TY - JOUR A1 - Steinhäuser, Lorin A1 - Piechotta, Christian A1 - Westphalen, Tanja A1 - Kaminski, Katja T1 - Evaluation, comparison and combination of molecularly imprinted polymer solid phase extraction and classical solid phase extraction for the preconcentration of endocrine disrupting chemicals from representative whole water samples N2 - Estrogens are endocrine disrupting chemicals and of high concerns due to demonstrated harmful effects on the environment and low effect levels. For monitoring and risk assessment, several estrogens were included in the "watch list" of the EU Water Framework Directive which sets very low environmental quality standard (EQS) levels for Estrone (E1) and 17β-Estradiol (E2) of 0.4 ng L−1 and for 17α-Ethinylestradiol (EE2) of 0.035 ng L−1 requiring sensitive detection methods, as well as extensive sample preparation. A sensitive, derivatization-free, isotope dilution calibration HPLC-MS/MS method for a panel of 5 selected estrogens (including the 3 estrogens of the EU WFD watchlist), and a procedure for the reproducible preparation of a representative whole water matrix including mineral water, humic acids and solid particulate matter are presented. These are used in a diligent comparison of classical solid phase extraction (SPE) on hydrophilic-lipophilic balanced (HLB) phase to SPE on an estrogen-specific molecularly imprinted polymer phase (MISPE) for ultra-trace levels of the analytes (1–10 ng L−1). Additionally, a two-step procedure combining HLB SPE disks followed by MISPE is evaluated. The tow-step procedure provides superior enrichment, matrix removal and sample throughput while maintaining comparable recovery rates to simple cartridge SPE. Estimated method quantification limits (MQLs) range from 0.109–0.184 ng L−1 and thus meet EQS-levels for E1 and E2, but not EE2. The representative whole water matrix provides a reproducible comparison of sample preparation methods and lays the foundation for a certified reference material for estrogen analysis. The presented method will serve as the basis for an extended validation study to assess its use for estrogen monitoring in the environment. KW - Estrogens KW - Whole water samples KW - Molecular imprinted polymers KW - EU-WFD PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563547 DO - https://doi.org/10.1016/j.talo.2022.100163 SN - 2666-8319 VL - 6 SP - 1 EP - 5 PB - Elsevier B.V. CY - Amsterdam, Niederlande AN - OPUS4-56354 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sternbaek, L. A1 - Kimani, Martha Wamaitha A1 - Gawlitza, Kornelia A1 - Rurack, Knut A1 - Janicke, B. A1 - Alm, K. A1 - Gjörloff-Wingren, A. A1 - Eriksson, H. T1 - Molecularly Imprinted Polymers Exhibit Low Cytotoxic and Inflammatory Properties in Macrophages In Vitro N2 - Molecularly imprinted polymers (MIPs) against sialic acid (SA) have been developed as a detection tool to target cancer cells. Before proceeding to in vivo studies, a better knowledge of the overall effects of MIPs on the innate immune system is needed. The aim of this study thus was to exemplarily assess whether SA-MIPs lead to inflammatory and/or cytotoxic responses when administered to phagocytosing cells in the innate immune system. The response of monocytic/macrophage cell lines to two different reference particles, Alhydrogel and PLGA, was compared to their response to SA-MIPs. In vitro culture showed a cellular association of SA-MIPs and Alhydrogel, as analyzed by flow cytometry. The reference particle Alhydrogel induced secretion of IL-1b from the monocytic cell line THP-1, whereas almost no secretion was provoked for SA-MIPs. A reduced number of both THP-1 and RAW 264.7 cells were observed after incubation with SA-MIPs and this was not caused by cytotoxicity. Digital holographic cytometry showed that SA-MIP treatment affected cell division, with much fewer cells dividing. Thus, the reduced number of cells after SA-MIP treatment was not linked to SA-MIPs cytotoxicity. In conclusion, SA-MIPs have a low degree of inflammatory properties, are not cytotoxic, and can be applicable for future in vivo studies. KW - Molecularly imprinted polymers KW - Digital holographic cytometry KW - Cytotoxicity KW - Proinflammatory cytokines PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552250 DO - https://doi.org/10.3390/app12126091 SN - 2076-3417 VL - 12 IS - 12 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-55225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stratulat, C. A1 - Ginghina, R. E. A1 - Bratu, A. E. A1 - Isleyen, A. A1 - Tunc, M. A1 - Hafner-Vuk, K. A1 - Frey, A. M. A1 - Kjeldsen, H. A1 - Vogl, Jochen T1 - Development- and Validation-Improved Metrological Methods for the Determination of Inorganic Impurities and Ash Content from Biofuels N2 - In this study, five laboratories, namely, BRML (Romania), TUBITAK UME (Turkey), IMBIH (Bosnia and Herzegovina), BAM (Germany), and DTI (Denmark), developed and validated analytical procedures by ICP-MS, ICP-OES, MWP-AES, WD-XRF, and ID-MS for the determination of inorganic impurities in solid and liquid biofuels, established the budget of uncertainties, and developed the method for determining the amount of ash in the measurement range 0–1.2% with absolute repeatability less than 0.1% and absolute reproducibility of 0.2% (according to EN ISO 18122). In order to create homogeneous certified reference materials, improved methodologies for the measurement and characterization of solid and liquid biofuels were developed. Thus, information regarding the precision, accuracy, and bias of the method, and identifying the factors that intervened in the measurement of uncertainty were experimentally determined, supplementing the information from the existing standards in the field. KW - Development KW - Validate method KW - Biodiesel KW - ICP-MS KW - ICP-OES KW - MW-AES KW - WD-XRF KW - ID-MS KW - Inorganic impurities KW - Ash content KW - Wood chips PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578743 DO - https://doi.org/10.3390/en16135221 VL - 16 IS - 13 SP - 1 EP - 14 PB - MDPI AN - OPUS4-57874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sun, C. A1 - Schäferling, Michael A1 - Resch-Genger, Ute A1 - Gradzielski, M. T1 - Solvothermal Synthesis of Lanthanide-doped NaYF4 Upconversion N2 - Lanthanide-doped NaYF4 upconversion nano- and microcrystals were synthesized via a facile solvothermal approach. Thereby, the influence of volume ratios of ethylene glycol (EG)/H2O, molar ratios of NH4F/RE3+ (RE3+ represents the total amount of Y3+ and rare-earth dopant ions), Gd3+ ion contents, types of activator dopant ions, and different organic co-solvents on the crystal phase, size, and morphology of the resulting particles were studied systematically. A possible formation mechanism for the growth of crystals of different morphology is discussed. Our results show that the transition from the α- to the β-phase mainly depends on the volume ratio of EG/H2O and the molar ratio of NH4F/RE3+, while the morphology and size could be controlled by the type of organic co-solvent and Gd3+ dopant ions. Furthermore, the reaction time has to be long enough to convert α-NaYF4 into β-NaYF4 during the growth process to optimize the upconversion luminescence. The formation of larger β-NaYF4 crystals, which possess a higher upconversion luminescence than smaller particles, proceeds via intermediates of smaller crystals of cubic structure. In summary, our synthetic approach presents a facile route to tailor the size, Crystal phase, morphology, and luminescence features of upconversion materials. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Photoluminescence KW - Lanthanide KW - Quantum yield KW - Photophysics KW - Lifetime KW - Surface chemistry KW - Single particle KW - Brightness KW - NIR KW - Synthesis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520307 DO - https://doi.org/10.1002/cnma.202000564 VL - 7 IS - 2 SP - 174 EP - 183 PB - Wiley AN - OPUS4-52030 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sun, Yijuan A1 - Gawlitza, Kornelia A1 - Valderrey, Virginia A1 - Bell, Jérémy A1 - Rurack, Knut T1 - Polymerizable BODIPY probe crosslinker for the molecularly imprinted polymer-based detection of organic carboxylates via fluorescence N2 - This contribution reports the development of a polymerizable BODIPY-type fluorescent probe targeting small-molecule carboxylates for incorporation into molecularly imprinted polymers (MIPs). The design of the probe crosslinker includes a urea recognition site p-conjugated to the 3-position of the BODIPY core and two methacrylate moieties. Titration experiments with a carboxylate-expressing antibiotic, levofloxacin (LEVO), showed a blue shift of the absorption band as well as a broadening and decrease in emission, attributed to hydrogen bonding between the probe’s urea group and the carboxylate group of the antibiotic. Using this probe crosslinker, core–shell particles with a silica core and a thin MIP shell were prepared for the detection of LEVO. The MIP exhibited highly selective recognition of LEVO, with an imprinting factor of 18.1 compared to the non-imprinted polymer. Transmission electron microscopy confirmed the core–shell structure and spectroscopic studies revealed that the receptor’s positioning leads to a unique perturbation of the polymethinic character of the BODIPY chromophore, entailing the favourable responses. These features are fully preserved in the MIP, whereas no such response was observed for competitors such as ampicillin. The sensory particles allowed to detect LEVO down to submicromolar concentrations in dioxane. We have developed here for the first time a BODIPY probe for organic carboxylates and incorporated it into polymers using the imprinting technique, paving the way for BODIPY-type fluorescent MIP sensors. KW - Fluorescence KW - BODIPY probe KW - Molecularly Imprinted Polymers KW - Sensor Materials KW - Dyes KW - Water analysis KW - Advanced materials PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598629 DO - https://doi.org/10.1039/D3MA00476G SP - 1 EP - 11 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tang, Chi-Long A1 - Seeger, Stefan T1 - Measurement of sub-4 nm particle emission from FFF-3D printing with the TSI Nano Enhancer and the Airmodus Particle Size Magnifier N2 - The emission of ultrafine particles from small desktop Fused Filament Fabrication (FFF) 3D printers has been frequently investigated in the past years. However, the vast majority of FFF emission and exposure studies have not considered the possible occurrence of particles below the typical detection limit of Condensation Particle Counters and could have systematically underestimated the total particle emission as well as the related exposure risks. Therefore, we comparatively measured particle number concentrations and size distributions of sub-4 nm particles with two commercially available diethylene glycol-based instruments – the TSI 3757 Nano Enhancer and the Airmodus A10 Particle Size Magnifier. Both instruments were evaluated for their suitability of measuring FFF-3D printing emissions in the sub-4 nm size range while operated as a particle counter or as a particle size spectrometer. For particle counting, both instruments match best when the Airmodus system was adjusted to a cut-off of 1.5 nm. For size spectroscopy, both instruments show limitations due to either the fast dynamics or rather low levels of particle emissions from FFF-3D printing in this range. The effects are discussed in detail in this article. The findings could be used to implement sub-4 nm particle measurement in future emission or exposure studies, but also for the development of standard test protocols for FFF-3D printing emissions. KW - Air pollution KW - Ultrafine particles KW - Sub-4nm particles KW - FFF-3D printing KW - Emission testing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595952 DO - https://doi.org/10.1080/02786826.2024.2320430 SN - 0278-6826 VL - 58 IS - 6 SP - 644 EP - 656 PB - Taylor & Francis CY - London AN - OPUS4-59595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tang, Chi-Long A1 - Seeger, Stefan A1 - Röllig, Mathias T1 - Improving the comparability of FFF-3D printing emission data by adjustment of the set extruder temperature N2 - Fused filament fabrication (FFF) is a material extrusion-based technique often used in desktop 3D printers. Polymeric filaments are melted and are extruded through a heated nozzle to form a 3D object in layers. The extruder temperature is therefore a key parameter for a successful print job but also one of the main emission driving factors as harmful pollutants (e.g., ultrafine particles) are formed by thermal polymer degradation. The awareness of potential health risks has increased the number of emission studies in the past years. However, studies usually refer their calculated emission data to the printer set extruder temperature for comparison purposes. In this study, we used a thermocouple and an infrared camera to measure the actual extruder temperature and found significant temperature deviations to the displayed set temperature among printer models. Our result shows that printing the same filament feedstocks with three different printer models and with identical printer set temperature resulted in a variation in particle emission of around two orders of magnitude. A temperature adjustment has reduced the variation to approx. one order of magnitude. Thus, it is necessary to refer the measured emission data to the actual extruder temperature as it poses a more accurate comparison parameter for evaluation of the indoor air quality in user scenarios or for health risk assessments. KW - Ultrafine particles KW - Infrared thermography KW - Thermocouple KW - Indoor air quality KW - FFF-3D printer PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572842 DO - https://doi.org/10.1016/j.aeaoa.2023.100217 VL - 18 SP - 100217 PB - Elsevier Ltd. CY - Amsterdam, Niederlande AN - OPUS4-57284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tannenberg, Robert A1 - Paul, Martin A1 - Röder, Bettina A1 - Gande, S. L. A1 - Sreeramulu, S. A1 - Saxena, K. A1 - Richter, C. A1 - Schwalbe, H. A1 - Swart, C. A1 - Weller, Michael G. T1 - Chemiluminescence biosensor for the determination of cardiac troponin I (cTnI) N2 - Cardiac troponin I (cTnI) is a crucial biomarker for diagnosing cardiac vascular diseases, including acute myocardial infarction (AMI). This study presents a proof-of-concept chemiluminescence-based immunosensor for rapid and accurate measurement of cTnI, with the potential for online monitoring. The immunosensor incorporates a flow cell design and a sensitive complementary metal-oxide-semiconductor (CMOS) camera for optical readout. A microfluidic setup was established to enable selective and quasi-online determination of cTnI within ten minutes. The sensor was tested with recombinant cTnI in phosphate buffer, demonstrating measurements in the concentration range of 2–25 µg/L, with a limit of detection (LoD) of 0.6 µg/L (23 pmol/L) achieved using the optimized system. The immunosensor exhibited high selectivity, as no cross-reactivity was observed with other recombinant proteins such as cTnT and cTnC at a concentration of 16 µg/L. Measurements with diluted blood plasma and serum yielded an LoD of 60 µg/L (2.4 nmol/L) and 70 µg/L (2.9 nmol/L), respectively. This biosensor offers a promising approach for the rapid and sensitive detection of cTnI, contributing to the diagnosis and management of acute myocardial infarction and other cardiac vascular diseases. N2 - Das kardiale Troponin I (cTnI) ist ein wichtiger Biomarker für die Diagnose von Herz-Kreislauf-Erkrankungen, einschließlich des akuten Myokardinfarkts (AMI). In dieser Studie wird ein auf Chemilumineszenz basierender Immunsensor für die schnelle und genaue Messung von cTnI vorgestellt, der das Potenzial für eine Online-Überwachung hat. Der Immunsensor besteht aus einer Durchflusszelle und einer empfindlichen CMOS-Kamera (Complementary Metal-Oxide-Semiconductor) zur optischen Detektion. Es wurde ein mikrofluidischer Aufbau entwickelt, der eine selektive und quasi Online-Bestimmung von cTnI innerhalb von zehn Minuten ermöglicht. Der Sensor wurde mit rekombinantem cTnI in Phosphatpuffer getestet und zeigte einen Messbereich von 2-25 µg/L, wobei mit dem optimierten System eine Nachweisgrenze (LoD) von 0,6 µg/L (23 pmol/L) erreicht wurde. Der Immunsensor zeigte eine hohe Selektivität, da keine Kreuzreaktivität mit anderen rekombinanten Proteinen wie cTnT und cTnC bei einer Konzentration von 16 µg/L beobachtet wurde. Messungen mit verdünntem Blutplasma und Serum ergaben einen LoD von 60 µg/L (2,4 nmol/L) bzw. 70 µg/L (2,9 nmol/L). Dieser Biosensor bietet einen vielversprechenden Ansatz für den schnellen und empfindlichen Nachweis von cTnI, der zur Diagnose und Behandlung des akuten Myokardinfarkts und anderer kardialer Gefäßerkrankungen beitragen kann. KW - Acute myocardial infarction KW - Heart attack KW - Emergency KW - Diagnosis KW - Cardiac troponin KW - Biomarker KW - Immunosensor KW - Biosensor KW - Chemiluminescence KW - Luminol KW - Peroxidase KW - Monoclonal antibodies KW - Flow injection immunoassay KW - Immunometric assay KW - Immunometric biosensor KW - Microfluidic system KW - Monolithic column KW - Online biosensor PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575471 DO - https://doi.org/10.3390/bios13040455 SN - 2079-6374 VL - 13 IS - 4 SP - 1 EP - 20 PB - MDPI CY - Basel AN - OPUS4-57547 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tarantini, A. A1 - Wegner, Karl David A1 - Dussert, F. A1 - Sarret, G. A1 - Beal, D. A1 - Mattera, L. A1 - Lincheneau, C. A1 - Proux, O. A1 - Truffier-Boutry, D. A1 - Moriscot, C. A1 - Gallet, B. A1 - Jouneau, P.-H. A1 - Reiss, P. A1 - Carriere, M. T1 - Physicochemical alterations and toxicity of InP alloyed quantum dots aged in environmental conditions: A safer by design evaluation N2 - Due to their unique optical properties, quantum dots (QDs) are used in a number of optoelectronic devices and are forecasted to be used in the near future for biomedical applications. The most popular QD composition consists of cadmium selenide (CdSe) or cadmium telluride (CdTe), which has been shown to pose health risks due to the release of toxic cadmium (Cd) ions. Due to similar optical properties but lower intrinsic toxicity, indium phosphide (InP) QDs have been proposed as a safer alternative. Nevertheless, investigations regarding their safety and possible toxicological effects are still in their infancy. The fate and toxicity of seven different water-dispersible indium (In) based QDs, either pristine or after ageing in a climatic chamber, was evaluated. The core of these QDs was composed of indium, zinc and phosphorus (InZnP) or indium, zinc, phosphorus and sulfur (InZnPS). They were assessed either as core-only or as core-shell QDs, for which the core was capped with a shell of zinc, selenium and sulfur (Zn(Se,S)). Their Surface was functionalized using either penicillamine or glutathione. In their pristine form, these QDs showed essentially no cytotoxicity. The particular case of InZnPS QD showed that core-shell QDs were less cytotoxic than core-only QDs. Moreover, surface functionalization with either penicillamine or glutathione did not appreciably influence cytotoxicity but affected QD stability. These QDs did not lead to over-accumulation of reactive oxygen species in exposed cells, or to any oxidative damage to cellular DNA. However, accelerated weathering in a climatic chamber led to QD precipitation and degradation, together with significant cytotoxic effects. Ageing led to dissociation of IneP and ZneS bonds, and to complexation of In Zn ions with carboxylate and/or phosphate moieties. These results show that InZnP and InZnPS alloyed QDs are safer alternatives to CdSe QDs. They underline the necessity to preserve as much as possible the structural integrity of QDs, for instance by developing more robust shells, in order to ensure their safety for future applications. KW - Indium phosphide KW - Safe by design KW - Toxicity KW - EXAFS PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483070 DO - https://doi.org/10.1016/j.impact.2019.100168 VL - 14 SP - 100168-1 EP - 100168-13 PB - Elsevier AN - OPUS4-48307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tatzel, M. A1 - Frings, P. J. A1 - Oelze, Marcus A1 - Herwartz, D. A1 - Lünsdorf, K. A1 - Wiedenbeck, M. T1 - Chert oxygen isotope ratios are driven by Earth's thermal evolution N2 - The 18O/16O ratio of cherts (δ18Ochert) increases nearly monotonically by ~15‰ from the Archean to present. Two end-member explanations have emerged: cooling seawater temperature (TSW) and increasing seawater δ18O (δ18Osw). Yet despite decades of work, there is no consensus, leading some to view the δ18Ochert record as pervasively altered. Here, we demonstrate that cherts are a robust archive of diagenetic temperatures, despite metamorphism and exposure to meteoric fluids, and show that the timing and temperature of quartz precipitation and thus δ18Ochert are determined by the kinetics of silica diagenesis. A diagenetic model shows that δ18Ochert is influenced by heat flow through the sediment column. Heat flow has decreased over time as planetary heat is dissipated, and reasonable Archean-modern heat flow changes account for ~5‰ of the increase in δ18Ochert, obviating the need for extreme TSW or δ18Osw reconstructions. The seawater oxygen isotope budget is also influenced by solid Earth cooling, with a recent reconstruction placing Archean δ18OSW 5 to 10‰ lower than today. Together, this provides an internally consistent view of the δ18Ochert record as driven by solid Earth cooling over billion-year timescales that is compatible with Precambrian glaciations and biological. KW - Climate KW - Oxygen isotope ratios KW - Silica diagenesis KW - Early Earth KW - Heat flow PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569359 DO - https://doi.org/10.1073/pnas.2213076119 SN - 0027-8424 VL - 119 IS - 51 SP - 1 EP - 7 PB - National Academy of Sciences CY - Washington, DC AN - OPUS4-56935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tatzel, Michael A1 - Oelze, Marcus A1 - Frick, Daniel A. A1 - Di Rocco, Tommaso A1 - Liesegang, Moritz A1 - Stuff, Maria A1 - Wiedenbeck, Michael T1 - Silicon and oxygen isotope fractionation in a silicified carbonate rock N2 - Silicon isotope fractionation during silicification is poorly understood and impedes our ability to decipher paleoenvironmental conditions from Si isotopes in ancient cherts. To investigate isotope fractionation during silica-for-carbonate replacement we analyzed the microscale Si and O isotope composition in different silica phases in a silicified zebra dolostone as well as their bulk δ18O and Δ’17O compositions. The subsequent replacement of carbonate layers is mimicked by decreasing δ18O and δ30Si. The textural relationship and magnitude of Si and O isotope fractionation is best explained by near-quantitative silica precipitation in an open system with finite Si. A Rayleigh model for silicification suggests positive Ɛ30/28Si during silicification, conforming with predictions for isotope distribution at chemical equilibrium from ab-initio models. Application of the modelled Ɛ30Si-T relationship yields silicification temperatures of approx. 50°C. To reconcile the δ18Ochert composition with these temperatures, the δ18O of the fluid must have been between -2.5 and -4 ‰, compositions for which the quartz phases fall close to the oxygen equilibrium fractionation line in three-isotope space. Diagenetic silica replacement appears to occur in O and Si isotopic equilibrium allowing reconstructions of temperatures of silicification from Si isotopes and derive the δ18O composition of the fluid – a highly desired value needed for accurate reconstructions of the temperature- and δ18O histories of the oceans. KW - Silicon isotopes PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-603430 DO - https://doi.org/10.1016/j.chemgeo.2024.122120 SN - 0009-2541 VL - 658 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-60343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tchipilov, Teodor A1 - Meyer, Klas A1 - Weller, Michael G. T1 - Quantitative 1H Nuclear Magnetic Resonance (qNMR) of Aromatic Amino Acids for Protein Quantification N2 - Hydrolysis of protein samples into amino acids facilitates the use of NMR spectroscopy for protein and peptide quantification. Different conditions have been tested for quantifying aromatic amino acids and proteins. The pH-dependent signal shifts in the aromatic region of amino acid samples were examined. A pH of 12 was found to minimize signal overlap of the four aromatic amino acids. Several aromatic compounds, such as terephthalic acid, sulfoisophthalic acid, and benzene tricarboxylic acid, were applied as internal standards. The quantification of amino acids from an amino acid standard was performed. Using the first two suggested internal standards, recovery was ~97% for histidine, phenylalanine, and tyrosine at a concentration of approximately 1 mM in solution. Acidic hydrolysis of a certified reference material (CRM) of bovine serum albumin (BSA) and subsequent quantification of Phe and Tyr yielded recoveries of 98% ± 2% and 88% ± 4%, respectively, at a protein concentration of 16 g/L or 250 µM. KW - Amino acid analysis KW - Aromatic amino acid analysis KW - AAA KW - AAAA KW - Protein hydrolysis KW - Hydrochloric acid KW - Metrology KW - Traceability KW - NIST KW - Reference materials KW - Internal standard KW - Calibration KW - Compound-independent calibration KW - Histidine KW - Tyrosine KW - Tryptophan KW - Phenylalanine KW - Terephthalic acid KW - Benzene-1,3,5-tricarboxylic acid KW - Bovine serum albumin (BSA) KW - Quantitative protein analysis KW - Phenylketonuria PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570943 DO - https://doi.org/10.3390/mps6010011 VL - 6 IS - 1 SP - 1 EP - 13 PB - MDPI CY - Basel, Schweiz AN - OPUS4-57094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Temgoua, Ranil C.T. A1 - Dontsi, Fabiola T. A1 - Lebègue, Estelle A1 - Thobie-Gautier, Christine A1 - Tonlé, Ignas K. A1 - Boujtita, Mohammed T1 - Understanding the behavior of phenylurazole-tyrosine-click electrochemical reaction using hybrid electroanalytical techniques N2 - In this work, the electrochemical behavior of 4-phenylurazole (Ph-Ur) was studied and the latter was used as a molecular anchor for the electrochemical bioconjugation of tyrosine (Y). Cyclic voltammetry (CV) and controlled potential coulometry (CPC) allowed the in-situ generation of the PTAD (4-phenyl-3 H-1,2,4-triazole-3,5(4 H)-dione) species from phenylurazole on demand for tyrosine electrolabeling. The chemoselectivity of the reaction was studied with another amino acid (lysine, Lys) and no changes in Lys were observed. To evaluate the performance of tyrosine electrolabeling, coulometric analyses at controlled potentials were performed on solutions of phenylurazole and the phenylurazole-tyrosine mixture in different proportions (2:1, 1:1, and 1:2). The electrolysis of the phenylurazole-tyrosine mixture in the ratio (1:2) produced a charge of 2.07 C, very close to the theoretical value (1.93 C), with high reaction kinetics, a result obtained here for the first time. The products obtained were identified and characterized by liquid chromatography coupled to high-resolution electrospray ionization mass spectrometry (LC-HRMS and LC- HRMS2). Two products were formed from the click reactions, one of which was the majority. Another part of this work was to study the electrochemical degradation of the molecular anchor 4-phenylazole (Ph-Ur). Four stable degradation products of phenylurazole were identified (C7H9N2O, C6H8N, C6H8NO, C14H13N4O2) based on chromatographic profiles and mass spectrometry results. The charge generated during the electrolysis of phenylurazole (two-electron process) (2.85 C) is inconsistent with the theoretical or calculated charge (1.93 C), indicating that secondary/parasitic reactions occurred during the electrolysis of the latter. In conclusion, the electrochemically promoted click phenylurazole-tyrosine reactions give rise to click products with high reaction kinetics and yields in the (1:2) phenylurazole-tyrosine ratios, and the presence of side reactions is likely to affect the yield of the click phenylurazole-tyrosine reaction. KW - Clinical Biochemistry KW - Spectroscopy KW - Drug Discovery KW - Pharmaceutical Science KW - Analytical Chemistry PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599267 DO - https://doi.org/10.1016/j.jpba.2024.116147 VL - 245 SP - 1 EP - 8 PB - Elsevier BV AN - OPUS4-59926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiele, Isabel A1 - Santolin, Lara A1 - Meyer, Klas A1 - Machatschek, Rainhard A1 - Bölz, Uwe A1 - Tarazona, Natalia A. A1 - Riedel, Sebastian L. T1 - Microbially synthesized poly(hydroxybutyrate-co-hydroxyhexanoate) with low to moderate hydroxyhexanoate content: Properties and applications N2 - Plastic pollution is the biggest environmental concern of our time. Breakdown products like micro- and nanoplastics inevitably enter the food chain and pose unprecedented health risks. In this scenario, bio-based and biodegradable plastic alternatives have been given a momentum aiming to bridge a transition towards a more sustainable future. Polyhydroxyalkanoates (PHAs) are one of the few thermoplastic polymers synthesized 100 % via biotechnological routes which fully biodegrade in common natural environments. Poly(hydroxybutyrate-cohydroxyhexanoate) [P(HB-co-HHx)] is a PHA copolymer with great potential for the commodity polymers industry, as its mechanical properties can be tailored through fine-tuning of its molar HHx content. We have recently developed a strategy that enables for reliable tailoring of the monomer content of P(HB-co-HHx). Nevertheless, there is often a lack of comprehensive investigation of the material properties of PHAs to evaluate whether they actually mimic the functionalities of conventional plastics. We present a detailed study of P(HB-co-HHx) copolymers with low to moderate hydroxyhexanoate content to understand how the HHx monomer content influences the thermal and mechanical properties and to link those to their abiotic degradation. By increasing the HHx fractions in the range of 2 – 14 mol%, we impart an extension of the processing window and application range as the melting temperature (Tm) and glass temperature (Tg) of the copolymers decrease from Tm 165 ◦C to 126 ◦C, Tg 4 ◦C to − 5.9 ◦C, accompanied by reduced crystallinity from 54 % to 20 %. Elongation at break was increased from 5.7 % up to 703 % at 14 mol% HHx content, confirming that the range examined was sufficiently large to obtain ductile and brittle copolymers, while tensile strength was maintained throughout the studied range. Finally, accelerated abiotic degradation was shown to be slowed down with an increasing HHx fraction decreasing from 70 % to 55 % in 12 h. KW - Molecular Biology KW - General Medicine KW - Biochemistry KW - Structural Biology PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595636 DO - https://doi.org/10.1016/j.ijbiomac.2024.130188 VL - 263 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-59563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tjaden, B. A1 - Lisec, Jan A1 - Schramm, A. T1 - N-Myc-induced metabolic rewiring creates novel therapeutic vulnerabilities in neuroblastoma N2 - N-Myc is a transcription factor that is aberrantly expressed in many tumor types and is often correlated with poor patient prognosis. Recently, several lines of evidence pointed to the fact that oncogenic activation of Myc family proteins is concomitant with reprogramming of tumor cells to cope with an enhanced need for metabolites during cell growth. These adaptions are driven by the ability of Myc proteins to act as transcriptional amplifiers in a tissue-of-origin specific manner. Here, we describe the effects of N-Myc overexpression on metabolic reprogramming in neuroblastoma cells. Ectopic expression of N-Myc induced a glycolytic switch that was concomitant with enhanced sensitivity towards 2-deoxyglucose, an inhibitor of glycolysis. Moreover, global metabolic profiling revealed extensive alterations in the cellular metabolome resulting from overexpression of N-Myc. Limited supply with either of the two main carbon sources, glucose or glutamine, resulted in distinct shifts in steady-state metabolite levels and significant changes in glutathione metabolism. Interestingly, interference with glutamine-glutamate conversion preferentially blocked proliferation of N-Myc overexpressing cells, when glutamine levels were reduced. Thus, our study uncovered N-Myc induction and nutrient levels as important metabolic master switches in neuroblastoma cells and identified critical nodes that restrict tumor cell proliferation. KW - Mass-Spectrometry KW - Cancer KW - MYCN PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507193 DO - https://doi.org/10.1038/s41598-020-64040-1 VL - 10 IS - 1 SP - 7157 AN - OPUS4-50719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Treiling, S. A1 - Wang, Cui A1 - Förster, C. A1 - Reichenauer, F. A1 - Kalmbach, J. A1 - Boden, P. A1 - Harris, J. P. A1 - Carrella, L. M. A1 - Rentschler, E. A1 - Resch-Genger, Ute A1 - Reber, C. A1 - Seitz, M. A1 - Gerhards, M. A1 - Heinze, K. T1 - Luminescence and Light-Driven Energy and Electron Transfer from an Exceptionally Long-Lived Excited State of a Non-Innocent Chromium(III) Complex N2 - Photoactive metal complexes employing Earth‐abundant metal ions are a key to sustainable photophysical and photochemical applications. We exploit the effects of an inversion center and ligand non‐innocence to tune the luminescence and photochemistry of the excited state of the [CrN6] chromophore [Cr(tpe)2]3+ with close to octahedral symmetry (tpe=1,1,1‐tris(pyrid‐2‐yl)ethane). [Cr(tpe)2]3+ exhibits the longest luminescence lifetime (τ=4500 μs) reported up to date for a molecular polypyridyl chromium(III) complex together with a very high luminescence quantum yield of Φ=8.2 % at room temperature in fluid solution. Furthermore, the tpe ligands in [Cr(tpe)2]3+ are redox non‐innocent, leading to reversible reductive chemistry. The excited state redox potential and lifetime of [Cr(tpe)2]3+ surpass those of the classical photosensitizer [Ru(bpy)3]2+ (bpy=2,2′‐bipyridine) enabling energy transfer (to oxygen) and photoredox processes (with azulene and tri(n‐butyl)amine). KW - Quantum yield KW - Cr(III) complex KW - Longst luminescence lifetime KW - Electron transfer PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-494870 DO - https://doi.org/10.1002/anie.201909325 VL - 58 SP - 2 EP - 13 PB - Wiley-VCH AN - OPUS4-49487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tscheuschner, Georg A1 - Kaiser, Melanie N. A1 - Lisec, Jan A1 - Beslic, D. A1 - Muth, Thilo A1 - Krüger, M. A1 - Mages, H. W. A1 - Dorner, B. G. A1 - Knospe, J. A1 - Schenk, J. A. A1 - Sellrie, F. A1 - Weller, Michael G. T1 - MALDI-TOF-MS-Based Identification of Monoclonal Murine Anti-SARS-CoV-2 Antibodies within One Hour N2 - During the SARS-CoV-2 pandemic, many virus-binding monoclonal antibodies have been developed for clinical and diagnostic purposes. This underlines the importance of antibodies as universal bioanalytical reagents. However, little attention is given to the reproducibility crisis that scientific studies are still facing to date. In a recent study, not even half of all research antibodies mentioned in publications could be identified at all. This should spark more efforts in the search for practical solutions for the traceability of antibodies. For this purpose, we used 35 monoclonal antibodies against SARS-CoV-2 to demonstrate how sequence-independent antibody identification can be achieved by simple means applied to the protein. First, we examined the intact and light chain masses of the antibodies relative to the reference material NIST-mAb 8671. Already half of the antibodies could be identified based solely on these two parameters. In addition, we developed two complementary peptide mass fingerprinting methods with MALDI-TOF-MS that can be performed in 60 min and had a combined sequence coverage of over 80%. One method is based on the partial acidic hydrolysis of the protein by 5 mM of sulfuric acid at 99 degrees C. Furthermore, we established a fast way for a tryptic digest without an alkylation step. We were able to show that the distinction of clones is possible simply by a brief visual comparison of the mass spectra. In this work, two clones originating from the same immunization gave the same fingerprints. Later, a hybridoma sequencing confirmed the sequence identity of these sister clones. In order to automate the spectral comparison for larger libraries of antibodies, we developed the online software ABID 2.0. This open-source software determines the number of matching peptides in the fingerprint spectra. We propose that publications and other documents critically relying on monoclonal antibodies with unknown amino acid sequences should include at least one antibody fingerprint. By fingerprinting an antibody in question, its identity can be confirmed by comparison with a library spectrum at any time and context. KW - Reproducibility KW - Quality control KW - Traceability KW - Peptides KW - Peptide mass fingerprinting KW - Monoclonal antibody KW - Recombinant antibody KW - Identity KW - Antibody identification KW - Sequencing KW - Light chain KW - Mass spectrometry KW - Software KW - Open science KW - Library KW - COVID-19 KW - Corona virus KW - Sequence coverage KW - NIST-mAb 8671 KW - Reference material KW - RBD KW - Spike protein KW - Nucleocapsid KW - Cleavage KW - Tryptic digest KW - MALDI KW - DHAP KW - 2,5-dihydroxyacetophenone KW - Github KW - Zenodo KW - ABID PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547347 DO - https://doi.org/10.3390/antib11020027 VL - 11 IS - 2 SP - 1 EP - 22 PB - MDPI CY - Basel AN - OPUS4-54734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tscheuschner, Georg A1 - Ponader, Marco A1 - Raab, Christopher A1 - Weider, Prisca S. A1 - Hartfiel, Reni A1 - Kaufmann, Jan Ole A1 - Völzke, Jule L. A1 - Bosc-Bierne, Gaby A1 - Prinz, Carsten A1 - Schwaar, T. A1 - Andrle, Paul A1 - Bäßler, Henriette A1 - Nguyen, Khoa A1 - Zhu, Y. A1 - Mey, A. S. J. S. A1 - Mostafa, A. A1 - Bald, I. A1 - Weller, Michael G. T1 - Efficient Purification of Cowpea Chlorotic Mottle Virus by a Novel Peptide Aptamer N2 - The cowpea chlorotic mottle virus (CCMV) is a plant virus explored as a nanotechnological platform. The robust self-assembly mechanism of its capsid protein allows for drug encapsulation and targeted delivery. Additionally, the capsid nanoparticle can be used as a programmable platform to display different molecular moieties. In view of future applications, efficient production and purification of plant viruses are key steps. In established protocols, the need for ultracentrifugation is a significant limitation due to cost, difficult scalability, and safety issues. In addition, the purity of the final virus isolate often remains unclear. Here, an advanced protocol for the purification of the CCMV from infected plant tissue was developed, focusing on efficiency, economy, and final purity. The protocol involves precipitation with PEG 8000, followed by affinity extraction using a novel peptide aptamer. The efficiency of the protocol was validated using size exclusion chromatography, MALDI-TOF mass spectrometry, reversed-phase HPLC, and sandwich immunoassay. Furthermore, it was demonstrated that the final eluate of the affinity column is of exceptional purity (98.4%) determined by HPLC and detection at 220 nm. The scale-up of our proposed method seems to be straightforward, which opens the way to the large-scale production of such nanomaterials. This highly improved protocol may facilitate the use and implementation of plant viruses as nanotechnological platforms for in vitro and in vivo applications. N2 - Das Cowpea Chlorotic Mottle Virus (CCMV) ist ein Pflanzenvirus, das als nanotechnologische Plattform erforscht wird. Der robuste Selbstorganisationsmechanismus seines Kapsidproteins ermöglicht die Verkapselung und gezielte Abgabe von Medikamenten. Darüber hinaus kann das Kapsid-Nanopartikel als programmierbare Plattform für die Präsentation verschiedener molekularer Komponenten verwendet werden. Im Hinblick auf künftige Anwendungen ist eine effiziente Produktion und Reinigung von Pflanzenviren von entscheidender Bedeutung. In etablierten Protokollen stellt die notwendige Ultrazentrifugation aufgrund von Kosten, schwieriger Skalierbarkeit und Sicherheitsaspekten eine erhebliche Einschränkung dar. Darüber hinaus bleibt die Reinheit des endgültigen Virusisolats oft unklar. Hier wurde ein fortschrittliches Protokoll für die Reinigung von CCMV aus infiziertem Pflanzengewebe entwickelt, wobei der Schwerpunkt auf Effizienz, Wirtschaftlichkeit und Reinheit lag. Das Protokoll beinhaltet eine Fällung mit Polyethylenglycol (PEG 8000), gefolgt von einer Affinitätsextraktion mit einem neuartigen Peptid-Aptamer. Die Effizienz des Protokolls wurde mithilfe von Größenausschluss-Chromatographie (SEC), MALDI-TOF-Massenspektrometrie, Umkehrphasen-HPLC und Sandwich-Immunoassay validiert. Darüber hinaus wurde nachgewiesen, dass das endgültige Eluat der Affinitätssäule eine außergewöhnliche Reinheit (98,4 %) aufweist, die durch HPLC und Detektion bei 220 nm bestimmt wurde. Die Skalierung der von uns vorgeschlagenen Methode scheint einfach zu sein, was den Weg für eine größer angelegte Produktion solcher Nanomaterialien ebnet. Dieses stark verbesserte Protokoll könnte die Verwendung und Umsetzung von Pflanzenviren als nanotechnologische Plattformen für In-vitro- und In-vivo-Anwendungen erleichtern. KW - Affinity chromatography KW - Nanoparticles KW - Nanoscience KW - Carrier protein KW - Encapsulation KW - Combinatorial peptide library KW - Peptide binder KW - Vigna unguiculata KW - Augenbohne KW - Schlangenbohne KW - Pflanzenvirus KW - Plant virus KW - Upscaling KW - Commercialization KW - Reference material KW - Nanocarrier PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572645 DO - https://doi.org/10.3390/v15030697 VL - 15 IS - 3 SP - 1 EP - 24 PB - MDPI CY - Basel, Schweiz AN - OPUS4-57264 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tscheuschner, Georg A1 - Schwaar, Timm A1 - Weller, Michael G. T1 - Fast Confirmation of Antibody Identity by MALDI-TOF MS Fingerprints N2 - Thousands of antibodies for diagnostic and other analytical purposes are on the market. However, it is often difficult to identify duplicates, reagent changes, and to assign the correct original publications to an antibody. This slows down scientific progress and might even be a cause of irreproducible research and a waste of resources. Recently, activities were started to suggest the sole use of recombinant antibodies in combination with the open communication of their sequence. In this case, such uncertainties should be eliminated. Unfortunately, this approach seems to be rather a long-term vision since the development and manufacturing of recombinant antibodies remain quite expensive in the foreseeable future. Nearly all commercial antibody suppliers also may be reluctant to publish the sequence of their antibodies, since they fear counterfeiting. De novo sequencing of antibodies is also not feasible today for a reagent user without access to the hybridoma clone. Nevertheless, it seems to be crucial for any scientist to have the opportunity to identify an antibody undoubtedly to guarantee the traceability of any research activity using antibodies from a third party as a tool. For this purpose, we developed a method for the identification of antibodies based on a MALDI-TOF MS fingerprint. To circumvent lengthy denaturation, reduction, alkylation, and enzymatic digestion steps, the fragmentation was performed with a simple formic acid hydrolysis step. Eighty-nine unknown monoclonal antibodies were used for this study to examine the feasibility of this approach. Although the molecular assignment of peaks was rarely possible, antibodies could be easily recognized in a blinded test, simply from their mass-spectral fingerprint. A general protocol is given, which could be used without any optimization to generate fingerprints for a database. We want to propose that, in most scientific projects relying critically on antibody reagents, such a fingerprint should be established to prove and document the identity of the used antibodies, as well as to assign a specific reagent to a datasheet of a commercial supplier, public database record, or antibody ID. KW - Reproducibility KW - Quality Control KW - Traceability KW - Diagnostics KW - Hybridoma KW - Monoclonal Antibody KW - Recombinant Antibody PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506611 DO - https://doi.org/10.3390/antib9020008 SN - 2310-287X VL - 9 IS - 2 SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-50661 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tukhmetova, Dariya A1 - Lisec, Jan A1 - Vogl, Jochen A1 - Meermann, Björn T1 - Data processing made easy: standalone tool for automated calculation of isotope ratio from transient signals – IsoCor N2 - Despite numerous advantages offered by hyphenation of chromatography and electrokinetic separation methods with multicollector (MC) ICP-MS for isotope analysis, the main limitation of such systems is the decrease in precision and increase in uncertainty due to generation of short transient signals. To minimize this limitation, most authors compare several isotope ratio calculation methods and establish a multi-step data processing routine based on the precision and accuracy of the methods. However, to the best of our knowledge, there is no universal data processing tool available that incorporates all important steps of the treatment of the transient signals. Thus, we introduce a data processing application (App) IsoCor that facilitates automatic calculation of isotope ratios from transient signals and eases selection of the most suitable method. The IsoCor App performs baseline subtraction, peak detection, mass bias correction, isotope ratio calculation and delta calculation. The feasibility and reliability of the App was proven by reproducing the results from isotope analysis of three elements (neodymium, mercury and sulfur) measured on-line via hyphenated systems. The IsoCor App provides trackability of the results to ensure quality control of the analysis. KW - Isotope ratio KW - Transient signal KW - MC-ICP-MS KW - Data processing KW - App PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559068 DO - https://doi.org/10.1039/D2JA00208F VL - 37 IS - 11 SP - 2401 EP - 2409 PB - Royal Society of Chemistry AN - OPUS4-55906 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -