoring (EWSHM 2024) CY - Potsdam, Germany DA - 11.06.2024 KW - Ultrasound KW - Acoustic emission KW - Concrete KW - Stress PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604687 UR - https://www.ndt.net/article/ewshm2024/papers/824_manuscript.pdf DO - https://doi.org/10.58286/29863 SN - 1435-4934 SP - 1 EP - 8 PB - NDT.net AN - OPUS4-60468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Niederleithinger, Ernst T1 - Practical procedure for the precise measurement of geometrical tendon positions in concrete with ultrasonic echo N2 - Existing concrete structures were usually designed for lifetimes of several decades. The current and urgently required efforts to increase sustainability and protect the environment will likely result in extended service lives up to 100 years. To achieve such objectives, it is required to assess structures over their entire lifecycles. Non-destructive testing (NDT) methods can reliably support the assessment of existing structures during the construction, operational, and decommissioning phases. One of the most important and safety-relevant components of a prestressed concrete structure are the tendons. NDT methods such as the ultrasonic echo method are suitable for both the detection and the localization of the tendons, i.e., the measurement of their geometrical position inside the component. The uniqueness of structures, concrete heterogeneity, and varying amounts of secondary components such as the reinforcement represent obstacles in the application of these methods in practice. The aim of this contribution is to demonstrate a practicable procedure, that can be used in the field to determine the parameters required for the measuring data analysis without extensive knowledge about the investigated components. For this purpose, a polyamide reference specimen is used to show which steps are required to obtain reliable imaging information on the position of tendons from the measurement data. The procedure is then demonstrated on a concrete test specimen that covers various relevant and practice-oriented test scenarios, such as varying tendon depths and component thicknesses. T2 - International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2022) CY - Cape Town, South Africa DA - 03.10.2022 KW - Validation KW - Non-destructive testing KW - Ultrasonic KW - Reconstruction KW - Concrete KW - Tendon duct PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559979 DO - https://doi.org/10.1051/matecconf/202236403007 SN - 2261-263X SP - 1 EP - 8 AN - OPUS4-55997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Küttenbaum, Stefan A1 - Taffe, A. A1 - Braml, T. A1 - Maack, Stefan ED - Alexander, M. G. ED - Beushausen, H. ED - Dehn, F. ED - Moyo, P. T1 - Reliability assessment of existing bridge constructions based on results of non-destructive testing N2 - The non-destructive testing methods available for civil engineering (NDT-CE) enable the measurements of quantitative parameters, which realistically describe the characteristics of existing buildings. In the past, methods for quality evaluation and concepts for validation expanded into NDT-CE to improve the objectivity of measured data. Thereby, a metrological foundation was developed to collect statistically sound and structurally relevant information about the inner construction of structures without destructive interventions. More recently, the demand for recalculations of structural safety was identified. This paper summarizes a basic research study on structural analyses of bridges in combination with NDT. The aim is to use measurement data of nondestructive testing methods as stochastic quantities in static calculations. Therefore, a methodical interface between the guide to the expression of uncertainty in measurement and probabilistic approximation procedures (e.g. FORM) has been proven to be suitable. The motivation is to relate the scientific approach of the structural analysis with real information coming from existing structures and not with those found in the literature. A case study about the probabilistic bending proof of a reinforced concrete bridge with statistically verified data from ultrasonic measurements shows that the measuring results fulfil the requirements concerning precision, trueness, objectivity and reliability. T2 - International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2018) CY - Cape Town, South Africa DA - 19.11.2018 KW - NDT KW - Concrete KW - Probabilistic reassessment KW - Bridge PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-467898 DO - https://doi.org/10.1051/matecconf/201819906001 SN - 2261-236X VL - 199 SP - 06001, 1 EP - 9 PB - MATEC Web of Conferences AN - OPUS4-46789 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -