TY - JOUR A1 - Tuma, Dirk A1 - Moreau, A. A1 - Polishuk, I. A1 - Segovia, J. J. A1 - Vega-Maza, D. A1 - Martín, M. C. T1 - Measurements and predictions of densities and viscosities in CO2 + hydrocarbon mixtures at high pressures and temperatures: CO2 + n-pentane and CO2 + n-hexane blends JF - Journal of Molecular Liquids N2 - This work reports new experimental data on densities and viscosities of (CO2 + n-pentane) and (CO2 + n-hexane) mixtures at high pressures and temperatures. The densities were measured by a vibrating-tube densimeter with an expanded uncertainty (k = 2) smaller than 1.8 kg/m3 at six isotherms (from 273.15 K to 373.15 K), twelve pressures starting at 5 MPa up to 100 MPa, and at six CO2 molar compositions (from 0 to 0.6). The viscosities were measured by a vibrating-wire viscometer with the corresponding relative expanded uncertainty (k = 2) smaller than 0.016 at five isotherms (from 273.15 K to 373.15 K), twelve pressures (from 5 MPa up to 100 MPa), and at two CO2 molar compositions (0.1 and 0.3). The densities were fitted by the semiempirical Tammann-Tait equation for density data and the Vogel-Fulcher-Tammann (VFT) equation for viscosity data, respectively. The Groupe Européen de Recherches Gazières (GERG-2008) equation of state was also applied for modelling the densities. Over-all robustness and reliability of the Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) and its critical point-based modification (CP-PC-SAFT) were examined. Accuracies of the Modified Yarranton-Satyro (MYS) coupled with CP-PC-SAFT and the NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP 10) in predicting the viscosities were evaluated. KW - CO2 + n-alkanes KW - thermophysical properties KW - Perturbed-Chain Statistical Association Fluid Theory PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555728 DO - https://doi.org/10.1016/j.molliq.2022.119518 SN - 0167-7322 VL - 360 SP - 1 EP - 15 PB - Elsevier CY - Amsterdam AN - OPUS4-55572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Valderrey, Virginia A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Thiourea- and Amino-Substituted Benzoxadiazole Dyes with Large Stokes Shifts as Red-Emitting Probe Monomers for Imprinted Polymer Layers Targeting Carboxylate-Containing Antibiotics JF - Thiourea- and Amino-Substituted Benzoxadiazole Dyes with Large Stokes Shifts as Red-Emitting Probe Monomers for Imprinted Polymer Layers Targeting Carboxylate-Containing Antibiotics N2 - Bifunctional fluorescent molecular oxoanion probes based on the benzoxadiazole (BD) chromophore are described which integrate a thiourea binding motif and a polymerizable 2-aminoethyl methacrylate unit in the 4,7-positions of the BD core. Concerted charge transfer in this electron donor-acceptor-donor architecture endows the dyes with strongly Stokes shifted (up to >250 nm) absorption and fluorescence. Binding of electron-rich carboxylate guests at the thiourea receptor leads to further analyte-induced red-shifts of the emission, shifting the fluorescence maximum of the complexes to ≥700 nm. Association constants for acetate are ranging from 1–5×105 M−1 in acetonitrile. Integration of one of the fluorescent probes through its polymerizable moiety into molecularly imprinted polymers (MIPs) grafted from the surface of submicron silica cores yielded fluorescent MIP-coated particle probes for the selective detection of antibiotics containing aliphatic carboxylate groups such as enoxacin (ENOX) at micromolar concentrations in highly polar solvents like acetonitrile. KW - Molecular imprinting KW - Anion recognition KW - Antibiotics KW - Benzoxadiazole dyes KW - Charge transfer KW - Fluorescence PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545027 DO - https://doi.org/10.1002/chem.202104525 SN - 1521-3765 SP - 1 EP - 9 PB - Wiley-VCH AN - OPUS4-54502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Veico, V. P. A1 - Karlagina, Yu. Yu. A1 - Samokhvalov, A. A. A1 - Polyakov, D. S. A1 - Manokhin, S. S. A1 - Radaev, M. M. A1 - Odintsova, G. V. A1 - Gornushkin, Igor B. T1 - Surface Structuring and Reverse Deposition of Nanoporous Titanium Oxides by Laser Ablation of Titanium in Air JF - Plasma Chemistry and Plasma Processing N2 - The deposition of titanium oxides during titanium laser ablation in air has been experimentally and numerically investigated. A titanium sample was irradiated by nanosecond pulses from an Yb-fber laser with a beam scanned across the sample surface for its texturing. As a result, the hierarchical structure was observed consisting of a microrelief formed by the laser ablation and a nanoporous coating formed by the reverse deposition from the laser induced plasma plume. The chemical and phase composition of the nanoporous coating, as well as the morphology and structure of the surface, were studied using scanning electron microscopy, atomic force microscopy, and X-ray microanalysis. It was found that the deposit consists mostly of porous TiO2 with 26% porosity and inclusions of TiO, Ti2O3, and Ti2O3N. Optical emission spectroscopy was used to control the plasma composition and estimate the effective temperature of plasma plume. The chemical-hydrodynamic model of laser induced plasma was developed to get a deeper insight into the deposition process. The model predicts that condensed titanium oxides, formed in peripheral plasma zones, gradually accumulate on the surface during the plasma plume evolution. A satisfactory agreement between the experimental and calculated chemical composition of the plasma plume as well as between the experimental and calculated composition and thickness of the deposited film was demonstrated. This allows a cautious conclusion that the formation of condensed oxides in the plasma and their consequent deposition onto the ablation surface are among the key mechanisms of formation of porous surface films. KW - Laser ablation KW - Laser induced plasma deposition KW - Surface coating KW - Titanium dioxide KW - Hydrodynamic model KW - Plasma chemistry KW - Emission spectroscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548555 DO - https://doi.org/10.1007/s11090-022-10256-0 VL - 42 IS - 4 SP - 923 EP - 937 PB - Springer AN - OPUS4-54855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Villajos Collado, José Antonio T1 - Experimental volumetric hydrogen uptake determination at 77 K of commercially available metal-organic framework materials JF - C - Journal of carbon research N2 - Storage is still limiting the implementation of hydrogen as an energy carrier to integrate the intermittent operation of renewable energy sources. Among different solutions to the currently used compressed or liquified hydrogen systems, physical adsorption at cryogenic temperature in porous materials is an attractive alternative due to its fast and reversible operation and the resulting reduction in storage pressure. The feasibility of cryoadsorption for hydrogen storage depends mainly on the performance of the used materials for the specific application, where metal-organic frameworks or MOFs are remarkable candidates. In this work, gravimetric and volumetric hydrogen uptakes at 77 K and up to 100 bar of commercially available MOFs were measured since these materials are made from relatively cheap and accessible building blocks. These materials also show relatively high porous properties and are currently near to large-scale production. The measuring device was calibrated at different room temperatures to calculate an average correction factor and standard deviation so that the correction deviation is included in the measurement error for better comparability with different measurements. The influence of measurement conditions was also studied, concluding that the available adsorbing area of material and the occupied volume of the sample are the most critical factors for a reproducible measurement, apart from the samples’ preparation before measurement. Finally, the actual volumetric storage density of the used powders was calculated by directly measuring their volume in the analysis cell, comparing that value with the maximum volumetric uptake considering the measured density of crystals. From this selection of commercial MOFs, the materials HKUST-1, PCN-250(Fe), MOF-177, and MOF-5 show true potential to fulfill a volumetric requirement of 40 g·L−1 on a material basis for hydrogen storage systems without further packing of the powders. KW - Hydrogen adsorption KW - Commercial metal-organic frameworks KW - Hydrogen uptake reproducibility KW - Volumetric uptake KW - Packing density PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542215 DO - https://doi.org/10.3390/c8010005 SN - 2311-5629 VL - 8 IS - 1 SP - 1 EP - 14 PB - MDPI CY - Basel AN - OPUS4-54221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Villajos Collado, José Antonio A1 - Balderas‐Xicohténcatl, Rafael A1 - Al Shakhs, Ali N. A1 - Berenguer‐Murcia, Ángel A1 - Buckley, Craig E. A1 - Cazorla‐Amorós, Diego A1 - Charalambopoulou, Georgia A1 - Couturas, Fabrice A1 - Cuevas, Fermin A1 - Fairen‐Jimenez, David A1 - Heinselman, Karen N. A1 - Humphries, Terry D. A1 - Kaskel, Stefan A1 - Kim, Hyunlim A1 - Marco‐Lozar, Juan P. A1 - Oh, Hyunchul A1 - Parilla, Philip A. A1 - Paskevicius, Mark A1 - Senkovska, Irena A1 - Shulda, Sarah A1 - Silvestre‐Albero, Joaquin A1 - Steriotis, Theodore A1 - Tampaxis, Christos A1 - Hirscher, Michael A1 - Maiwald, Michael T1 - Establishing ZIF‐8 as a reference material for hydrogen cryoadsorption: An interlaboratory study JF - ChemPhysChem N2 - AbstractHydrogen storage by cryoadsorption on porous materials has the advantages of low material cost, safety, fast kinetics, and high cyclic stability. The further development of this technology requires reliable data on the H2 uptake of the adsorbents, however, even for activated carbons the values between different laboratories show sometimes large discrepancies. So far no reference material for hydrogen cryoadsorption is available. The metal‐organic framework ZIF‐8 is an ideal material possessing high thermal, chemical, and mechanical stability that reduces degradation during handling and activation. Here, we distributed ZIF‐8 pellets synthesized by extrusion to 9 laboratories equipped with 15 different experimental setups including gravimetric and volumetric analyzers. The gravimetric H2 uptake of the pellets was measured at 77 K and up to 100 bar showing a high reproducibility between the different laboratories, with a small relative standard deviation of 3–4 % between pressures of 10–100 bar. The effect of operating variables like the amount of sample or analysis temperature was evaluated, remarking the calibration of devices and other correction procedures as the most significant deviation sources. Overall, the reproducible hydrogen cryoadsorption measurements indicate the robustness of the ZIF‐8 pellets, which we want to propose as a reference material. KW - Physical and theoretical chemistry KW - Atomic and molecular physics, and optics PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594788 DO - https://doi.org/10.1002/cphc.202300794 SN - 1439-7641 SP - 1 EP - 7 PB - Wiley CY - Weinheim AN - OPUS4-59478 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Villajos Collado, José Antonio A1 - Bienert, M. A1 - Gugin, Nikita A1 - Emmerling, Franziska A1 - Maiwald, Michael T1 - A database to select affordable MOFs for volumetric hydrogen cryoadsorption considering the cost of their linkers JF - Materials advances N2 - Physical adsorption at cryogenic temperature (cryoadsorption) is a reversible mechanism that can reduce the pressure of conventional compressed gas storage systems. Metal–organic framework (MOF) materials are remarkable candidates due to the combination of high specific surface area and density which, in some cases, provide a high volumetric storage capacity. However, such extensive use of MOFs for this application requires the selection of affordable structures, easy to produce and made from feasible metallic and organic components. Herein, we introduce a MOF database detailing the crystallographic and porous properties of 3600 existing MOFs made from industrially relevant metals and their organic composition. The comparison of the available minimum costs of linkers allowed the creation of a database to select affordable structures with high potential for volumetric hydrogen storage by cryoadsorption, considering their composition based on individual or mixed building blocks. A user inter� face, available online, facilitates the selection of MOFs based on the properties or names of structures and linkers. KW - MOF´s PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-583619 DO - https://doi.org/10.1039/d3ma00315a VL - 4 IS - 18 SP - 4226 EP - 4237 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Piechotta, Christian A1 - Lisec, Jan A1 - Sommerfeld, Thomas A1 - Kluge, Stephanie A1 - Herzel, Hannes A1 - Huthwelker, T. A1 - Borca, C. A1 - Simon, Franz-Georg T1 - Levels of per- and polyfluoroalkyl substances (PFAS) in various wastewater-derived fertilizers – analytical investigations from different perspectives JF - Environmental Science: Advances N2 - Solid wastewater-based fertilizers were screened for per- and polyfluoroalkyl substances (PFAS) by the extractable organic fluorine (EOF) sum parameter method. The EOF values for ten sewage sludges from Germany and Switzerland range from 154 to 7209 mg kg−1. For thermal treated sewage sludge and struvite the EOF were lower with values up to 121 mg kg−1. Moreover, the application of PFAS targeted and suspect screening analysis of selected sewage sludge samples showed that only a small part of the EOF sum parameter values can be explained by the usually screened legacy PFAS. The hitherto unknown part of EOF sum parameter contains also fluorinated pesticides, pharmaceutical and aromatic compounds. Because these partly fluorinated compounds can degrade to (ultra-)short PFAS in wastewater treatment plants they should be considered as significant sources of organic fluorine in the environment. The combined results of sum parameter analysis and suspect screening reveal the need to update current regulations, such as the German fertilizer ordinance, to focus not solely on a few selected PFAS such as perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) but consider an additional sum parameter approach as a more holistic alternative. Moreover, diffusion gradient in thin-films (DGT) passive samplers were utilized as an alternative simplified extraction method for PFAS in solid wastewater-based fertilizers and subsequently quantified via combustion ion chromatography. However, the DGT method was less sensitive and only comparable to the EOF values of the fertilizers in samples with >150 mg kg−1, because of different diffusion properties for various PFAS, but also kinetic exchange limitations. KW - Combustion Ion Chromatography KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Sewage sludge KW - Fertilizer PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-583429 DO - https://doi.org/10.1039/d3va00178d VL - 2 IS - 10 SP - 1436 EP - 1445 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen T1 - The triple-isotope calibration approach: a universal and standard-free calibration approach for obtaining absolute isotope ratios of multi-isotopic elements JF - Analytical and Bioanalytical Chemistry N2 - The theory of a new calibration approach for obtaining absolute isotope ratios of multi-isotopic elements without the use of any standard has been developed. The calibration approach basically uses the difference in the instrumental isotope fractionation of two different types of mass spectrometers, leading to two different fractionation lines in a three-isotope diagram. When measuring the same sample with both mass spectrometers, the different fractionation lines have one point in common: this is the ‘true’ logarithmized isotope ratio pair of the sample. Thus, the intersection of both fractionation lines provides us with the absolute isotope ratios of the sample. This theory has been tested in practice by measuring Cd and of Pb isotope ratios in the certified reference materials BAM-I012 and NIST SRM981 by thermal ionization mass spectrometry and by inductively coupled plasma mass spectrometry while varying the ionization conditions for both mass spectrometers. With this experiment, the theory could be verified, and absolute isotope ratios were obtained, which were metrologically compatible with the certified isotope ratios. The so-obtained absolute isotope ratios are biased by − 0.5% in average, which should be improved with further developments of the method. This calibration approach is universal, as it can be applied to all elements with three or more isotopes and it is not limited to the type of mass spectrometers applied; it can be applied as well to secondary ion mass spectrometry or others. Additionally, this approach provides information on the fractionation process itself via the triple-isotope fractionation exponent θ. KW - Triple isotope fractionation KW - Absolute isotope ratio KW - Mass spectrometry KW - Calibration KW - Uncertainty PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516364 DO - https://doi.org/10.1007/s00216-020-03050-4 VL - 413 IS - 3 SP - 821 EP - 826 PB - Springer Verlag AN - OPUS4-51636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Rienitz, O. A1 - Pramann, A. A1 - Flierl, L. T1 - Scale Conversion and Uncertainty Calculations in Isotope Delta Measurements JF - Geostandards and Geoanalytical Research N2 - Isotope ratio applications are on the increase and a major part of which are delta measurements, because they are easier to perform than the determination of absolute isotope ratios while offering lower measurement uncertainties. Delta measurements use artefact-based scales and therefore scale conversions are required due to the lack of the scale defining standards. Such scale conversions often form the basis for comparing data being generated in numerous projects andtherefore need to be as accurate as possible. In practice, users are tempted to apply linear approximations, which are not sufficiently exact, because delta values are defined by nonlinear relationships. The bias of such approximations often is beyond typical measurement uncertainties and its extent can hardly be predicted. Therefore, exact calculations are advised. Here, the exact equations and the bias of the approximations are presented, and calculations are illustrated by real-world examples. Measurement uncertainty is indispensable in this context and therefore, its calculation is described as well for determining delta values but also for scale conversions. Approaches for obtaining a single delta measurement and for repeated measurements are presented. For the latter case, a new approach for calculating the measurement uncertainty is presented, which considers covariances between the isotope ratios. KW - Delta isotope standard KW - Delta scale KW - In-house calibration solution KW - Isotope ratios KW - Isotope reference material KW - Measurement uncertainty KW - Scale conversion PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557254 DO - https://doi.org/10.1111/ggr.12450 SN - 1639-4488 VL - 46 IS - 4 SP - 773 EP - 787 PB - Wiley AN - OPUS4-55725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Rosner, M. A1 - Kasemann, S. A. A1 - Kraft, R. A1 - Meixner, A. A1 - Noordmann, J. A1 - Rabb, S. A1 - Rienitz, O. A1 - Schuessler, J. A. A1 - Tatzel, Michael A1 - Vocke, R. D. T1 - Intercalibration of Mg isotope delta scales and realisation of SI traceability for Mg isotope amount ratios and isotope delta values JF - Geostandards and geoanalytical research N2 - The continuous improvement of analytical procedures using multi-collector technologies in ICP-mass spectrometry has led to an increased demand for isotope standards with improved homogeneity and reduced measurement uncertainty. For magnesium, this has led to a variety of available standards with different quality levels ranging from artefact standards to isotope reference materials certified for absolute isotope ratios. This required an intercalibration of all standards and reference materials, which we present in this interlaboratory comparison study. The materials Cambridge1, DSM3, ERMAE143, ERM-AE144, ERM-AE145, IRMM-009 and NIST SRM 980 were cross-calibrated with expanded measurement uncertainties (95% confidence level) of less than 0.030‰ for the δ25/24Mg values and less than 0.037‰ for the δ26/24Mg values. Thus, comparability of all magnesium isotope delta (δ) measurements based on these standards and reference materials is established. Further, ERM-AE143 anchors all magnesium δ-scales to absolute isotope ratios and therefore establishes SI traceability, here traceability to the SI base unit mole. This applies especially to the DSM3 scale, which is proposed to be maintained. With ERM-AE144 and ERM-AE145, which are product and educt of a sublimation-condensation process, for the first time a set of isotope reference materials is available with a published value for the apparent triple isotope fractionation exponent θapp, the fractionation relationship ln α(25/24Mg)/ln α(26/24Mg). KW - Delta scale KW - Traceability KW - Scale anchor KW - Absolute isotope ratio KW - Comparability KW - Triple isotope fractionation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511557 DO - https://doi.org/10.1111/ggr.12327 SN - 1751-908X VL - 44 IS - 3 SP - 439 EP - 457 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-51155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von Boehn, B. A1 - Scholtz, Lena A1 - Imbihl, R. T1 - Reactivity and Stability of Ultrathin VOx Films on Pt(111) in Catalytic Methanol Oxidation JF - Topics in Catalysis N2 - The growth of ultrathin layers of VOx (<12 monolayers) on Pt(111) and the activity of these layers in catalytic methanol oxidation at 10−4 mbar have been studied with low-energy electron difraction, Auger electron spectroscopy, rate measurements, and with photoemission electron microscopy. Reactive deposition of V in O2 at 670 K obeys a Stranski–Krastanov growth mode with a (√3 × √3)R30° structure representing the limiting case for epitaxial growth of 3D-VOx. The activity of VOx/Pt(111) in catalytic methanol oxidation is very low and no redistribution dynamics is observed lifting the initial spatial homogeneity of the VOx layer. Under reaction conditions, part of the surface vanadium difuses into the Pt subsurface region. Exposure to O2 causes part of the V to difuse back to the surface, but only up to one monolayer of VOx can be stabilized in this way at 10−4 mbar. KW - Vanadium oxide catalysts KW - Pt(111) KW - Supported catalyst KW - Methanol oxidation KW - Stranski–Krastanow growth PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517376 DO - https://doi.org/10.1007/s11244-020-01321-z SN - 1022-5528 VL - 63 IS - 15-18 SP - 1545 EP - 1556 PB - Springer AN - OPUS4-51737 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von der Au, Marcus A1 - Faßbender, Sebastian A1 - Chronakis, Michail A1 - Vogl, Jochen A1 - Meermann, Björn T1 - Size determination of nanoparticles by ICP-ToF-MS using isotope dilution in microdroplets JF - Journal of Analytical Atomic Spectrometry N2 - Within this work, the combination of a microdroplet generator and an ICP-ToF-MS for nanoparticle analysis is presented. For the size determination of platinum nanoparticles an on-line isotope dilution analysis approach was developed. The 194Pt/195Pt isotopic ratio was used for the characterization of the particles, while the 182W/183W isotopic ratio was monitored simultaneously for mass bias correction. The on-line ID-MDG-sp-ICP-ToF-MS approach was deployed for the size determination of three platinum nanoparticle samples (50 nm, 63 nm, 70 nm); for validation, complementary size characterization techniques (sp-ICP-ToF-MS and TEM) were used. The robustness of this technique was evidenced, by using sodium chloride concentrations up to 100 mg L−1 as a matrix component. Our new on-line ID MDG-sp-ICP-ToF-MS approach is a promising tool for the fast and reliable determination of nanoparticles' size in severe matrix concentrations, e.g., environmental samples. KW - ICP-ToF-MS KW - Nanoparticles KW - Isotope Dilution PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552727 DO - https://doi.org/10.1039/D2JA00072E SN - 0267-9477 VL - 37 IS - 6 SP - 1203 EP - 1207 PB - Royal Society of Chemistry AN - OPUS4-55272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von Törne, Wipert Jannik A1 - Klyk-Seitz, Urszula-Anna A1 - Piechotta, Christian T1 - Developing a GC-EI-MS/MS method for quantifying warfarin and five hydroxylated metabolites generated by the Fenton reaction JF - Environmental Science and Pollution Research N2 - AbstractSince the 1950s, Warfarin has been used globally as both a prescription drug and a rodenticide. Research has shown that warfarin and other rodenticides are present in the environment and food chain. However, emerging contaminants are subject to degradation by biotic and abiotic processes and advanced oxidation processes. In some cases, detecting the parent compound may not be possible due to the formation of structurally changed species. This approach aims to identify hydroxylated transformation products of warfarin in a laboratory setting, even after the parent compound has undergone degradation. Therefore, the Fenton reaction is utilized to insert hydroxylation into the parent compound, warfarin, by hydroxyl and hydroperoxyl radicals generated by Fe2+/Fe3+ redox reaction with hydrogen peroxide. Using multiple reaction monitoring, a GC–MS/MS method, incorporating isotopically labeled reference compounds, is used to quantify the expected derivatized species. The analytes are derivatized using trimethyl-3-trifluoromethyl phenyl ammonium hydroxide, and the derivatization yield of warfarin is determined by using isotopically labeled reference compounds. The method has a linear working range of 30 to 1800 ng/mL, with detection limits ranging from 18.7 to 67.0 ng/mL. The analytes are enriched using a C18-SPE step, and the recovery for each compound is calculated. The Fenton reaction generates all preselected hydroxylated transformation products of warfarin. The method successfully identifies that 4′-Me-O-WAR forms preferentially under the specified experimental conditions. By further optimizing the SPE clean-up procedures, this GC–MS-based method will be suitable for detecting transformation products in more complex matrices, such as environmental water samples. Overall, this study provides a better understanding of warfarin’s degradation and offers a robust analytical tool for investigating its transformation products. KW - Health, Toxicology and Mutagenesis KW - Pollution KW - Environmental Chemistry KW - General Medicine PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595737 DO - https://doi.org/10.1007/s11356-024-32133-3 SN - 0944-1344 VL - 31 SP - 16986 EP - 16994 PB - Springer Science and Business Media LLC AN - OPUS4-59573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von Törne, Wipert Jannik A1 - Steinhäuser, Lorin A1 - Klyk-Seitz, Urszula-Anna A1 - Piechotta, Christian T1 - High-resolution mass spectrometric elucidation of electron ionization induced fragmentation pathways of methylated warfarin and selected hydroxylated species JF - International Journal of Mass Spectrometry N2 - The plant secondary metabolite families of coumarin and 4-hydroxy coumarin have a broad pharmacological spectrum ranging from antibacterial to anticancer properties. One prominent member of this substance class is the synthetic but naturally inspired anticoagulant drug and rodenticide warfarin (coumadin). A vast number of publications focus on the identification of warfarin and its major cytochrome P450-mediated phase I metabolites by liquid chromatography (LC) with mass spectrometry (MS) and tandem mass spectrometric (MS/MS) detection techniques. For the first time, electron ionization (EI) induced high-resolution quadrupole time-of-flight mass spectrometric (HR-qToF-MS) data of in-liner derivatized warfarin and selected hydroxylated species is provided in this study as an alternative to LC-MS/MS approaches. Furthermore, the characteristic fragments and fragmentation pathways of the analyzed methyl ethers are concluded. The obtained data of analytical standards, specific deuterated and 13C-labeled compounds prove inductive cleavage of the acyl or acetonyl side chain, methyl migration, and H-migration, along with consequential inductive cleavage as predominant fragmentation routes. Based on the HR-spectral data, commonalities and differences between the analyzed compounds and fragment groups were evaluated with future applicability in structure elucidation and spectra prediction of related compounds. KW - High-resolution mass spectrometry KW - Warfarin KW - Hydroxy warfarin KW - Fragmentation pathway PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596025 DO - https://doi.org/10.1016/j.ijms.2024.117220 SN - 1387-3806 VL - 499 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-59602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Tobias A1 - Gornushkin, Igor B. T1 - Importance of physical units in the Boltzmann plot method JF - Journal of Analytical Atomic Spectrometry N2 - The Boltzmann plot is one of the most widely used methods for determining the temperature in different types of laboratory plasmas. It operates on the logarithm as a function of the dimensional argument, which assumes that the correct physical units are used. In many works using the Boltzmann method, there is no analysis of the dimension of this argument, which may be the cause of a potential error. This technical note offers a brief description of the method and shows how to correctly use physical units when using transcendental functions like the logarithm. KW - Boltzmann plot KW - Laser induced plasma PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-558039 DO - https://doi.org/10.1039/d2ja00241h SP - 1 EP - 3 PB - Royal Society of Chemistry AN - OPUS4-55803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Tobias A1 - Gornushkin, Igor B. T1 - Investigation of a method for the correction of self-absorption by Planck function in laser induced breakdown spectroscopy JF - Journal of Analytical Atomic Spectrometry N2 - The electron density and temperature of a laser-induced plasma can be determined from the width and intensity of the spectral lines, provided that the corresponding optical transitions are optically thin. However, the lines in laser induced plasma are often self-absorbed. One of the methods of correction of this effect is based on the use of the Planck function and an iterative numerical calculation of the plasma temperature. In this study, the method is further explored and its inherent errors and limitations are evaluated. For this, synthetic spectra are used that fully correspond to the assumed conditions of a homogeneous isothermal plasma at local thermodynamic equilibrium. Based on the error analysis, the advantages and disadvantages of the method are discussed in comparison with other methods of self-absorption correction. KW - LIBS KW - Self-absorption KW - Planck function PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572677 DO - https://doi.org/10.1039/D2JA00352J SN - 0267-9477 SP - 1 EP - 6 PB - Royal Society of Chemistry (RSC) AN - OPUS4-57267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völzke, Jule L. A1 - Hodjat Shamami, Parya A1 - Gawlitza, Kornelia A1 - Feldmann, Ines A1 - Zimathies, Annett A1 - Meyer, Klas A1 - Weller, Michael G. T1 - High-Purity Corundum as Support for Affinity Extractions from Complex Samples JF - Separations N2 - Nonporous corundum powder, known as an abrasive material in the industry, was functionalized covalently with protein binders to isolate and enrich specific proteins from complex matrices. The materials based on corundum were characterized by TEM, ESEM, BET, DLS, EDS, and zeta potential measurements. The strong Al-O-P bonds between the corundum surface and amino phosphonic acids were used to introduce functional groups for further conjugations. The common crosslinker glutaraldehyde was compared with a hyperbranched polyglycerol (PG) of around 10 kDa. The latter was oxidized with periodate to generate aldehyde groups that can covalently react with the amines of the surface and the amino groups from the protein via a reductive amination process. The amount of bound protein was quantified via aromatic amino acid analysis (AAAA). This work shows that oxidized polyglycerol can be used as an alternative to glutaraldehyde. With polyglycerol, more of the model protein bovine serum albumin (BSA) could be attached to the surface under the same conditions, and lower non-specific binding (NSB) was observed. As a proof of concept, IgG was extracted with protein A from crude human plasma. The purity of the product was examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). A binding capacity of 1.8 mg IgG per gram of corundum powder was achieved. The advantages of corundum include the very low price, extremely high physical and chemical stability, pressure resistance, favorable binding kinetics, convenient handling, and flexible application. KW - Corundum KW - Sapphire KW - Affinity chromatography KW - Antibodies KW - Self-assembled monolayers (SAM) KW - Polyglycerol KW - Dendrimer KW - Nonspecific binding (NSB) KW - Purification KW - Solid-phase extraction (SPE) PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559342 DO - https://doi.org/10.3390/separations9090252 VL - 9 IS - 9 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-55934 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völzke, Jule L. A1 - Smatty, Sarah A1 - Döring, Sarah A1 - Ewald, Shireen A1 - Oelze, Marcus A1 - Fratzke, Franziska A1 - Flemig, Sabine A1 - Konthur, Zoltán A1 - Weller, Michael G. T1 - Efficient Purification of Polyhistidine-Tagged Recombinant Proteins Using Functionalized Corundum Particles JF - BioTech N2 - Immobilized metal affinity chromatography (IMAC) is a widely used technique for purifying polyhistidine-tagged recombinant proteins. However, it often has practical limitations that require complex optimizations and additional steps for purification. In this study, we introduce functionalized corundum particles as a novel, efficient, and economical method for purifying recombinant proteins in a column-free format. The corundum surface is modified with amino silane APTES, followed by EDTA dianhydride, and then loaded with nickel ions. We used the Kaiser test to monitor the modification process and ICP-MS to quantify the metal-binding capacity. To evaluate the system, we used His-tagged protein A/G (PAG) mixed with bovine serum albumin (BSA). The corundum particles exhibited a binding capacity of approximately 3 mg of protein per gram of corundum or 2.4 mg per 1 mL of corundum suspension. We also examined cytoplasm obtained from different E. coli strains as an example of a complex matrix. Varying the imidazole concentration in the loading and washing buffers showed that higher concentrations during loading improved purity. Even with sample volumes as large as one liter, we successfully isolated recombinant proteins down to a concentration of 1 µg/mL. We found higher purity levels with corundum when comparing the corundum material to standard Ni–NTA agarose beads. We successfully purified His6-MBP-mSA2, a fusion protein comprising monomeric streptavidin and maltose-binding protein, from E. coli cytoplasm, demonstrating the method's applicability. We also purified SARS-CoV-2-S-RBD-His8 expressed in human Expi293F cells, confirming its suitability for mammalian cell culture supernatants. The material cost of the nickel-loaded corundum material (without regeneration) is estimated to be less than 30 cents per gram of functionalized support or 10 cents per milligram of isolated protein. Another advantage of this system is the exceptional physical and chemical stability of corundum particles. Overall, we have demonstrated that this novel material offers an efficient, robust, and cost-effective purification platform for His-tagged proteins, even in challenging, complex matrices and large sample volumes with low product concentrations. This method has potential applications in both small laboratories and large-scale industrial settings. N2 - Die immobilisierte Metallaffinitätschromatographie (IMAC) ist eine weit verbreitete Technik zur Reinigung von rekombinanten Proteinen mit Polyhistidin-Markierung. Sie hat jedoch oft praktische Einschränkungen, die komplexe Optimierungen und zusätzliche Schritte für die Aufreinigung erfordern. In dieser Studie stellen wir funktionalisierte Korundpartikel als neuartige, effiziente und wirtschaftliche Methode zur Reinigung rekombinanter Proteine in einem säulenfreien Format vor. Die Korundoberfläche wird mit dem Aminosilan APTES und anschließend mit EDTA-Dianhydrid modifiziert und dann mit Nickelionen beladen. Wir haben den Kaiser-Test zur Überwachung des Modifizierungsprozesses und ICP-MS zur Quantifizierung der Metallbindungskapazität verwendet. Zur Charakterisierung des Systems verwendeten wir His-markiertes Protein A/G (PAG) in Kombination mit Rinderserumalbumin (BSA). Die Korundpartikel wiesen eine Bindungskapazität von etwa 3 mg Protein pro Gramm Korund oder 2,4 mg pro 1 ml Korundsuspension auf. Als Beispiel für eine komplexe Matrix untersuchten wir auch Zytoplasma, das aus verschiedenen E. coli-Stämmen gewonnen wurde. Die Variation der Imidazolkonzentration in den Lade- und Waschpuffern zeigte, dass höhere Konzentrationen beim Laden die Reinheit verbesserten. Selbst bei einem Probenvolumen von bis zu einem Liter konnten wir rekombinante Proteine von 1 µg/mL isolieren. Beim Vergleich des Korundmaterials mit Standard-Ni-NTA-Agarose-Beads stellten wir einen höheren Reinheitsgrad mit Korund fest. Wir reinigten erfolgreich His6-MBP-mSA2 aus E. coli-Zytoplasma, ein Fusionsprotein, das aus monomerem Streptavidin und Maltose-bindendem Protein besteht. Wir reinigten auch SARS-CoV-2-S-RBD-His8, das in humanen Expi293F-Zellen exprimiert wurde, und bestätigten damit die Eignung des Materials für Zellkulturüberstände von Säugetieren. Die Materialkosten für nickelbeladenen Korund (ohne Regenerierung) werden auf weniger als 30 Cent pro Gramm funktionalisierten Trägers oder 10 Cent pro Milligramm isolierten Proteins geschätzt. Ein weiterer Vorteil dieses Systems ist die außergewöhnliche physikalische und chemische Stabilität der Korundpartikel. Insgesamt haben wir gezeigt, dass dieses neuartige Material eine effiziente, robuste und kostengünstige Reinigungsplattform für His-markierte Proteine bietet, selbst bei schwierigen, komplexen Matrices und großen Probenmengen mit niedrigen Produktkonzentrationen. Diese Methode könnte sowohl in kleinen Labors als auch in der Großindustrie eingesetzt werden. KW - Aluminum oxide KW - Sapphire KW - Ethylenediaminetetraacetic acid KW - Nickel chelate KW - EDTAD KW - HexaHis-Tag KW - His6 KW - 6xHis KW - His8 KW - Bioseparation KW - IMAC purification KW - Immunocapture KW - Affinity chromatography KW - Carrier KW - Nickel KW - Recombinant protein KW - Escherichia coli KW - Bacterial lysates KW - Cytoplasm KW - Polishing KW - Downstream processing PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575672 DO - https://doi.org/10.3390/biotech12020031 VL - 12 IS - 2 SP - 1 EP - 18 PB - MDPI CY - Basel, Schweiz AN - OPUS4-57567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wander, Lukas A1 - Lommel, Lukas A1 - Braun, Ulrike A1 - Meyer, Klas A1 - Paul, Andrea T1 - Development of a Low-Cost Method for Quantifying Microplastics in Soils and Compost Using Near-Infrared Spectroscopy JF - Meas. Sci. Technol. N2 - Near-infrared (NIR) spectroscopy is a promising candidate for low-cost, nondestructive, and highthroughput mass quantification of microplastics in environmental samples. Widespread application of the technique is currently hampered mainly by the low sensitivity of NIR spectroscopy compared to thermoanalytical approaches commonly used for this type of analysis. This study shows how the application of NIR spectroscopy for mass quantification of microplastics can be extended to smaller analyte levels by combining it with a simple and rapid microplastic enrichment protocol. For this purpose, the widely used flotation of microplastics in a NaCl solution, accelerated by centrifugation, was chosen which allowed to remove up to 99 % of the matrix at recovery rates of 83–104 %. The spectroscopic measurements took place directly on the stainless-steel filters used to collect the extracted particles to reduce sample handling to a minimum. Partial least squares regression (PLSR) models were used to identify and quantify the extracted microplastics in the mass range of 1–10 mg. The simple and fast extraction procedure was systematically optimized to meet the requirements for the quantification of microplastics from common PE-, PP-, and PS-based packaging materials with a particle size < 1 mm found in compost or soils with high natural organic matter content (> 10 % determined by loss on ignition). Microplastics could be detected in model samples at a mass fraction of 1 mg g-1. The detectable microplastic mass fraction is about an order of magnitude lower compared to previous studies using NIR spectroscopy without additional enrichment. To emphasize the cost-effectiveness of the method, it was implemented using some of the cheapest and most compact NIR spectrometers available. KW - Mikroplastik KW - NIR KW - Sensor KW - Kompost KW - Multivariat PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552605 DO - https://doi.org/10.1088/1361-6501/ac5e5f VL - 33 IS - 7 SP - 1 EP - 13 PB - IOP Publishing Ltd. CY - Bristol AN - OPUS4-55260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wander, Lukas A1 - Lommel, Lukas A1 - Meyer, Klas A1 - Braun, Ulrike A1 - Paul, Andrea T1 - Development of a low-cost method for quantifying microplastics in soils and compost using near-infrared spectroscopy JF - Measurement Science and Technology N2 - Near-infrared (NIR) spectroscopy is a promising candidate for low-cost, nondestructive, and high-throughput mass quantification of micro¬plastics in environmental samples. Widespread application of the technique is currently hampered mainly by the low sensitivity of NIR spectroscopy compared to thermo-analytical approaches commonly used for this type of analysis. This study shows how the application of NIR spectroscopy for mass quantification of microplastics can be extended to smaller analyte levels by combining it with a simple and rapid microplastic enrichment protocol. For this purpose, the widely used flotation of microplastics in a NaCl solution, accelerated by centrifugation, was chosen which allowed to remove up to 99 % of the matrix at recovery rates of 83–104 %. The spectroscopic measurements took place directly on the stainless-steel filters used to collect the extracted particles to reduce sample handling to a minimum. Partial least squares regression (PLSR) models were used to identify and quantify the extracted microplastics in the mass range of 1–10 mg. The simple and fast extraction procedure was systematically optimized to meet the requirements for the quantification of microplastics from common PE-, PP-, and PS-based packaging materials with a particle size < 1 mm found in compost or soils with high natural organic matter content (> 10 % determined by loss on ignition). Microplastics could be detected in model samples at a mass fraction of 1 mg g-1. The detectable microplastic mass fraction is about an order of magnitude lower compared to previous studies using NIR spectroscopy without additional enrichment. To emphasize the cost-effectiveness of the method, it was implemented using some of the cheapest and most compact NIR spectrometers available. KW - NIR KW - Soil KW - compost KW - PLSR PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546405 DO - https://doi.org/10.1088/1361-6501/ac5e5f SN - 0957-0233 VL - 33 IS - 7 SP - 075801 EP - 075814 PB - IOP Publishing Ltd. CY - UK AN - OPUS4-54640 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Cui A1 - Ebel, Kenny A1 - Heinze, Katja A1 - Resch-Genger, Ute A1 - Bald, Ilko T1 - Quantum Yield of DNA Strand Breaks under Photoexcitation of a Molecular Ruby JF - Chemistry—A European Journal N2 - Photodynamic therapy (PDT) used for treating cancer relies on the generation of highly reactive oxygen species, for example, singlet oxygen 1O2, by light-induced excitation of a photosensitizer (PS) in the presence of molecular oxygen, inducing DNA damage in close proximity of the PS. Although many precious metal complexes have been explored as PS for PDT and received clinical approval, only recently, the potential of photoactive complexes of nonnoble metals as PS has been discovered. Using the DNA origami technology that can absolutely quantify DNA strand break cross sections, we assessed the potential of the luminescent transition metal complex [Cr(ddpd)2]3+ (ddpd=N,N’-dimethyl-N,N’-dipyridine-2-ylpyridine-2,6-diamine) to damage DNA in an air-saturated aqueous environment upon UV/Vis illumination. The quantum yield for strand breakage, that is, the ratio of DNA strand breaks to the number of absorbed photons, was determined to 1–4%, indicating efficient transformation of photons into DNA strand breaks by [Cr(ddpd)2]3+. KW - Fluorescence KW - Synthesis KW - Production KW - Optical spectroscopy KW - Ligand KW - Photophysics KW - Cr(III) KW - Mechanism KW - NIR KW - PDT KW - Singlet oxygen KW - DNA KW - Origami KW - Quantum yield PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573631 DO - https://doi.org/10.1002/chem.202203719 SP - 1 EP - 7 AN - OPUS4-57363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Cui A1 - Kitzmann, W.R. A1 - Weigert, Florian A1 - Förster, Ch. A1 - Wang, X. A1 - Heintze, K. A1 - Resch-Genger, Ute T1 - Matrix Effects on Photoluminescence and Oxygen Sensitivity of a Molecular Ruby JF - ChemPhotoChem N2 - The molecular ruby analogue [Cr(ddpd)2]3+ (ddpd=N,N’-dimethyl-N,N’-dipyridine-2-ylpyridine-2,6-diamine) exhibits near infrared (NIR) emission with a high photoluminescence (PL) quantum yield ΦPL of 11 % and a lifetime of 898 μs in deaerated water at room temperature. While ligand-based control of the photophysical properties has received much attention, influences of the counter anions and microenvironment are still underexplored. In this study, the luminescence properties of the molecular ruby were systematically examined for the counter anions Cl−, Br−, [BF4]−, [PF6]−, [BPh4]−, and [BArF24]− in acetonitrile (MeCN) solution, in crystals, and embedded into polystyrene nanoparticles (PSNP). Stern-Volmer analyses of the oxygen quenching studies in the intensity and lifetime domain showed the highest oxygen sensitivity of the complexes with the counter anions of [BF4]− and [BArF24]−, which also revealed the longest luminescence lifetimes. Embedding [Cr(ddpd)2][PF6]3 in PSNPs and shielding with poly(vinyl alcohol) yields a strongly NIR-emissive oxygen-insensitive material with a record ΦPL of 15.2 % under ambient conditions. KW - Fluorescence KW - Sensor KW - Oxygen KW - Quantum yield KW - Quality assurance KW - Complex KW - Cr(III) KW - Lifetime KW - Ligand KW - Solid state KW - X-Ray analysis KW - Structure-property relationship KW - Nano KW - Polymer KW - Particle PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546057 DO - https://doi.org/10.1002/cptc.202100296 SN - 2367-0932 VL - 6 IS - 6 SP - 1 EP - 9 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weber, A. A1 - von Randow, M. A1 - Voigt, A.-L. A1 - von der Au, Marcus A1 - Fischer, E. A1 - Meermann, Björn A1 - Wagner, M. T1 - Ingestion and toxicity of microplastics in the freshwater gastropodLymnaea stagnalis: No microplastic-induced effects alone or incombination with copper JF - Chemosphere N2 - The interaction of microplastics with freshwater biota and their interaction with other stressors is still not very well understood. Therefore, we investigated the ingestion, excretion and toxicity of microplastics in the freshwater gastropod Lymnaea stagnalis. MP ingestion was analyzed as tissues levels in L. stagnalis after 6–96 h of exposure to 5–90 μm spherical polystyrene (PS) microplastics. To understand the excretion, tissue levels were determined after 24 h of exposure followed by a 12 h–7 d depuration period. To assess the toxicity, snails were exposed for 28 d to irregular PS microplastics (<63 μm, 6.4–100,000 particles mL−1), both alone and in combination with copper as additional stressor. To compare the toxicity of natural and synthetic particles, we also included diatomite particles. Microplastics ingestion and excretion significantly depended on the particle size and the exposure/depuration duration. An exposure to irregular PS had no effect on survival, reproduction, energy reserves and oxidative stress. However, we observed slight effects on immune cell phagocytosis. Exposure to microplastics did not exacerbate the reproductive toxicity of copper. In addition, there was no pronounced difference between the effects of microplastics and diatomite. The tolerance towards microplastics may originate from an adaptation of L. stagnalis to particle-rich environments or a general stress resilience. In conclusion, despite high uptake rates, PS fragments do not appear to be a relevant stressor for stress tolerant freshwater gastropods considering current environmental levels of microplastics. KW - Lymnaea stagnalis KW - Microplastic-induced effects KW - Mixture toxicity PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513551 DO - https://doi.org/10.1016/j.chemosphere.2020.128040 VL - 263 SP - 128040 PB - Elsevier Ltd. AN - OPUS4-51355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wegner, Karl David A1 - Dussert, F. A1 - Truffier-Boutry, D. A1 - Benayad, A. A1 - Beal, D. A1 - Mattera, L. A1 - Ling, W. L. A1 - Carrière, M. A1 - Reiss, P. T1 - Influence of the Core/Shell Structure of Indium Phosphide Based Quantum Dots on Their Photostability and Cytotoxicity JF - Frontiers in Chemistry N2 - With the goal to improve their photostability, InP-based QDs are passivated with three types of inorganic shells, namely (i) a gradient ZnSexS1−x shell, (ii) an additional ZnS shell on top of the gradient shell with two different thicknesses (core/shell/shell, CSS), (iii) an alumina coating on top of ZnS. All three systems have photoluminescence Quantum yields (PLQY) > 50%and similar PL decay times (64–67 ns). To assess their photostability they are incorporated into a transparent poly (methyl methacrylate) (PMMA) matrix and exposed to continuous irradiation with simulated sunlight in a climate chamber. The alumina coated core/shell system exhibits the highest stability in terms of PLQY Retention as well as the lowest shift of the PL maximum and lowest increase of the PL linewidth, followed by the CSS QDs and finally the gradient shell system. By means of XPS studies we identify the degradation of the ZnS outer layer and concomitant xidation of the emissive InZnP core as the main origins of degradation in the gradient structure. These modifications do not occur in the case of the alumina-capped sample, which exhibits excellent chemical stability. The gradient shell and CSS systems could be transferred to the aqueous phase using surface ligand exchange with penicillamine. Cytotoxicity studies on human primary keratinocytes revealed that exposure for 24 h to 6.25–100 nM of QDs did not affect cell viability. However, a trend toward reduced cell proliferation is observed for higher concentrations of gradient shell and CSS QDs with a thin ZnS shell, while CSS QDs with a thicker ZnS shell do not exhibit any impact. KW - Indium phosphide KW - Quantum dots KW - Cytotoxicity KW - Photostability PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-494249 DO - https://doi.org/10.3389/fchem.2019.00466 VL - 7 SP - Article Number: 466 PB - Frontiers Media SA AN - OPUS4-49424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wegner, Karl David A1 - Resch-Genger, Ute T1 - The 2023 Nobel Prize in Chemistry: Quantum dots JF - Analytical and Bioanalytical Chemistry N2 - The 2023 Nobel Prize in Chemistry was awarded to Aleksey I. Ekimov (prize share 1/3), Louis E. Brus (prize share 1/3), and Moungi G. Bawendi (prize share 1/3) for groundbreaking inventions in the field of nanotechnology, i.e., for the discovery and synthesis of semiconductor nanocrystals, also termed quantum dots, that exhibit size-dependent physicochemical properties enabled by quantum size effects. This feature article summarizes the main milestones of the discoveries and developments of quantum dots that paved the road to their versatile applications in solid-state lighting, display technology, energy conversion, medical diagnostics, bioimaging, and image-guided surgery. KW - Quantum dots KW - Semiconductor nanocrystals KW - Luminescence KW - Quantitative spectroscopy KW - Quantum yield KW - Advanced nanomaterials KW - Quality assurance KW - Energy transfer PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597843 DO - https://doi.org/10.1007/s00216-024-05225-9 VL - 2024 SP - 1 EP - 11 PB - Springer CY - Cham AN - OPUS4-59784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weigert, Florian A1 - Müller, A. A1 - Häusler, I. A1 - Geißler, Daniel A1 - Skroblin, D. A1 - Unger, Wolfgang A1 - Radnik, Jörg A1 - Resch-Genger, Ute T1 - Combining HR‑TEM and XPS to elucidate the core–shell structure of ultrabright CdSe/CdS semiconductor quantum dots JF - Scientific reports N2 - Controlling thickness and tightness of surface passivation shells is crucial for many applications of core–shell nanoparticles (NP). Usually, to determine shell thickness, core and core/shell particle are measured individually requiring the availability of both nanoobjects. This is often not fulfilled for functional nanomaterials such as many photoluminescent semiconductor quantum dots (QD) used for bioimaging, solid state lighting, and display technologies as the core does not show the applicationrelevant functionality like a high photoluminescence (PL) quantum yield, calling for a whole nanoobject approach. By combining high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS), a novel whole nanoobject approach is developed representatively for an ultrabright oleic acid-stabilized, thick shell CdSe/CdS QD with a PL quantum yield close to unity. The size of this spectroscopically assessed QD, is in the range of the information depth of usual laboratory XPS. Information on particle size and monodispersity were validated with dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) and compared to data derived from optical measurements. In addition to demonstrating the potential of this novel whole nanoobject approach for determining architectures of small nanoparticles, the presented results also highlight challenges faced by different sizing and structural analysis methods and method-inherent uncertainties. KW - Photoluminescence KW - Single particle KW - Microscopy KW - Particle architecture KW - Thickness KW - SAXS KW - Shell KW - XPS KW - TEM KW - Semiconductor KW - Quantum dot KW - Photophysics KW - Quantum yield PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517911 DO - https://doi.org/10.1038/s41598-020-77530-z VL - 10 IS - 1 SP - 20712 PB - Springer Nature AN - OPUS4-51791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weller, Michael G. T1 - The mystery of homochirality on earth JF - Life N2 - Homochirality is an obvious feature of life on Earth. On the other hand, extraterrestrial samples contain largely racemic compounds. The same is true for any common organic synthesis. Therefore, it has been a perplexing puzzle for decades how these racemates could have formed enantiomerically enriched fractions as a basis for the origin of homochiral life forms. Numerous hypotheses have been put forward as to how preferentially homochiral molecules could have formed and accumulated on Earth. In this article, it is shown that homochirality of the abiotic organic pool at the time of formation of the first self-replicating molecules is not necessary and not even probable. It is proposed to abandon the notion of a molecular ensemble and to focus on the level of individual molecules. Although the formation of the first self-replicating, most likely homochiral molecule, is a seemingly improbable event, on a closer look, it is almost inevitable that some homochiral molecules have formed simply on a statistical basis. In this case, the non-selective leap to homochirality would be one of the first steps in chemical evolution directly out of a racemic “ocean”. Moreover, most studies focus on the chirality of the primordial monomers with respect to an asymmetric carbon atom. However, any polymer with a minimal size that allows folding to a secondary structure would spontaneously lead to asymmetric higher structures (conformations). Most of the functions of these polymers would be influenced by this inherently asymmetric folding. Furthermore, a concept of physical compartmentalization based on rock nanopores in analogy to nanocavities of digital immunoassays is introduced to suggest that complex cell walls or membranes were also not required for the first steps of chemical evolution. To summarize, simple and universal mechanisms may have led to homochiral self-replicating systems in the context of chemical evolution. A homochiral monomer pool is deemed unnecessary and probably never existed on primordial Earth. N2 - Homochiralität ist ein offensichtliches Merkmal des Lebens auf der Erde. Andererseits enthalten extraterrestrische Proben überwiegend racemische Verbindungen. Dasselbe gilt für jede gängige organische Synthese. Daher war es jahrzehntelang ein Rätsel, wie diese Racemate enantiomeren-angereicherte Fraktionen als Grundlage für den Ursprung homochiraler Lebensformen bilden konnten. Zahlreiche Hypothesen wurden aufgestellt, wie sich bevorzugt homochirale Moleküle auf der Erde gebildet und angereichert haben könnten. In diesem Artikel wird gezeigt, dass Homochiralität des abiotischen organischen Pools zum Zeitpunkt der Bildung der ersten selbstreplizierenden Moleküle nicht notwendig und nicht einmal wahrscheinlich ist. Es wird vorgeschlagen, die Vorstellung eines molekularen Ensembles aufzugeben und sich auf die Ebene der einzelnen Moleküle zu konzentrieren. Obwohl die Bildung des ersten selbstreplizierenden, höchstwahrscheinlich homochiralen Moleküls ein scheinbar unwahrscheinliches Ereignis ist, ist es bei näherer Betrachtung fast unvermeidlich, dass sich einige homochirale Moleküle einfach auf statistischer Basis gebildet haben. In diesem Fall wäre der nichtselektive Sprung zur Homochiralität einer der ersten Schritte der chemischen Evolution direkt aus einem racemischen "Ozean". Darüber hinaus konzentrieren sich die meisten Studien auf die Chiralität der ursprünglichen Monomere in Bezug auf ein asymmetrisches Kohlenstoffatom. Jedes Polymer mit einer Mindestgröße, die eine Faltung zu einer Sekundärstruktur erlaubt, würde jedoch spontan zu asymmetrischen höheren Strukturen (Konformationen) führen. Die meisten Funktionen dieser Polymere würden durch diese inhärent asymmetrische Faltung beeinflusst. Darüber hinaus wird ein Konzept der physikalischen Kompartimentierung auf der Basis von Gesteinsnanoporen in Analogie zu den Nanokavitäten digitaler Immunoassays vorgestellt, das darauf hindeutet, dass auch für die ersten Schritte der chemischen Evolution keine komplexen Zellwände oder Membranen notwendig waren. Zusammenfassend lässt sich sagen, dass einfache und universelle Mechanismen zu homochiralen selbstreplizierenden Systemen im Rahmen der chemischen Evolution geführt haben könnten. Ein homochiraler Monomerpool wird als unnötig angesehen, welcher auf der Urerde wahrscheinlich nie existiert hat. KW - Chemical evolution KW - Enantiomeric excess ee KW - Chirality KW - Racemate KW - Folding chirality KW - Self-assembly KW - self-replication KW - Single molecule KW - Prebiotic chemistry KW - Protein folding KW - Peptide folding KW - Proteinoid KW - Conformation KW - Segregation KW - Compartmentalization KW - Digital immunoassay KW - Porous rock KW - Miller and Urey KW - Primordial soup KW - Murchison meteorite KW - Micrometeorites KW - Tholins PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598349 DO - https://doi.org/10.3390/life14030341 SN - 2075-1729 VL - 14 IS - 3 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-59834 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weller, Michael G. T1 - The Protocol Gap JF - Methods and Protocols N2 - Although peer review is considered one of the main pillars of modern science, experimental methods and protocols seem to be not a rigorous subject of this process in many papers. Commercial equipment, test kits, labeling kits, previously published concepts, and standard protocols are often considered to be not worth a detailed description or validation. Even more disturbing is the extremely biased citation behavior in this context, which sometimes leads to surrogate citations to avoid low-impact journals, preprints, or to indicate traditional practices. This article describes some of these surprising habits and suggests some measures to avoid the most unpleasant effects, which in the long term may undermine the credibility of science as a whole. KW - Validation KW - Peer review KW - Experiment KW - Documentation KW - Scientific publication KW - Reproducibility crisis KW - Replication crisis KW - Trust KW - Citation KW - References KW - Surrogate citations KW - Impact PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521440 DO - https://doi.org/10.3390/mps4010012 SN - 2409-9279 VL - 4 IS - 1 SP - 1 EP - 5 PB - MDPI CY - Basel AN - OPUS4-52144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weller, Michael G. T1 - Ten Basic Rules of Antibody Validation JF - Analytical Chemistry Insights N2 - The quality of research antibodies is an issue for decades. Although several papers have been published to improve the situation, their impact seems to be limited. This publication makes the effort to simplify the description of validation criteria in a way that the occasional antibody user is able to assess the validation level of an immunochemical reagent. A simple, 1-page checklist is supplied for the practical application of these criteria. KW - Replication KW - Reproducibility KW - Documentation KW - Open Science KW - Quality Control KW - Biochemistry KW - Biotechnology KW - Bioanalysis PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444322 UR - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5813849/ DO - https://doi.org/10.1177/1177390118757462 SN - 11773901 VL - 13 SP - 1 EP - 5 PB - Sage CY - Los Angeles, USA AN - OPUS4-44432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wetzel, Annica A1 - Morell, Daniel A1 - von der Au, Marcus A1 - Wittstock, Gunther A1 - Ozcan, Ozlem A1 - Witt, Julia T1 - Transpassive Metal Dissolution vs. Oxygen Evolution Reaction: Implication for Alloy Stability and Electrocatalysis T1 - Transpassive Metallauflösung vs. Sauerstoffentwicklung: Auswirkungen auf Legierungsstabilität und Elektrokatalyse JF - Angewandte Chemie International Edition N2 - Multi-principal element alloys (MPEAs) are gaining interest in corrosion and electrocatalysis research due to their electrochemical stability across a broad pH range and the design flexibility they offer. Using the equimolar CrCoNi alloy, we observe significant metal dissolution in a corrosive electrolyte (0.1 M NaCl, pH 2) concurrently with the oxygen evolution reaction (OER) in the transpassive region despite the absence of hysteresis in polarization curves or other obvious corrosion indicators. We present a characterization scheme to delineate the contribution of OER and alloy dissolution, using scanning electrochemical microscopy (SECM) for OER-onset detection, and quantitative chemical analysis with inductively coupled-mass spectrometry (ICP-MS) and ultraviolet visible light (UV-Vis) spectroscopy to elucidate metal dissolution processes. In-situ electrochemical atomic force microscopy (EC-AFM) revealed that the transpassive metal dissolution on CrCoNi is dominated by intergranular corrosion. These results have significant implications for the stability of MPEAs in corrosion systems, emphasizing the necessity of analytically determining metal ions released from MPEA electrodes into the electrolyte when evaluating Faradaic efficiencies of OER catalysts. The release of transition metal ions not only reduces the Faradaic efficiency of electrolyzers but may also cause poisoning and degradation of membranes in electrochemical reactors. N2 - Multi-Hauptelement-Legierungen (MPEAs) gewinnen in der Korrosions- und Elektrokatalyseforschung aufgrund ihrer elektrochemischen Stabilität über einen breiten pH-Bereich und der Vielfalt der möglichen chemischen Zusammensetzungen zunehmend an Interesse. In unseren Untersuchungen mit der äquimolaren CrCoNi-Legierung in einem sauren Elektrolyten (0.1 M NaCl, pH 2) beobachteten wir eine signifikante Metallauflösung, die mit der Sauerstoffentwicklungsreaktion (OER) im transpassiven Bereich einhergeht, obwohl in zyklischen Polarisationskurven keine Hysterese auftrat oder andere offensichtliche Korrosionsindikatoren vorlagen. In diesem Artikel wird ein Charakterisierungskonzept eingeführt, dass die Beiträge der OER und der Legierungsauflösung differenziert. Hierfür kommt die elektrochemische Rastermikroskopie (SECM) zum Nachweis des Beginns der OER und die quantitative chemische Analyse mit induktiv gekoppelter Massenspektrometrie (ICP-MS) und UV/Vis-Spektrometrie zur Aufklärung der Metallauflösungsprozesse zum Einsatz. Die elektrochemische In situ-Atomkraftmikroskopie (EC-AFM) zeigte, dass die intergranulare Korrosion der dominierende Mechanismus der transpassive Metallauflösung von CrCoNi ist. Diese Ergebnisse besitzen erhebliche Auswirkungen für die Beurteilung der Stabilität von MPEAs in Korrosionssystemen und der Stromausbeute von OER-Katalysatoren auf der Basis von MPEAs. Die Daten unterstreichen die Notwendigkeit der analytischen Bestimmung von Metallionen, die von MPEA-Elektroden freigesetzt werden. Die Freisetzung von Übergangsmetallionen verringert nicht nur die Stromausbeute von Elektrolyseuren, sondern kann zu einer Schädigung von Membranen in elektrochemischen Reaktoren führen. KW - Transpassive dissolution KW - Corrosion KW - Multi-prinicpal element alloys (MPEAs) KW - Passivation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597045 DO - https://doi.org/10.1002/anie.202317058 SP - 1 EP - 8 PB - Wiley VHC-Verlag AN - OPUS4-59704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wetzel, Annica A1 - von der Au, Marcus A1 - Dietrich, P. M. A1 - Radnik, Jörg A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia T1 - The comparison of the corrosion behavior of the CrCoNi medium entropy alloy and CrMnFeCoNi high entropy alloy JF - Applied Surface Science N2 - This work presents the determination of the corrosion characteristics of CrCoNi (medium entropy alloy) and CrMnFeCoNi (high entropy alloy) in 0.1 M NaCl and 0.1 M H2SO4. The morphology and chemical composition of the oxide layers formed on CrCoNi and CrMnFeCoNi were comparatively analyzed by scanning Kelvin probe microscopy (SKPFM) and scanning electron microscopy (SEM) and supported with chemical analysis by means of inductively coupled plasma mass spectrometry (ICP-MS) and X-Ray photoelectron spectroscopy (XPS). The analysis of the 3p core level peaks showed that the oxide layer (native and after anodic passivation) on CrCoNi consisted mainly of Cr oxides, while the oxide layer on CrMnFeCoNi was primarily composed of a mixture of Cr and Fe oxides. In addition, XPS was utilized to assess the oxide layer thicknesses. These results were compared to the thicknesses obtained by means of electrochemical impedance spectroscopy (EIS), with both approaches yielding values up to about 4 nm depending on the electrolyte and the alloy. Cyclic polarization measurements indicated superior corrosion resistance of CrCoNi in both aqueous environments compared to CrMnFeCoNi, as well as to AISI 304 stainless steel. KW - Medium entropy alloy KW - High entropy alloy KW - SKPFM KW - XPS KW - Passivation KW - Corrosion PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559902 DO - https://doi.org/10.1016/j.apsusc.2022.154171 SN - 0169-4332 VL - 601 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-55990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Wilke, Marco A1 - Röder, Bettina A1 - Paul, Martin A1 - Weller, Michael G. T1 - Sintered Glass Monoliths as New Supports for Affinity Columns T2 - Preprints N2 - A novel stationary phase for affinity separations is presented. This material is based on sintered borosilicate glass readily available as semi-finished filter plates with defined porosity and surface area. The material shows fast binding kinetics and excellent long-term stability under real application conditions due to lacking macropores and high mechanical rigidity. The glass surface can be easily modified with standard organosilane chemistry to immobilize selective binders or other molecules used for biointeraction. In this paper, the manufacturing of the columns and their respective column holders by 3D printing is shown in detail. The model system protein A/IgG was chosen as an example to examine the properties of such monolithic columns under realistic application conditions. Several specifications, such as (dynamic) IgG capacity, pressure stability, long-term performance, productivity, non-specific binding, and peak shape, are presented. It could be shown that due to the very high separation speed, 250 mg antibody per hour and column can be collected, which surpasses the productivity of most standard columns of the same size. The total IgG capacity of the shown columns is around 4 mg (5.5 mg/mL), which is sufficient for most tasks in research laboratories. The cycle time of an IgG separation can be less than 1 minute. Due to the glass material's excellent pressure resistance, these columns are compatible with standard HPLC systems. This is usually not the case with standard affinity columns, limited to manual use or application in low-pressure systems. The use of a standard HPLC system also improves the ability for automation, which enables the purification of hundreds of cell supernatants in one day. The sharp peak shape of the elution leads to an enrichment effect, which might increase the concentration of IgG by a factor of 3. The final concentration of IgG can be around 7.5 mg/mL without the need for an additional nanofiltration step. The purity of the IgG was > 95% in one step and nearly 99% with a second polishing run. KW - Affinity Chromatography KW - Glass KW - Purification KW - Antibodies KW - Solid support KW - HPLC KW - FPLC KW - Separation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529117 DO - https://doi.org/10.20944/preprints202103.0298.v1 SP - 1 PB - MDPI CY - Basel AN - OPUS4-52911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Marco A1 - Röder, Bettina A1 - Paul, Martin A1 - Weller, Michael G. T1 - Sintered glass monoliths as supports for affinity columns JF - Separations N2 - A novel stationary phase for affinity separations is presented. This material is based on sintered borosilicate glass readily available as semi-finished filter plates with defined porosity and surface area. The material shows fast binding kinetics and excellent long-term stability under real application conditions due to lacking macropores and high mechanical rigidity. The glass surface can be easily modified with standard organosilane chemistry to immobilize selective binders or other molecules used for biointeraction. In this paper, the manufacturing of the columns and their respective column holders by 3D printing is shown in detail. The model system protein A/IgG was chosen as an example to examine the properties of such monolithic columns under realistic application conditions. Several specifications, such as (dynamic) IgG capacity, pressure stability, long-term performance, productivity, non-specific binding, and peak shape, are presented. It could be shown that due to the very high separation speed, 250 mg antibody per hour and column can be collected, which surpasses the productivity of most standard columns of the same size. The total IgG capacity of the shown columns is around 4 mg (5.5 mg/mL), which is sufficient for most tasks in research laboratories. The cycle time of an IgG separation can be less than 1 min. Due to the glass material’s excellent pressure resistance, these columns are compatible with standard HPLC systems. This is usually not the case with standard affinity columns, limited to manual use or application in low-pressure systems. The use of a standard HPLC system also improves the ability for automation, which enables the purification of hundreds of cell supernatants in one day. The sharp peak shape of the elution leads to an enrichment effect, which might increase the concentration of IgG by a factor of 3. The final concentration of IgG can be around 7.5 mg/mL without the need for an additional nano-filtration step. The purity of the IgG was > 95% in one step and nearly 99% with a second polishing run. KW - Affinity Chromatography KW - Affinity Extraction KW - Affinity Separation KW - Protein Purification KW - Down Stream Processing KW - Antibody Purification KW - Diagnostic Antibodies KW - Therapeutic Antibodies KW - Automated Purification KW - HPLC KW - FPLC KW - IgG determination KW - Concentration step KW - Monoclonal Antibodies KW - Polyclonal Antibodies KW - Human Plasma KW - Glass Support KW - Borosilicate Glass KW - Monolith KW - Sintered Material KW - Additive Manufacturing KW - Column holder KW - Construction KW - Open Science KW - Citizen Science KW - Protein A KW - Regeneration KW - High-Speed Separations KW - Robustness PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527581 DO - https://doi.org/10.3390/separations8050056 SN - 2297-8739 VL - 8 IS - 5 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-52758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winckelmann, Alexander A1 - Morcillo Garcia-Morato, Dalia A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Riedel, Jens A1 - Vogl, Jochen A1 - Panne, Ulrich A1 - Abad Andrade, Carlos Enrique T1 - Determination of lithium in human serum by isotope dilution atomic absorption spectrometry JF - Analytical and bioanalytical chemistry N2 - The therapeutic dose of lithium (Li) compounds, which are widely used for the treatment of psychiatric and hematologic disorders, is close to its toxic level; therefore, drug monitoring protocols are mandatory. Herein, we propose a fast, simple, and low-cost analytical procedure for the traceable determination of Li concentration in human serum, based on the monitoring of the Li isotope dilution through the partially resolved isotope shift in its electronic transition around 670.80 nm using a commercially available high-resolution continuum source graphite furnace atomic absorption spectrometer. With this technique, serum samples only require acidic digestion before analysis. The procedure requires three measurements—an enriched 6Li spike, a mixture of a certified standard solution and spike, and a mixture of the sample and spike with a nominal 7Li/6Li ratio of 0.82. Lanthanum has been used as an internal spectral standard for wavelength correction. The spectra are described as the linear superposition of the contributions of the respective isotopes, each consisting of a spin-orbit doublet, which can be expressed as Gaussian components with constant spectral position and width and different relative intensity, reflecting the isotope ratio in the sample. Both the spectral constants and the correlation between isotope ratio and relative band intensity have been experimentally obtained using commercially available materials enriched with Li isotopes. The Li characteristic mass (mc) obtained corresponds to 0.6 pg. The procedure has been validated using five human serum certified reference materials. The results are metrologically comparable and compatible to the certified values. The measurement uncertainties are comparable to those obtained by the more complex and expensive technique, isotope dilution mass spectrometry. KW - Lithium KW - Human serum KW - Isotope dilution KW - Atomic absorption spectrometry KW - High-resolution continuum source graphite furnace atomic absorption spectrometry PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-532446 DO - https://doi.org/10.1007/s00216-021-03636-6 VL - 414 IS - 1 SP - 251 EP - 256 PB - Springer CY - Berlin AN - OPUS4-53244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winckelmann, Alexander A1 - Nowak, S. A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Riedel, Jens A1 - Vogl, Jochen A1 - Panne, Ulrich A1 - Abad Andrade, Carlos Enrique T1 - High-Resolution Atomic Absorption Spectrometry Combined With Machine Learning Data Processing for Isotope Amount Ratio Analysis of Lithium JF - Analytical Chemistry N2 - An alternative method for lithium isotope amount ratio analysis based on a combination of high-resolution atomic absorption spectrometry and spectral data analysis by machine learning (ML) is proposed herein. It is based on the well-known isotope shift of approximately 15 pm for the electronic transition 22P←22S at around the wavelength of 670.8 nm, which can be measured by the state-of-the-art high-resolution continuum source graphite furnace atomic absorption spectrometry. For isotope amount ratio analysis, a scalable tree boosting ML algorithm (XGBoost) was employed and calibrated using a set of samples with 6Li isotope amount fractions, ranging from 0.06 to 0.99 mol mol–1, previously determined by a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS). The calibration ML model was validated with two certified reference materials (LSVEC and IRMM-016). The procedure was applied toward the isotope amount ratio determination of a set of stock chemicals (Li2CO3, LiNO3, LiCl, and LiOH) and a BAM candidate reference material NMC111 (LiNi1/3Mn1/3Co1/3O2), a Li-battery cathode material. The results of these determinations were compared with those obtained by MC-ICP-MS and found to be metrologically comparable and compatible. The residual bias was −1.8‰, and the precision obtained ranged from 1.9 to 6.2‰. This precision was sufficient to resolve naturally occurring variations, as demonstrated for samples ranging from approximately −3 to +15‰. To assess its suitability to technical applications, the NMC111 cathode candidate reference material was analyzed using high-resolution continuum source atomic absorption spectrometry with and without matrix purification. The results obtained were metrologically compatible with each other. KW - Lithium KW - Isotope KW - Machine learning KW - Algorithms KW - Reference material KW - AAS KW - Atomic Absorption Spectrometry PY - 2021 DO - https://doi.org/10.1021/acs.analchem.1c00206 SN - 1520-6882 VL - 93 IS - 29 SP - 10022 EP - 10030 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-53028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winckelmann, Alexander A1 - Roik, Janina A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique A1 - You, Zengchao T1 - Investigation of matrix effects in nitrogen microwave inductively coupled atmospheric-pressure plasma mass spectrometry (MICAP-MS) for trace element analysis in steels JF - Journal of Analytical Atomic Spectrometry N2 - We investigated the performance of nitrogen microwave inductively coupled atmospheric-pressure plasma mass spectrometry (MICAP-MS) under matrix effects and its applicability to trace element analysis in steels. Influences of different gas flows and ion optics on the matrix tolerance are studied, indicating that nebulizer gas flow has the most significant impact. Optimization of ion optics improves matrix tolerance for light elements due to the reduction of the inelastic collisional scattering effect. With optimized operating conditions, MICAP-MS achieves an internal standard intensity recovery of over 90% at an Fe concentration of 500 mg L−1. Even at an Fe concentration of 1 g L−1, the recovery remains above 80%. Three certified reference materials – non-alloy, low-alloy and high-alloy steel – were analyzed using MICAP-MS. The determined mass concentrations of the trace and minor components show metrological compatibility to the reference values. No significant differences are observed between the results obtained with aqueous and matrix-matched calibration, demonstrating the strong matrix tolerance of MICAP-MS, and its promising applicability to steel analysis. KW - MICAP-MS KW - Trace Analysis KW - Steel PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576323 DO - https://doi.org/10.1039/d3ja00088e SN - 0267-9477 VL - 38 IS - 6 SP - 1253 EP - 1260 PB - Royal Society of Chemistry AN - OPUS4-57632 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Witte, F. A1 - Rietsch, P. A1 - Nirmalananthan-Budau, Nithiya A1 - Weigert, Florian A1 - Götze, J. P. A1 - Resch-Genger, Ute A1 - Eigler, S. A1 - Paulus, B. T1 - Aggregation-induced emission leading to two distinct emissive species in the solid-state structure of high-dipole organic chromophores JF - Physical chemistry chemical physics: PCCP N2 - The concept of aggregation-induced emission represents a means to rationalise photoluminescence of usually nonfluorescent excimers in solid-state materials. In this publication, we study the photophysical properties of selected diaminodicyanoquinone (DADQ) derivatives in the solid state using a combined approach of experiment and theory. DADQs are a class of high-dipole organic chromophores promising for applications in non-linear optics and light-harvesting devices. Among the compounds investigated, we find both aggregation-induced emission and aggregation-caused quenching effects rationalised by calculated energy transfer rates. Analysis of fluorescence spectra and lifetime measurements provide the interesting result that (at least) two emissive species seem to contribute to the photophysical properties of DADQs. The main emission peak is notably broadened in the long-wavelength limit and exhibits a blue-shifted shoulder. We employ high-level quantum-chemical methods to validate a molecular approach to a solid-state problem and show that the complex emission features of DADQs can be attributed to a combination of H-type aggregates, monomers, and crystal structure defects. KW - Fluorescence KW - Optical probe KW - Dye KW - Photophysics KW - Theory KW - Quantum yield KW - Mechanism KW - Quantum chemistry KW - Modelling KW - Aggregation KW - Lifetime KW - Single particle KW - Microscopy KW - Solid KW - Crystal PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531138 DO - https://doi.org/10.1039/d1cp02534a SP - 1 EP - 9 PB - Royal Society of Chemistry AN - OPUS4-53113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Behnke, Thomas A1 - Gienger, J. A1 - Resch-Genger, Ute T1 - Efficiency scale for scatteringluminescent particles linkedto fundamental and measurablespectroscopic properties JF - Scientific Reports N2 - Comparing the performance of molecular and nanoscale luminophores and luminescent microand nanoparticles and estimating achievable signal amplitudes and limits of detection requires a standardizable intensity scale. This initiated the development of the relative MESF (number of molecules of equivalent soluble fluorochromes) and ERF (equivalent reference fluorophores) scales for flow cytometry and fluorescence microscopy. Both intensity scales rely on fluorescence intensity values assigned to fluorescent calibration beads by an intensity comparison to spectrally closely matching fluorophore solutions of known concentration using a spectrofluorometer. Alternatively, the luminophore or bead brightness (B) can be determined that equals the product of the absorption cross section (σa) at the excitation wavelength (σa(λex)) and the photoluminescence quantum yield (Φpl). Thereby, an absolute scale based on fundamental and measurable spectroscopic properties can be realized which is independent of particle size, material, and luminophore staining or labeling density and considers the sensitivity of the optical properties of luminophores to their environment. Aiming for establishing such a brightness scale for light-scattering dispersions of luminescent particles with sizes exceeding a few ten nanometers, we demonstrate how the brightness of quasi-monodisperse 25 nm, 100 nm, and 1 μm sized polystyrene particles (PSP), loaded with two different dyes in varying concentrations, can be obtained with a single custom-designed integrating sphere setup that enables the absolute determination of Φpl and transmittance and diffuse reflectance measurements. The resulting Φpl, σa(λex), imaginary parts of the refractive index, and calculated B values of these samples are given in dependence of the number of incorporated dye molecule per particle. Finally, a unitless luminescence efficiency (LE) is defined allowing for the direct comparison of luminescence efficiencies of particles with different sizes. KW - Brightness KW - Quantum yield KW - Cross section KW - Lluminescence PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573680 DO - https://doi.org/10.1038/s41598-023-32933-6 VL - 13 IS - 1 SP - 14 PB - Nature AN - OPUS4-57368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Grauel, Bettina A1 - Pons, Monika A1 - Frenzel, Florian A1 - Rissiek, P. A1 - Rücker, Kerstin A1 - Haase, Markus A1 - Resch-Genger, Ute T1 - Yb- and Er concentration dependence of the upconversion luminescence of highly doped NaYF4:Yb,Er/NaYF4:Lu core/shell nanocrystals prepared by a water-free synthesis JF - Nano Research N2 - High sensitizer and activator concentrations have been increasingly examined to improve the performance of multi-color emissive upconversion (UC) nanocrystals (UCNC) like NaYF4:Yb,Er and first strategies were reported to reduce concentration quenching in highly doped UCNC. UC luminescence (UCL) is, however, controlled not only by dopant concentration, yet by an interplay of different parameters including size, crystal and shell quality, and excitation power density (P). Thus, identifying optimum dopant concentrations requires systematic studies of UCNC designed to minimize additional quenching pathways and quantitative spectroscopy. Here, we quantify the dopant concentration dependence of the UCL quantum yield (ΦUC) of solid NaYF4:Yb,Er/NaYF4:Lu upconversion core/shell nanocrystals of varying Yb3+ and Er3+ concentrations (Yb3+ series: 20%‒98% Yb3+; 2% Er3+; Er3+ series: 60% Yb3+; 2%‒40% Er3+). To circumvent other luminescence quenching processes, an elaborate synthesis yielding OH-free UCNC with record ΦUC of ~9% and ~25 nm core particles with a thick surface shell were used. High Yb3+ concentrations barely reduce ΦUC from ~9% (20% Yb3+) to ~7% (98% Yb3+) for an Er3+ concentration of 2%, thereby allowing to strongly increase the particle absorption cross section and UCNC brightness. Although an increased Er3+ concentration reduces ΦUC from ~7% (2% Er3+) to 1% (40%) for 60% Yb3+. Nevertheless, at very high P (> 1 MW/cm2) used for microscopic studies, highly Er3+-doped UCNC display a high brightness because of reduced saturation. These findings underline the importance of synthesis control and will pave the road to many fundamental studies of UC materials. KW - Upconverion KW - Nanoparticle KW - Lanthanides KW - Quantum yield PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551346 DO - https://doi.org/10.1007/s12274-022-4570-5 SP - 1 EP - 8 PB - Springer AN - OPUS4-55134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xu, R. A1 - Teich, W. A1 - Frenzel, Florian A1 - Hoffmann, Katrin A1 - Radke, J. A1 - Rösler, J. A1 - Faust, K. A1 - Blank, A. A1 - Brandenburg, S. A1 - Misch, M. A1 - Vajkoczy, P. A1 - Onken, J. S. A1 - Resch-Genger, Ute T1 - Optical characterization of sodium fluorescein in vitro and ex vivo JF - Frontiers in oncology N2 - Objective: The utilization of fluorescein-guided biopsies and resection has been recently discussed as a suitable strategy to improve and expedite operative techniques for the resection of central nervous system (CNS) tumors. However, little is known about the optical properties of sodium fluorescein (NaFl) in human tumor tissue and their potential impact on ex vivo analyses involving fluorescence-based methods. Methods: Tumor tissue was obtained from a study cohort of an observational study on the utilization of fluorescein-guided biopsy and resection (n=5). The optical properties of fluorescein-stained tissue were compared to the optical features of the dye in vitro and in control samples consisting of tumor tissue of high-grade glioma patients (n=3) without intravenous (i.v.) application of NaFl. The dye-exposed tumor tissues were used for optical measurements to confirm the detectability of NaFl emission ex vivo. The tissue samples were fixed in 4%PFA, immersed in 30% sucrose, embedded in Tissue-Tek OCT compound, and cut to 10 mm cryosections. Spatially resolved emission spectra from tumor samples were recorded on representative slides with a Confocal Laser Scanning Microscope FV1000 (Olympus GmbH, Hamburg, Germany) upon excitation with lexc = 488 nm. Results: Optical measurements of fluorescein in 0.9% sodium chloride (NaCl) under in vitro conditions showed an absorption maximum of lmax abs = 479 nm as detected with spectrophotometer Specord 200 and an emission peak at lmax em = 538 nm recorded with the emCCD detection system of a custom-made microscope-based single particle setup using a 500 nm long-pass filter. Further measurements revealed pH- and concentration-dependent emission spectra of NaFl. Under ex vivo conditions, confocal laser scanning microscopy of fluorescein tumor samples revealed a slight bathochromic shift and a broadening of the emission band. Conclusion: Tumor uptake of NaFl leads to changes in the optical properties – a bathochromic shift and broadening of the emission band – possibly caused by the dye’s high pH sensitivity and concentration-dependent reabsorption acting as an innerfilter of the dye’s emission, particularly in the short wavelength region of the Emission spectrum where absorption and fluorescence overlap. Understanding the ex vivo optical properties of fluorescein is crucial for testing and validating its further applicability as an optical probe for intravital microscopy, immunofluorescence localization studies, and flow cytometry analysis. KW - Fluorescence KW - Optical probe KW - Sensor KW - Fluorescein KW - PH KW - Imaging KW - Tissue KW - Cancer KW - Medical diagnostics KW - Tumor KW - In vivo KW - Ex vivo KW - Quantum yield KW - Dye KW - Quality assurance KW - Microscopy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527843 DO - https://doi.org/10.3389/fonc.2021.654300 SN - 2234-943X VL - 11 SP - 1 EP - 8 PB - Frontiers Media CY - Lausanne AN - OPUS4-52784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yadav, Anur A1 - Iost, R. M. A1 - Neubert, T. J. A1 - Baylan, S. A1 - Schmid, Thomas A1 - Balasubramanian, Kannan T1 - Selective electrochemical functionalization of the graphene edge JF - Chemical Science N2 - We present a versatile and simple method using electrochemistry for the exclusive functionalization of the edge of a graphene monolayer with metal nanoparticles or polymeric amino groups. The attachment of metal nanoparticles allows us to exploit surface-enhanced Raman scattering to characterize the chemistry of both the pristine and the functionalized graphene edge. For the pristine patterned graphene edge, we observe the typical edge-related modes, while for the functionalized graphene edge we identify the chemical structure of the functional layer by vibrational fingerprinting. The ability to obtain single selectively functionalized graphene edges routinely on an insulating substrate opens an avenue for exploring the effect of edge chemistry on graphene properties systematically. KW - Graphene KW - Nanoparticles KW - Nanosciences KW - Surface-enhanced Raman scattering KW - Atomic force microscopy PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-474357 DO - https://doi.org/10.1039/C8SC04083D SN - 2041-6520 VL - 10 IS - 3 SP - 936 EP - 942 PB - Royal Society of Chemistry AN - OPUS4-47435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Yi A1 - Danischewski, Julia A1 - Molnar, Brian A1 - Riedel, Jens A1 - Shelley, Jacob T1 - Manipulation of Gaseous Ions with Acoustic Fields at Atmospheric Pressure JF - Journal of the American Chemical Society N2 - The ability to controllably move gaseous ions is an essential aspect of ion-based spectrometry (e.g., mass spectrometry and ion mobility spectrometry) as well as materials processing. At higher pressures, ion motion is largely governed by diffusion and multiple collisions with neutral gas molecules. Thus, high-pressure ion optics based on electrostatics require large fields, radio frequency drives, complicated geometries, and/or partially transmissive grids that become contaminated. Here, we demonstrate that low-power standing acoustic waves can be used to guide, block, focus, and separate beams of ions akin to electrostatic ion optics. Ions preferentially travel through the static-pressure regions (“nodes”) while neutral gas does not appear to be impacted by the acoustic field structure and continues along a straight trajectory. This acoustic ion manipulation (AIM) approach has broad implications for ion manipulation techniques at high pressure, while expanding our fundamental understanding of the behavior of ions in gases. KW - Ion mobility spectrometry KW - Acoustic KW - Mass spectrometry PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600704 DO - https://doi.org/10.1021/jacs.4c01224 SP - 1 EP - 6 PB - ACS Publications AN - OPUS4-60070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Yi A1 - Riedel, Jens T1 - Approaching phase-imaging through defocusing shadowgraphy for acoustic resonator diagnosis and the capability of direct index-of-refraction measurements JF - Review of Scientific Instruments N2 - The visualization of index-of-refraction (IoR) distribution is one of the common methods to investigate fluid flow or pressure fields. While schlieren and shadowgraphy imaging techniques are widely accepted, their inherent limitations often lead to difficulties in elucidating the IoR distribution and extracting the true IoR information from the resulting images. While sophisticated solutions exist, the IoR-gradient-to-image was achieved by purposely introducing a commonly avoided “defect” into the optical path of a conventional coincident schlieren/shadowgraphy setup; the defect is a combination of slight defocusing and the use of non-conjugate optical components. As such, the method presented in this work is referred to as defocusing shadowgraphy, or DF-shadowgraphy. While retaining the ease of a conventional schlieren/shadowgraphy geometry, this DF approach allows direct visualization of complicated resonant acoustic fields even without any data processing. For instance, the transient acoustic fields of a common linear acoustic resonator and a two-dimensional one were directly visualized without inversion. Moreover, the optical process involved in DF-shadowgraphy was investigated from a theoretical perspective. A numerical solution of the sophisticated impulse response function was obtained, which converts the phase distortion into intensity distributions. Based on this solution, the IoRs of various gas streams (e.g., CO2 and isopropanol vapor) were determined from single images. KW - Imaging Technique KW - Phase Imaging KW - Shadowgraphy KW - Schlieren Imaging PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537116 DO - https://doi.org/10.1063/5.0058334 SN - 1089-7623 VL - 92 IS - 10 SP - 103703 PB - AIP Publishing Group AN - OPUS4-53711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Zengchao A1 - Akkus, Asli A1 - Weisheit, W. A1 - Giray, Thorsten A1 - Penk, Sibylle A1 - Buttler, Sabine A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique T1 - Multielement analysis in soils using nitrogen microwave inductively coupled atmospheric pressure plasma mass spectrometry JF - Journal of analytical atomic spectrometry N2 - In this study, we employed nitrogen microwave inductively coupled atmospheric-pressure plasma (MICAP) combined with quadrupole mass spectrometry (MS) and a liquid sample introduction system to analyze heavy metals in soils. The vanadium, cobalt, nickel, zinc, copper, chromium, arsenic, lead, and cadmium contents in seven reference and three environmental soil samples determined using MICAP-MS were within the uncertainty of the reference values, indicating that MICAP-MS is promising for soil analysis similar to the conventional inductively coupled plasma mass spectrometry (ICP-MS) technique. In addition, the limits of detection (LODs) and sensitivity of both techniques using N2 and Ar plasma were of the same order of magnitude. Furthermore, the performance of MICAP-MS under different N2 purity was investigated, and we found that the plasma formation and ionization efficiency were not influenced by the impurities in the gas. A prominent advantage of MICAP-MS is the low operating cost associated with gas consumption. In this work, MICAP-MS used nitrogen, which is cheaper than argon, and consumed 25% less gas than ICP-MS. Using low-purity N2 can further reduce the gas cost, making MICAP-MS more cost effective than ICP-MS. These results suggest that MICAP-MS is a promising alternative to ICP-MS for the analysis of heavy metals in the soil. KW - Soil KW - Microwave inductively coupled atmospheric pressure mass spectrometry (MICAP-MS) KW - Nitrogen plasma KW - Multi-element analysis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-561048 DO - https://doi.org/10.1039/d2ja00244b SN - 0267-9477 VL - 37 IS - 12 SP - 2556 EP - 2562 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-56104 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Zengchao A1 - Winckelmann, Alexander A1 - Vogl, Jochen A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique T1 - Determination of calcium, iron, and selenium in human serum by isotope dilution analysis using nitrogen microwave inductively coupled atmospheric pressure plasma mass spectrometry (MICAP-MS) JF - Analytical and bioanalytical chemistry N2 - In this study, we demonstrate the applicability of nitrogen microwave inductively coupled atmospheric pressure mass spectrometry (MICAP-MS) for Ca, Fe, and Se quantification in human serum using isotope dilution (ID) analysis. The matrix tolerance of MICAP-MS in Na matrix was investigated, uncovering that high Na levels can suppress the signal intensity. This suppression is likely due to the plasma loading and the space charge effect. Moreover, 40Ca and 44Ca isotopic fractionation was noted at elevated Na concentration. Nine certified serum samples were analyzed using both external calibration and ID analysis. Overestimation of Cr, Zn, As, and Se was found in the results of external calibration, which might be resulted from C-induced polyatomic interference and signal enhancement, respectively. Further investigations performed with methanol showed a similar enhancement effect for Zn, As, and Se, potentially supporting this assumption. The mass concentrations determined with ID analysis show metrological compatibility with the reference values, indicating that MICAP-MS combined with ID analysis can be a promising method for precise Ca, Fe, and Se determination. Moreover, this combination reduces the influences of matrix effects, broadening the applicability of MICAP-MS for samples with complex matrix. KW - Selenium KW - Nitrogen microwave inductively coupled atmospheric pressure mass spectrometry KW - Isotope dilution KW - Human serum KW - Calcium KW - Iron PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598664 DO - https://doi.org/10.1007/s00216-024-05274-0 SN - 1618-2642 SP - 1 EP - 9 PB - Springer CY - Berlin AN - OPUS4-59866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zeise, I. A1 - Heiner, Z. A1 - Holz, S. A1 - Joester, Maike A1 - Buttner, C. A1 - Kneipp, Janina T1 - Raman imaging of plant cell walls in sections of cucumis sativus JF - PLANTS-BASEL N2 - Raman microspectra combine information on chemical composition of plant tissues with spatial information. The contributions from the building blocks of the cell walls in the Raman spectra of plant tissues can vary in the microscopic sub-structures of the tissue. Here, we discuss the analysis of 55 Raman maps of root, stem, and leaf tissues of Cucumis sativus, using different spectral contributions from cellulose and lignin in both univariate and multivariate imaging methods. Imaging based on hierarchical cluster analysis (HCA) and principal component analysis (PCA) indicates different substructures in the xylem cell walls of the different tissues. Using specific signals from the cell wall spectra, analysis of the whole set of different tissue sections based on the Raman images reveals differences in xylem tissue morphology. Due to the specifics of excitation of the Raman spectra in the visible wavelength range (532 nm), which is, e.g., in resonance with carotenoid species, effects of photobleaching and the possibility of exploiting depletion difference spectra for molecular characterization in Raman imaging of plants are discussed. The reported results provide both, specific information on the molecular composition of cucumber tissue Raman spectra, and general directions for future imaging studies in plant tissues. KW - Raman KW - Imaging KW - Pants PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-474610 DO - https://doi.org/10.3390/plants7010007 SN - 2223-7747 VL - 7 IS - 1 SP - 7, 1 EP - 16 PB - MDPI, ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND AN - OPUS4-47461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zettner, Alina A1 - Gojani, Ardian A1 - Schmid, Thomas A1 - Gornushkin, Igor B. T1 - Evaluation of a Spatial Heterodyne Spectrometer for Raman Spectroscopy of Minerals JF - MDPI Minerals N2 - Spatial heterodyne spectroscopy (SHS) is a novel spectral analysis technique that is being applied for Raman spectroscopy of minerals. This paper presents the theoretical basis of SHS and its application for Raman measurements of calcite, quartz and forsterite in marble, copper ore and nickel ore, respectively. The SHS measurements are done using a broadband (518–686 nm) and resolving power R ≈ 3000 instrument. The spectra obtained using SHS are compared to those obtained by benchtop and modular dispersive spectrometers. It is found that SHRS performance in terms of resolution is comparable to that of the benchtop spectrometer and better than the modular dispersive spectrometer, while the sensitivity of SHRS is worse than that of a benchtop spectrometer, but better than that of a modular dispersive spectrometer. When considered that SHS components are small and can be packaged into a handheld device, there is interest in developing an SHS-based Instrument for mobile Raman spectroscopy. This paper evaluates the possibility of such an application. KW - Forsterite KW - Spatial heterodyne spectrometer KW - Interferometric spectroscopy KW - Fourier transform spectroscopy KW - Raman spectroscopy KW - Calcite KW - Quartz PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504624 DO - https://doi.org/10.3390/min10020202 VL - 10 IS - 2 SP - 202 PB - MDPI CY - Basel, Switzerland AN - OPUS4-50462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Kun A1 - Carrod, Andrew J. A1 - Del Giorgio, Elena A1 - Hughes, Joseph A1 - Rurack, Knut A1 - Bennet, Francesca A1 - Hodoroaba, Vasile-Dan A1 - Harrad, Stuart A1 - Pikramenou, Zoe T1 - Luminescence Lifetime-Based Sensing Platform Based on Cyclometalated Iridium(III) Complexes for the Detection of Perfluorooctanoic Acid in Aqueous Samples JF - Analytical Chemistry N2 - Luminescence lifetimes are an attractive analytical method for detection due to its high sensitivity and stability. Iridium probes exhibit luminescence with long excited-state lifetimes, which are sensitive to the local environment. Perfluorooctanoic acid (PFOA) is listed as a chemical of high concern regarding its toxicity and is classified as a “forever chemical”. In addition to strict limits on the presence of PFOA in drinking water, environmental contamination from industrial effluent or chemical spills requires rapid, simple, accurate, and cost-effective analysis in order to aid containment. Herein, we report the fabrication and function of a novel and facile luminescence sensor for PFOA based on iridium modified on gold surfaces. These surfaces were modified with lipophilic iridium complexes bearing alkyl chains, namely, IrC6 and IrC12, and Zonyl-FSA surfactant. Upon addition of PFOA, the modified surfaces IrC6-FSA@Au and IrC12-FSA @Au show the largest change in the red luminescence signal with changes in the luminescence lifetime that allow monitoring of PFOA concentrations in aqueous solutions. The platform was tested for the measurement of PFOA in aqueous samples spiked with known concentrations of PFOA and demonstrated the capacity to determine PFOA at concentrations >100 μg/L (240 nM). KW - Perfluorooctanoic Acid (PFOA) KW - Cyclometalated iridium (III) complexes KW - Luminescent lifetime KW - Optically active surfaces KW - ToF-SIMS PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594535 UR - https://pubs.acs.org/doi/10.1021/acs.analchem.3c04289 DO - https://doi.org/10.1021/acs.analchem.3c04289 VL - 96 IS - 4 SP - 1565 EP - 1575 PB - American Chemical Society (ACS) AN - OPUS4-59453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ziegler, K. A1 - Kunert, A. T. A1 - Reinmuth-Selzle, K. A1 - Leifke, A. L. A1 - Widera, D. A1 - Weller, Michael G. A1 - Schuppan, D. A1 - Fröhlich-Nowoisky, J. A1 - Lucas, K. A1 - Pöschl, U. T1 - Chemical modification of pro-inflammatory proteins by peroxynitrite increases activation of TLR4 and NF-κB: Implications for the health effects of air pollution and oxidative stress JF - Redox Biology N2 - Environmental pollutants like fine particulate matter can cause adverse health effects through oxidative stress and inflammation. Reactive oxygen and nitrogen species (ROS/RNS) such as peroxynitrite can chemically modify proteins, but the effects of such modifications on the immune system and human health are not well understood. In the course of inflammatory processes, the Toll-like receptor 4 (TLR4) can sense damage-associated molecular patterns (DAMPs). Here, we investigate how the TLR4 response and pro-inflammatory potential of the proteinous DAMPs α-Synuclein (α-Syn), heat shock protein 60 (HSP60), and high-mobility-group box 1 protein (HMGB1), which are relevant in neurodegenerative and cardiovascular diseases, changes upon chemical modification with peroxynitrite. For the peroxynitrite-modified proteins, we found a strongly enhanced activation of TLR4 and the pro-inflammatory transcription factor NF-κB in stable reporter cell lines as well as increased mRNA expression and secretion of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-8 in human monocytes (THP-1). This enhanced activation of innate immunity via TLR4 is mediated by covalent chemical modifications of the studied DAMPs. Our results show that proteinous DAMPs modified by peroxynitrite more potently amplify inflammation via TLR4 activation than the native DAMPs, and provide first evidence that such modifications can directly enhance innate immune responses via a defined receptor. These findings suggest that environmental pollutants and related ROS/RNS may play a role in promoting acute and chronic inflammatory disorders by structurally modifying the body's own DAMPs. This may have important consequences for chronic neurodegenerative, cardiovascular or gastrointestinal diseases that are prevalent in modern societies, and calls for action, to improve air quality and climate in the Anthropocene. KW - Protein nitration KW - Protein oligomerization KW - Damage-associated molecular patterns (DAMPs) KW - Pattern recognition receptor KW - Anthropocene KW - Environmental pollutants PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517128 DO - https://doi.org/10.1016/j.redox.2020.101581 VL - 37 SP - 101581 PB - Elsevier B.V. AN - OPUS4-51712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zimmermann, T. A1 - von der Au, Marcus A1 - Reese, A. A1 - Klein, O. A1 - Hildebrandt, L. A1 - Pröfrock, D. T1 - Substituting HF by HBF4 – an optimized digestion method for multi-elemental sediment analysis via ICP-MS/MS JF - Analytical Methods N2 - Determination of elemental mass fractions in sediments plays a major role in evaluating the environmental status of aquatic ecosystems. Herewith, the optimization of a new total digestion protocol and the subsequent analysis of 48 elements in different sediment reference materials (NIST SRM 2702, GBW 07313, GBW 07311 and JMC-2) based on ICP-MS/MS detection is presented. The developed method applies microwave acid digestion and utilizes HBF4 as fluoride source for silicate decomposition. Similar to established protocols based on HF, HBF4 ensures the dissolution of the silicate matrix, as well as other refractory oxides. As HBF4 is not acutely toxic; no special precautions have to be made and digests can be directly measured via ICP-MS without specific sample inlet systems, evaporation steps or the addition of e.g. H3BO3, in order to mask excess HF. Different acid mixtures with and without HBF4 were evaluated in terms of digestion efficiency based on the trace metal recovery. The optimized protocol (5 mL HNO3, 2 mL HCL, 1 mL HBF4) allows a complete dissolution of the analyzed reference materials, as well as quantitative recoveries for a wide variety of certified analytes. Low recoveries for e.g. Sr, Ba and rare earth elements due to fluoride precipitation of HF-based digestions protocols, can be avoided by the usage of HBF4 instead. Based on the usage of high purity HBF4 all relevant trace, as well as matrix elements can be analyzed with sufficiently low LOQs (0.002 μg L−1 for U up to 6.7 μg L−1 for Al). In total, 34 elements were within a recovery range of 80%–120% for all three analyzed reference materials GBW 07313, GBW 07311 and JMC-2. 14 elements were outside a recovery range of 80%–120% for at least one of the analyzed reference materials. KW - Reference Materials KW - Sediment KW - HF free Digestion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510480 DO - https://doi.org/10.1039/D0AY01049A SP - 1 EP - 10 PB - Royal Society of Chemistry AN - OPUS4-51048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zänker, Steffen A1 - Scholz, G. A1 - Marquardt, Julien A1 - Emmerling, Franziska T1 - Structural changes in Ba-compounds of different hardness induced by high-energy ball milling – evidenced by 137Ba NMR and X-ray powder diffraction JF - Zeitschrift für anorganische und allgemeine Chemie N2 - Changes in the global bulk and local structures, of three different barium compounds (BaZrO3, BaF2, and BaFCl),were induced by mechanical milling and followed using X-ray powder diffraction (PXRD), subsequent microstructure analysis, and 137Ba solid state NMR spectroscopy. Harder materials like BaZrO3 experience significantly higher structural changes upon milling than softer materials like BaF2. Moreover, soft materials with layered structures, like BaFCl, show a pronounced structural change during the milling process. By combining PXRD and solid state NMR, detailed information on the changes to the global and local structures were obtained, which are of interest for mechanochemical synthesis, mechanically treated catalysts or ionic conductors. KW - Mechanochemistry KW - X-ray diffraction KW - Solid state NMR PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547397 DO - https://doi.org/10.1002/zaac.202200026 SN - 0044-2313 VL - 648 IS - 10 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -